Junior Inter MATHS-1B

MODEL PAPER-1

Max. Marks:75

Section-A

Very Short Answer Questions. Answer all Questions.

Each Question carries' Two' marks

1. Find the distance between the following parallel lines 5x - 3y - 4 = 0, 10x - 6y - 9 = 0

- 2. Find the equation of the straight line parallel to the line 2x + 3y + 7 = 0 and passing through the point (4, -3)
- 3. Show that the points (1, 2, 3), (7, 0, 1) and (-2, 3, 4) are collinear
- 4. Find the angle between the planes x + 2y + 2z 5 = 0 and 3x + 3y + 2z 8 = 0

Show that
$$\lim_{x \to 2} \left(\frac{2|x|}{x} + x + 1 \right) = 3$$

 $\lim \sin(a+bx) - \sin(a-bx)$

6. Value of $x \to 0$

5

$$Tan^{-1}\left(rac{\sqrt{1+x^2}-1}{x}
ight)$$

7. Find the derivatives of the functions.

8. If $x = a\cos^3 t$, $y = a\sin^3 t$, find $\frac{dy}{dx}$.

9. Find an approximate value of $\sqrt[3]{123}$

10. Find the slope of the normal to the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ at $\theta = \frac{\pi}{4}$

www.sakshieducation.com

10x2=20M

www.sakshieducation.com

Section-B

II. Short Answer Questions. Answer any 'Five' Questions.

Each Question carries 'Four' marks.

5 x4 =20 M

- 11. Find the equation of locus of a point P such that $PA^2 + PB^2 = 2c^2$, where A = (a, 0), B = (-a, 0) and 0 < |a| < |c|.
- 12. Find the equation of locus of P, if A = (2, 3), B = (2, -3) and PA + PB = 8
- 13. Find the point to which the origin is to be shifted so as to remove the first degree terms from the equation

 $4x^2 + 9y^2 - 8x + 36y + 4 = 0$

- 14. Find the angle through which the axes are to be rotated so as to remove the xy term in the equation $x^2 + 4xy + y^2 - 2x + 2y - 6 = 0$
- 15. x 3y 5 = 0 is the perpendicular bisector of the line segment joining the point A, B If A = (-1, -3), find the coordinates of B.
- 16. Show that the points A (3, 2, -4), B(5, 4, -6) and C(9, 8, -10) are collinear and find the ratio in which B divides \overline{AC} .

Evaluate
$$\lim_{x \to a} \left(\frac{\cos ax - \cos bx}{x^2} \right)$$

17.

- 18. Find the derivatives of the functions $f(x) = \tan 2x$
- 19. Show that the length of the subnormal at any point on the curve $y^2 = 4ax$ is a constant.
- 20. At any point t on the curve x = a (t + sin t), y = a (1 cos t), find the lengths of tangent, normal, sub tangent and subnormal.

www.sakshieducation.com

Section-C

Long Answer Questions. Answer any 'Five' Questions.

Each Question carries 'Seven' marks.
$$5 \text{ x7} = 35 \text{ M}$$

21. If p and q are the lengths of the perpendiculars from the origin t the

straight lines x sec α_{+} y cosec α_{-} a and x cos α_{-} y sin α_{-} a cos 2 α_{-} , prove that $4p^2 + q^2 = a^2$

- 22. If the equations of the sides of a triangle are 7x + y 10 = 0, x 2y + 5 = 0 and x + y + 2 = 0, find the orthocenter of the triangle.
- 23.. Show that the lines joining the origin to the points of intersection of the

curve $x^2 - xy + y^2 + 3x + 3y - 2 = 0$ and the straight line $x - y - \sqrt{2} = 0$ are mutually perpendicular

- 24. The area of the Δ^{le} formed by $ax^2 + 2hxy + by^2 = 0$, lx + my + n = 0 is $\frac{n^2\sqrt{h^2 ab}}{|am^2 2hlm + bl^2|}$ sq. units.
- 25. Show that the lines whose d.c's are given by 1 + m + n = 0, 2mn + 3nl 5lm = 0 are perpendicular to each other

26. If
$$\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$$
 then $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$

27.
$$x^{y} = y^{x}$$
 then $\frac{dy}{dx} = \frac{y(x \log y - y)}{x(y \log x - x)}$

- 28. If the tangent at any point on the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ intersects the coordinate axes in A and B, then show that the length AB is a constant
- 29. Show that the curves $y^2 = 4(x+1)$ and $y^2 = 36(9-x)$ intersect orthogonally
- 30. Show that when the curved surface of right circular cylinder inscribed in a sphere of radius R is maximum, t hen the height of the cylinder is $\sqrt{2R}$

www.sakshieducation.com