2020-21
 X- MATHEMATICS - PAPER -1 MODEL PAPER-4, E/M

CLASS-X PART: A \& B MAX, MARKS: $80 \quad$ TIME: 3.15 Hrs
PART - A

SECTIONS: I (6x2=12Marks)
Group - A

1) Find H.C.F. and L.C.M. of 60 and 100 by prime factorization method?
2) Check whether $A=\{1,3,5,7\}$ and $B=\{2,4,6,8\}$ is disjoint sets or not? Justify your answer ?
3) Find the quadratic polynomial whose zeros are 2 and $-1 / 3$?
4) Find the slope of the line passing through the points $(4,-8)$ and $(5,-2)$?
5) The quadratic equation $2 x^{2}+k x+3=0$ is have two equal roots then find ' k ' value ?
6) Find the value of ' K ' for which the pair of equations $2 x-k y+3=0,4 x+6 y-5=0$ represent parallel lines

Group - B

7. A Ladder 25 m long reaches a window of building 20 m above the ground. Determine the distance from the foot of the ladder to the building ?
8. Write the formula for volume of cone and explain symbols in words ?
9. Find the mode: $20,3,7,1,3,4,6,7,19,15,7,18,3$?
10. A dice is thrown at once find the probability of getting an even prime number on it's face?
11. If $\sin A=\cos B$, then prove that $A+B=90^{\circ}$?
12. A tangent $P Q$ at point P of a circle of radius 5 cm meets a line through the centre ' O ' at a point Q so that $O Q=13 \mathrm{~cm}$, find length of $P Q$?
13) Write the formula for finding the median of grouped data? Explain each term it?
14) In a flower bed, there are 23 rose plants in the first row, 21 in the second, 19th in the third and so on there are 5 rose plants in the last row. How many rows there in the flower bed?
15) A train travels 360 Km at a uniform speed. If the speed had been $5 \mathrm{Km} / \mathrm{h}$ more. It would have taken 1 hour less for the same journey. Find the speed of the train ?
16) Solve the given pair of equations using substitution method?

$$
\begin{aligned}
& 2 x-y=5 \\
& 3 x+2 y=11
\end{aligned}
$$

17) A Sphere, a cylinder and a cone have the same radius and same height. Find the ratio of their volumes ?
18) A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball is double that of a red ball determine the number of blue balls in the bag?
19) Show that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$?
20) A survey conducted on 20 house-holds in a locality by a group of students resulted in the following frequency table for the number of family members in a house-hold?

Family size	$1-3$	$3-5$	$5-7$	$7-9$	$9-11$
No. of families	7	8	2	2	1

Find the mode of this data

SECTIONS III (4x8=32 Marks)

Group - A

21) Draw the graph of $P(x)=x^{2}+3 x-4$ and find zeros, verify the zeros of the polynomial ?
22) If $x^{2}+y^{2}=25 x y$, then prove that $2 \log (x+y)=3 \log 3+\log x+\log y$?
23) How many multiples of 4 lie between 10 and 250 ?
24) In what ratio does the point $(-4,6)$ divide the line segment joining the points $A(-6$, $10)$ and $(3,-8)$?

Group - B

25) Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and 6 cm then construct a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle ?
26) If $\operatorname{cosec} \theta+\cot \theta=\mathrm{p}$ then prove that $\cos \theta=\frac{k^{2}-1}{k^{2}+1}$
27) An iron pillar consists of a cylindrical portion of 2.8 m height and 20 cm in diameter and a cone of 42 cm height surmounting it find the weight of the pillar if $1 \mathrm{~cm}^{3}$ of iron weights 7.5 g . ?
28) The table below shows the daily expenditure on food of 25 house-holds in a locality?

Daily expenditure	$100-150$	$150-200$	$200-250$	$250-300$	$300-350$
No. of house-holds	4	5	12	2	2

Find the mean daily expenditure on food by a suitable method?

PART - B
BIT PAPER
Time : 30 Min
(20x1=20 Marks)

1) $\sqrt{2}-2$ is .number?
(a) Natural
(b) rational
(c) whole
(d) an irrational
2) If $y=p(x)$ is represented by the given graph then the number f zero are $\underbrace{4}_{r^{\prime}} \overbrace{x}^{r} y=p(x)$
(a) 2
(b) 3
(c) 4
(d) 1
3) The equation $x-4 y=5$ has
(a) No solution
(b) unique solution
(c) two solution
(d) many solution
4) In the formula of $n^{\text {th }}$ term of Arithmetic progression $t_{n}=a+(n-1) d$ ' d ' denotes \qquad
(a) First term
(b) common ratio
(c) common difference
(d) None
5) If $\mathrm{x}+\frac{1}{x}=2$ then $x^{2}+\frac{1}{x^{2}}=-$
(a) 8
(b) 0
(c) 4
(d) 2
6) If $\mathrm{A} C \mathrm{~B}$ then $\mathrm{A} \mathrm{U} \mathrm{B=}$ \qquad
(a) \varnothing
(b) μ
(c) A
(d) B
7) Centroid of ' G ' is $A(1,-3), B(0,6)$ and $C(-3,0)$ is
(a) $\left(\frac{8}{9}, \frac{1}{7}\right)$
(b) $\left(\frac{6}{7}, \frac{1}{3}\right)$
(c) $\left(\frac{1}{2}, \frac{1}{3}\right)$
(d) $\left(\frac{-2}{3}, \frac{5}{3}\right)$
8) All circles are \qquad
(a) Not similar
(b) similar
(c) congruent
(d) none
9) Angle between the tangent and radius drawn through the point of contact is
(a) 100°
(b) 70°
(c) 80°
(d) 90°
10) The volume of a cylinder is given by the formula $\Pi r^{2} h$, here ' h ' represents
(a) diameter
(b) height
(c) radius
(d) slant height
11) If $\sin x=\cos x, O \leq x \leq 90^{\circ}$, then $x=$ \qquad ?
(b) 30°
(b) 90°
(c) 0^{0}
(d) 45°
12) The length of the shadow of a tree is 8 m long when the sun's angle of elevation is 45° is height of tree \qquad m
(a) $\frac{8}{\sqrt{3}}$
(b) $8 \sqrt{3}$
(c) 8
(d) $16 \sqrt{3}$
13) Let $\mathrm{E}, \overline{\mathrm{E}}$ be the complementary events in a random experiment then which of the following is true ?
(a) $P(E)+P(\bar{E})=2$
(b) $P(E)+P(\bar{E})=3$
(c) $P(E)+P$
$(\overline{\mathrm{E}})=1$
(d) None
14) The mean of the first eight multiples of 3 is \qquad
(a) 8
(b) 1.5
(c) 13
(d) 27
15) If a, b, c are in A.P; then $b=$ \qquad
(a) $\frac{a+c}{2}$
(b) $a+c$
(c) $\sqrt{a c}$
(d) ac
16) the distance of $(3,4)$ from orgin is \qquad
(d) 7
17) The number of subsets of a set is 16 , then the set has \qquad elements
(a) 1
(b) 2
(c) 3
(d) 4
18) Number of secants that can be drawn to circle through a point inside it is \qquad
(a) 0
(b) 1
(c) infinite
(d) 2
19) A letter is choosen from the word "BAHUBALI" the probability that it was not a vowel is
(a) $\frac{1}{2}$
(b) $\frac{3}{2}$
(c) $\frac{4}{3}$
(d) $\frac{3}{4}$
20) From the figure $y=$ \qquad cm

(a) 9
(b) 10
(c) 12
(d) 15
