0166

Total No. of Questions - **30** Total No. of Printed Pages - **4**

mnracademy.com

Part - III

MATHEMATICS, Paper - IA

(English Version)

MODEL QUESTION PAPER (FOR IPE 2020-21 ONLY)

Time: 3 Hours

Max. Marks: 75

Note: This question paper consists of three section A, B and C.

Section - A

Very short answer type questions.

- (i) Answer all questions.
- (ii) Each question carries 2 marks.

 $10 \times 2 = 20$

- 1. If $A = \left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ and $F : A \rightarrow B$ is a surjection defined by $f(x) = \cos x$, then find B
- 2. Find the domain of the real valued function $f(x) = \frac{1}{\log(2-x)}$.
- 3. If $A = \begin{bmatrix} 2 & 3 & -1 \\ 7 & 8 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -4 & -1 \end{bmatrix}$ then find A+B.
- 4. If $A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$, find A^2 .
- 5. if $\overline{a} = 2\overline{i} + 5\overline{j} + \overline{k}$ and $\overline{b} = 4\overline{i} + m\overline{j} + n\overline{k}$ are collinear, then find m and n.
- 6. Find the vector equation of the line passing through the point $2\overline{i} + 3\overline{j} + \overline{k}$ and parallel to the vector $4\overline{i} 2\overline{j} + 3\overline{k}$.

Turn Over

- 7. If $\overline{a} = \overline{i} + 2\overline{j} 3\overline{k}$ and $\overline{b} = 3\overline{i} \overline{j} + 2\overline{k}$ then show that $\overline{a} + \overline{b}$ and $\overline{a} \overline{b}$ are perpendicular to each other.
- 8. Prove that $\frac{\cos 9^{\circ} + \sin 9^{\circ}}{\cos 9^{\circ} \sin 9^{\circ}} = \cot 36^{\circ}$.
- 9. Find the period of the function defined by $f(x) = \tan(x + 4x + 9x + \dots + n^2x)$.
- 10. If $\sin hx = 3$, then show that $x = \log_e (3 + \sqrt{10})$.

Section - B

Short answer type questions. mnracademy.com

 $5 \times 4 = 20$

- (i) Answer any FIVE questions.
- (ii) Each question carries four marks.
- 11. If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then show that $(aI + bE)^3 = a^3I + 3a^2bE$ where 'I' is unit matrix of order 2.
- 12. Show that $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ is non-singular and find A^{-1} .
- 13. Let ABCDEF be regular hexagone with centre O, show that $\overline{AB} + \overline{AC} + \overline{AD} + \overline{AE} + \overline{AF} = 3\overline{AD} = 6\overline{AO}$.
- 14. Find the equation of the plane passing through the point $\bar{a} = 2\bar{i} + 3\bar{j} \bar{k}$ and perpendicular to the vector $3\bar{i} 2\bar{j} 2\bar{k}$ and the distance of this plane from the origin.
- 15. If the vectors $\vec{a} = 2\vec{i} \vec{j} + \vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} 3\vec{k}$ and $\vec{c} = 3\vec{i} + p\vec{j} + 5\vec{k}$ are coplanar, then find 'P'.
- 16. If A is not an integral multiple of $\frac{\pi}{2}$, then prove that
 - (i) tanA + cotA = 2 cosec2A
 - (ii) $\cot A \tan A = 2 \cot 2A$
- 17. Find the range of $7\cos x 24\sin x + 5$.
- 18. Prove that $\frac{\cosh x}{1-\tanh x} + \frac{\sinh x}{1-\coth x} = \sinh x + \coth x$ for $x \ne 0$.

Turn Over

www.sakshieducation.com

- 19. Prove that $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{s^2}{\Delta}$.
- 20. If $\sin \theta = \frac{a}{b+c}$ then show that $\cos \theta = \frac{2\sqrt{bc}}{b+c} \cos \frac{A}{2}$.

Section - C

Long Answer type questions.

5×7=35

- (i) Answer any FIVE questions.
- (ii) Each question carries seven marks.
- 21. If $f = \{(1, 2), (2, -3), (3, -1)\}$ then find (i) 2f (ii) 2+f (iii) f^2 (iv) \sqrt{f}
- 22. If $A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$, then find $A^3 3A^2 A 3I$, where I is unit matrix of order 3.
- 23. Solve the following system of equations by Cramer's rule x+y+z=1, 2x+2y+3z=6, x+4y+9z=3.
- 24. Solve the following system of equations by Matrix Inversion method 2x-y+3z=9, x+y+z=6, x-y+z=2.
- 25. Find the vector equation of the plane passing through points $4\bar{i} 3\bar{j} \bar{k}$, $3\bar{i} + 7\bar{j} 10\bar{k}$ and $2\bar{i} + 5\bar{j} 7\bar{k}$ and show that the point $\bar{i} + 2\bar{j} 3\bar{k}$ lies in the plane.
- 26. If $\overline{a} = 7\overline{i} 2\overline{j} + 3\overline{k}$, $\overline{b} = 2\overline{i} + 8\overline{k}$ and $\overline{c} = \overline{i} + \overline{j} + \overline{k}$, then compute $\overline{a} \times \overline{b}$, $\overline{a} \times \overline{c}$ and $\overline{a} \times (\overline{b} + \overline{c})$. Verify whether the cross product is distributive over vector addition.
- 27. If [b c d] + [cad] + [abd] = [abc]. Then show that the points with position vectors a, b, c and d are coplanar.
- 28. If A, B, C are angles in a triangle, then prove that

$$\sin A + \sin B - \sin C = 4\sin \frac{A}{2}\sin \frac{B}{2}\cos \frac{C}{2}.$$

- 29. If $\cot \frac{A}{2} : \cot \frac{B}{2} : \cot \frac{C}{2} = 3:5:7$, then show that a:b:c = 6:5:4.
- 30. If a = 13, b = 14, c = 15, show that $R = \frac{65}{8}$, r = 4, $r_1 = \frac{21}{2}$, $r_2 = 12$ and $r_3 = 14$.