NEET-2020 Model Paper-4

Chemistry

1) Solubility of sulphates of group-2 elements decreased down the group due to
1. decreasing hydratom energy
2. high IE
3. increase in MP
4. All of these
2) In photo chemical smog, when unburnt hydrocarbons react with ${ }^{\mathrm{NO}_{2}}$ and O_{3} chemical that are formed
1. For maldehyde
2. Acrolein
3. PAN
4. All of these
3) $\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{A} ; \mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B} ; \mathrm{XeF}_{6}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}$

The A, B and C respectively are

1. $\mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{XeOFF}_{4}, \mathrm{XeO}_{3}$
2. $\mathrm{XeOF}_{4}, \mathrm{KeO}_{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$
3. $\mathrm{XeO}_{3}, \mathrm{XeOF}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$
4. $\mathrm{XeOF}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{XeO}_{3}$
4)

1.

2.

3.

4.

5) The lattice energy and hydration Enthalpy of four compounds are given below

Compound	L.E	H.E
	(in KJ/mol)	(in KJ/mol)
P	+780	-920
Q	+1012	-812
R	+828	-878
S	+632	-600

The pair of compounds which is soluble in water is

1. P and Q
2. Q and R
3. R and S
4. P and R
6) The correct order of B.P. is

7)

NO_{2}

1. $3>1>4>2$
2. $1>2>3>4$
3. $4>1>2>3$
4. $1>2>4>3$
7) If the mol.wt of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and ${ }^{I_{2}}$ are ${ }^{M_{1}}$ and ${ }^{M_{2}}$ respectively then what will be the equivalent weights of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and ${ }^{I_{2}}$ in the following reaction $2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2 \oplus}+I_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2 @}+2 I^{\oplus}$
1. M_{1}, M_{2}
2. $M_{1}, \frac{M_{2}}{2}$
3. $2 M_{1}, M_{2}$
4. $M_{1}, 2 M_{2}$
8) The incorrect statement(s) regarding $\mathrm{HClO}(\mathrm{I}), \mathrm{HClO}_{2}(\mathrm{HI}) \mathrm{HClO}_{3}(\mathrm{HI})$ and $\mathrm{HClO}_{4}(\mathrm{IV})$ is/ are
1. The no. of $C l=0$ bonds in II and III together is three
2. The no. of lone pair of electrons on Cl in (II) and (III). Together is three
3. The hybridization of Cl in IV is $s p^{3}$
4. Amongest I to IV, the strongest acid is (I)
9)

The reaction is called

1. Williamson's synthesis
2. Riemer-Tiemann's reaction
3. Gabrial phthalimide synthesis
4. Wurtz-fittig reaction
10) What will be the product in the following reaction
1.

2.

3.

4.

11) Which of the following species do not exist

1. PbI_{4}
2. SiCl_{6}^{2-}
3. $B F_{6}^{3-}$
4. All the above
12) Which set of polymers has Homopolymers only
1. Neoprene, Starch, Nylon-6
2. Buna-S, Nylon-6, Terylene
3. Neoprene, Nylon-6,6, Buna-N
4. Starch, Nylon-6,6, Polythene
13) Incorrect match in the following
1. 2-oxy-4 amino pyramidine Thymine
2. 5-Methyl-2,4-dioxy pyrimidine Uracil
3. 2,4- dioxy pyrimidine
cytosine
4. All are incorrect
14) Arrange the following radical in order of decreasing stability
15)

2)

3)

1. $2>1>3$
2. $1>2>3$
3. $3>2>1$
4. $3>1>2$
15) Photo electric emission is observed from a surface for frequencies ν_{1} and ν_{2} of incident radiations $\left(\nu_{1}>v_{2}\right)$. If maximum K.E of photo electrons in the two cases are in the ratio $1: 2$, then frequency is given by
1. $v_{2}-v_{1}$
2. $v_{1}-v_{2}$
3. $2 v_{2}-v_{1}$
4. $\frac{v_{2}-v_{1}}{2}$
16) A given nitrogen-containing aromatic compound ' A ' reacts with $\mathrm{Sn} / \mathrm{HCl}$ followed by HNO_{2} to give an unstable compound B . B on treatment with phenol forms a beautiful coloured compound 'c' with the M.F- $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ The structure of compound 'A' is
1.

2.

3.

4.

17) To prepare anisole

, which is the best method?
1.
$\bigcirc \mathrm{Br}+\mathrm{CH}_{3} \mathrm{ONa} \rightarrow$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{CH}_{3} \mathrm{Cl}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CN}_{2} \mathrm{~N}_{2} \rightarrow$
4. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Na}+\mathrm{CH}_{3} \mathrm{OBr} \rightarrow$
18) The central dogma of molecular genetics states that the genetic information flows from

1. Amino acids \rightarrow proteins \rightarrow DNA
2. DNA \rightarrow-carbohydrates \rightarrow-Proteins
3. DNA \rightarrow-RNA \rightarrow-Proteins
4. DNA \rightarrow-RNA \rightarrow-Carbohydrates
19) An organic compound of M.F $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ does not react with Na. With excess of HI , it gives only one type of alkyl Halide the compound is
1. Ethoxy Ethane
2. Methoxy propane
3. 1-Methoxy Propane
4. 1-Butanol
20) $\mathrm{A}+2 \mathrm{~B}+3 \mathrm{C} \rightarrow A B_{2} C_{3}$. Reaction of 6 grams of $\mathrm{A}, 6.02 \times 10^{23}$ atoms of B and 0.036
moles of C yields 4.8 gram of compound $A B_{2} C_{3}$. If atomic mass of A and C are 60 and 80 amu respectively, the atomic mass of B is
1. 70 amu
2. 60 amu
3. 50 amu
4. 40 amu
21) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]^{4-}$ differ in
1. Geometry, magnetic moment
2. Geometry, hybridization
3. Magnetic moment, color
4. Hybridisation, no. of d-electrons
22) Which of the following statements is correct
1. He has the lowest M.P and B.P
2. He can diffuse through rubber, pvc and even glass
3. Ar, Kr, and Xe form clatherate compounds
4. All the above statements are correct
23) Assertion(A): Henry's law and Raoult's law are not independent i.e. one can be derived from the other.
Reason(R): The partial pressure is directly proportional to the molefraction of the concerned species for ideal solutions.
1. Both A and R are correct and R is the correct explanation of A
2. Both A and R are correct and R is not the correct explanation of A
3. A is correct R is incorrect
4. A is incorrect and R is correct
24) Which one is not correct about Frendlich isotherm

1. $n=\frac{1}{\tan \theta}$ at average pressure
2. $\theta=45^{\circ}$ at low pressure
3. $\theta=45^{\circ}$ at high pressure
4. None of these
25) Which of the following statements is incorrect
1. Pka value of HI (strongest halogen acid)
2. Ka value of Hx is in order $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$ is most positive.
3. High H-F bond strength makes H-F a weak acid in dilute aqueous solution
4. He and Ne do not form clatharates
26) Titanium is purified by following method

The value of ' x ' is

1. 1
2. 2
3. 4
4. 3
27) If the ratio of $\frac{A+G}{T+C}$ on one strand of DNA is 1.25 , then the ratio of the same on the complementary strand is
1. 0.8
2. 1.5
3. 1.25
4. 2.5
28) Which of the following structures represents on L-amino acid

1.
2.

3.

29) The formation of PH_{4}^{\oplus} is difficult compared to NH_{4}^{\oplus} because

1. Ione pair of ' P ' is optically inert
2. Ione pair of ' P ' resides in almost pure ' P ' orbitals
3. Ione pair of P resides in $s p^{3}$ orbital
4. Ione pair of P resides in almost pure ' s ' orbitals
30) Resistance of a decimolar solution between two electrodes 0.02 metre apart and $0.004 m^{2}$ in area was formed to be 50,Ohm. Specific conductance (k) is
1. $0.1 \mathrm{sm}^{-1}$
2. $1 \mathrm{sm}{ }^{-1}$
3. $10 \mathrm{sm}^{-1}$
4. $4 \times 10^{-4} \mathrm{sm}^{-1}$
31) Hucke's rule states that a monocyclic conjugated compounds will be aromatic if it contains
1. $(4 n+2 \pi)$ electrons
2. $(4 \pi+2 \pi)$ Electrons
3. 4π Electrons
4. $(4 n+2) \pi$ Electrons
32) Which of the following is not a Bacteriostatic Antibiotics
1. Erythromycin
2. Chloromphenicol
3. Ofloxacin
4. Tetracycline
33) The IUPAC Name of given compound is

1. N,N-Dimethyl cyclopropane
2. N-methyl carboxamide
3. Cyclopropanamide
4. None of these
34) $4 \times 10^{-2}(W / V) \%$ solution of polymer ' X ' is isotonic with $2 \times 10^{-2}(W / V) \%$ solution of polymer having number average molecular weight of 60,000. Then the number average molecular weight of polymer ' X ' (the two polymer solutions are ideal solutions)
1. 30,000
2. $1,20,000$
3. 90,000
4. 60,000
35) Equimolar solutions of two non-electrolytes in the same solvent have
1. same B.P's but different freezing points
2. same freezing point but different boiling points
3. Same B.P's and freezing points
4. different B.P's and freezing points

5. Both A and B are $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
6. Both A and B are $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$
7. A is $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ and B is $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$
8. A is $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ and B is $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
37) A mineral ${ }^{M X_{2}}$ crystllises in ccp of $M^{2 \Phi}$ ions whereas X^{-}ions occupy the tetrahedral voids. The no. of cations, anions per unit cell, the coordination of cation and percent of tetrahedral voids occupied are
1. $4,8,8,100 \%$
2. $4,8,8,50 \%$
3. $8,4,8,50 \%$
4. $8,4,8,110 \%$
38) $I: N_{2}+3 H_{2} \square \quad 2 N H_{\text {đ\{ } g \mid} K_{1} ; \quad I I: N H_{3(g)} \square \quad \frac{1}{2} N_{\chi\{g]}+\frac{3}{2} H_{2\{g]} ; K_{2}$

III: $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \mathrm{\square} \quad \mathrm{NH}_{3} ; \mathrm{K}_{3}$

$$
I V: 2 N H_{3[g]} \square \quad N_{2[g]}+3 H_{2[g]} ; K_{4}
$$

${ }_{\text {If }} \boldsymbol{K}_{1}=\boldsymbol{K}_{2}^{\chi}=\boldsymbol{K}_{3}^{y}=\boldsymbol{K}_{4}^{2}$, then correct values of x, y and z are respectively

1. $2,1,-2$
2. $-1,2,-2$
3. $-2,2,1$
4. $+2,2,-1$
39) Two solutions of KNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$ are prepared separately Molarity of both is
0.1 M and osmotic pressures are ${ }^{P_{1}}$ and ${ }^{P_{2}}$ respectively. The correct relationship between osmotic pressures is
1. $P_{1}-P_{2}$
2. $P_{1}>P_{2}$
3. $P_{2}>P_{1}$
4. $\frac{P_{1}}{P_{1}+P_{2}} \neq \frac{P_{2}}{P_{1}+P_{2}}$
40) An oxide of a non-metal has the following properties
a)It acts both as a proton donor as well as proton acceptor
b)It reacts readly with basic and acidic acids
c)It oxidizes Fe at its boiling point

The oxide is

1. $P_{2} O_{5}$
2. SiO_{2}
3. $\mathrm{H}_{2} \mathrm{O}$
4. CO_{2}
41) When BaCl_{2} is heated with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$, a red gas (A) is evolved. The gas when passed through NaOH , solution turns it yellow (B), which gives yellow ppt (C) with $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$. Then which of the following is correct
1. A is $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
2. C is PbO_{2}
3. B is $\mathrm{Cr}_{2} \mathrm{O}_{3}$
4. C is PbCrO_{2}
42) In the following is Lewis structure of HNO_{3} the formal charge on $\mathrm{O}(3)$ atom is

(2)
1. 0
2. -1
3. -2
4. +1
43) Which is wrongly reported
1. Spelter- impure zinc
2. Pig iron-impure iron
3. Sphalerite-Zno
4. Blister copper- impure copper
44) The std. enthalpies of formation at 300 K for $\mathrm{CCl}_{4} \mathrm{H}_{2} \mathrm{O}_{[\mathrm{g}]} \mathrm{CO}_{2[g]}$ and $\mathrm{HCl}_{[g]}$ are - 107, $-242,-394$ and $-93 \mathrm{KJ} / \mathrm{mol}$ respectively. The value of $\Delta U_{300 \mathrm{~K}}^{0}$ for the reaction $\mathrm{CCl}_{4}+2 \mathrm{H}_{2} \mathrm{O}_{[\mathrm{g}]} \rightarrow \mathrm{CO}_{\{(\mathrm{g})}+4 \mathrm{HCl}_{[\mathrm{g})}$ is
1. $-170 \mathrm{KJ} / \mathrm{mol}$
2. $-175 \mathrm{KJ} / \mathrm{mol}$
3. $-182.5 \mathrm{KJ} / \mathrm{mol}$
4. $-282.5 \mathrm{KJ} / \mathrm{mol}$
45)

1. COOH

2. COOH

3. $B r$
4.

NEET-4 Answers

Chemistry

$\begin{array}{lll}\text { 1) } 1 & \text { 2) } 4 & \text { 3) } 3\end{array}$
4) 2 5) 1
6) $2 \quad 7) 2$
8) 4 9) 3
10) 1 11) 4 12) 1 13) 4 14) 4 15) 2 16) 2 17) 2 18) 3 19) 1 20) 3 21) 3 22) 4 23) 2 24) 3 25) 1 26) 3 27) 1 28) 2 29) 2 30) 2 31) 4 32) 3 33) 1 34) 2 35) 3 36) 3 37) 1 38) 4 39) 2 40) 3 41) 1 42) 2 43) 3 44) 3 45) 2

