NEET-2020 Model Paper-1

Chemistry

1) The E⁰ values of the following reduction reactions are given

$$Fe_{(aq)}^{3+} + e^{-} \rightarrow Fe_{(aq)}^{2+} E^{0} = 0.771V$$

$$Fe^{2+}_{(qq)} + 2e^{-} \rightarrow Fe_{(s)}E^{0} = -0.447V$$

Then the free energy change for the reaction

$$Fe^{3+}_{(sq)} + 3e^- \rightarrow Fe_{(S)} \text{ will be } __\text{ kJ/mole}$$

- 1. -10.41
- 2. +11.87
- 3. -8.10
- 4. +18.50
- 2) For a reaction A+B î products, the rate of the reaction at various concentrations are as given below.

S.No	conc of [A]	conc of [B]	rate
	mol lt ⁻¹	mol lt ⁻¹	[Mole lt^{-1} time $^{-1}$]
1	0.2	0.2	2
2	0.2	0.4	4
3	0.6	0.4	36

The rate law for the above reaction is:

- 1. $r = k[A]^2 [B]^1$
- 2. $r = k[A] [B]^2$
- 3. $r = k[A]^{1}[B]^{1}$
- 4. $r = k[A]^3 [B]^0$
- 3) Among the following complexes the one which shows zero crystal field stabilizing energy is:
- 1. $[CoF_6]^{3-}$
- 2. $[Fe(CN)_6]^2$
- 3. $[FeF_6]^{3^2}$
- 4. [Cu (NH)₄]²⁺
- 4) The product which is not obtained in the wurtz reaction of a mixture of neopentyl bromide and isobutyl bromide is ___
- 1. 2, 2, 5, 5 Tetramethyl hexane
- 2. 2, 5 Dimethyl hexane
- 3. 3, 3, 5 Trimethyl hexane
- 4. 2, 2, 5 Trimethyl hexane

5) Which of the following molecules exhibits tautomerism?

1.

2.

3.

4.

$$+CH_3CH_2CH_2CI \xrightarrow{AlCl_3} X \xrightarrow{Peraxide} Y \xrightarrow{H_2O} OH$$

6)

The correct statement about Z is:

- The functional isomer of Z is propanal
 The functional isomer of Z does not undergo aldol condensation
- 3. Z does not show positive iodoform test4. Z does not undergo keto enol tautomerism
- 7) The amphoteric oxide among the following is____
- 1. Mn₂O₇
- 2. V₂O₃

3. CrO 4. Cr ₂ O ₃
 8) Which of the following statements is true? 1. During preparation of silicones the chain length of the polymer can be controlled by adding (CH₃)₃SiC<i>I</i> 2. Hydrolysis of (CH₃)SiC<i>I</i>₃ followed by condensation yields straight chain polymer
 3. Basic structural unit of silicates is SiO₃⁴⁻ 4. ZSM-5 is used in polymerization of ethene to polythene
9) Which of the following is AB ₂ E ₃ type of molecule? (B = Bond pairs and E = Lone pairs) 1. SeF ₄ 2. XeO ₃ 3. XeF ₂ 4. SO ₂
10) 4 moles of N ₂ O ₄ at 300K is kept in a closed container at 1 atmosphere. It is heated upto 600K when 20% of N ₂ O ₄ decomposes to NO ₂ (g). The resultant pressure is 1. 1 atm 2. 2.4 atm 3. 1.2 atm 4. 2 atm
 11) Which of the following reactions is not a disproportionation reaction? 1. Cl₂+NaOH (cold & dil.) 2. P₄ (white) + NaOH 3. F₂+ NaOH 4. Cl+ NaOH (hot and conc.)
12) Among K ⁺ , Ca ²⁺ , S ²⁻ , C <i>I</i> the largest and smallest ion pair respectively are: 1. S ²⁻ , C <i>I</i> 2. S ²⁻ , K ⁺ 3. Ca ²⁺ , C <i>I</i> 4. S ²⁻ , Ca ²⁺
13) The enthalpy of vaporization of benzene is +35.3 kJ. Boiling point of benzene is 80° C. The entropy change of the reaction $C_6H_6(I) = C_6H_6(g)$ at 80° C is Jmol $^{-1}$ k $^{-1}$ 1100 2. +100 3342 4. +342

- 14) The value of DH for the reaction $X_2(g) + 4Y_2(g) \rightarrow 2XY_4(g)$ is more than zero, Formation of $XY_4(g)$ will be favoured at:

 1. Low pressure and low temperature

- Low pressure and high temperature
 High pressure and High temperature
 High pressure and low temperature

- 15) Which of the following hydrocarbons can decolourise Br₂ in CCI₄ and also gives a white precipitate with tollens reagent?
- 1. Ethene
- 2. 2-Butyne
- 3. 1- Butyne
- 4. Ethane
- 16) The cell constant of a conductivity cell is 0.6 cm⁻¹. Resistance of the cell filled with 0.01 M KC/solution is 300 ohms at 25°C. Then the equivalent conductance of the given solution is Ω^{1} cm² eq⁻¹
- 1. 220
- 2. 200
- 3. 300
- 4. 180
- 17) A crystalline solid has X^- ions at the corners and face centres whereas as Y^+ ions are at the body centre and edge centres of the unit cell. The simplest formula of the compound is:
- 1. Y₂ X
- 2. Y X₂
- 3. Y X₃
- 4. YX
- 18) The number of oxygen atoms in 1.62 gm of calcium bicarbonate is:
- 1. $0.6 N_0$
- 2. $0.06 N_0$
- 3. $0.3 N_0$
- 4. $0.03 N_0$
- 19) The volume strength of 15% W/V H₂O₂ solution is:
- 1. 100 Vol
- 2. 10 Vol
- 3. 50 Vol
- 4. 5 Vol

2.

20) Which of the following is wrongly matched?

$$\begin{array}{ccc} & \text{CH}_3\text{CHO} & \xrightarrow{\mathbb{Z}_n - \text{Hg}} & \text{C}_2\text{Hg} \\ & & & \text{HGI} & \end{array}$$

- Clemmensons reduction

$$\begin{array}{c} \text{CHO} \\ \hline \\ \text{CHO} \end{array} \xrightarrow{\text{Z_{1}-$Hg}} \begin{array}{c} \text{CH_{2}OH} \\ \hline \\ \text{$COO} \end{array}$$

- Intramolecular Cannizzaro reaction

- 21) In Borax, the number of B-O-B links and B-OH bonds present are respectively _ and
- 1. 5, 4
- 2. 4, 5
- 3. 5, 3
- 4. 4. 4
- 22) Which of the following orders is in accordance with the property stated against it?
- 1. $F_2 > Cl_2 > Br_2 > l_2$

(Bond dissociation energy)

2. $F_2 > CI_2 > Br_2 > I_2$

(Electron Affinity)

- 3. $HCIO > HCIO_2 > HCIO_3 > HCIO_4$ (Acidic Strength)
- 4. HF > HC/ > HBr > HI

(Thermal stability)

- 23) The ionization potential of Hydrogen atom is 13.6 eV. The energy required to remove an electron from He⁺ ion is:
- 1. 54.4 eV
- 2. 6.8 eV
- 3. 13.6 eV
- 4. 27.2 eV
- 24) Most acidic oxide of 2nd period is:
- 1. Cl₂O₇
- 2. N₂O₅
- 3. SO₃
- 4. Na₂O
- 25) Which one of the following aqueous solutions has the highest pH value?
- 1. aq NH₄C*I*
- 2. aq CH₃COONH₄
- 3. aq CH₃COONa
- 4. aq H₂CO₃
- 26) Which of the following molecules has maximum dipole moment?
- 1. NH₃
- 2. BF₃
- 3. NF₃
- 4. BeCl₂
- 27) The orbital angular momentum of 3d electron is:

	h
1.	$\overline{2\pi}$
	2h
2.	$\overline{\pi}$
	$\sqrt{2}\mathrm{h}$
3.	2π
	$\sqrt{6}\mathrm{h}$
4.	$\frac{1}{2\pi}$
28	The diamagnetic and neutral oxide of nitrogen is:
	NO
	NO_2
	$N2O_3$ N_2O
	-
) Which of the following pairs of metals is purified by Van Arkel method? Zn and Ni
	Ga and In
	Zr and Ti
4.	Ag and Au
30	Adsorption is accompanied by:
	Decrease in entropy and increase in enthalpy
	No change in entropy and enthalpy
	Decrease in both entropy and enthalpy Increase in both entropy and enthalpy
	The carbohydrate that yields glucose and galactose in acid hydrolysis is: Sucrose
	Lactose
	Maltose
4.	Starch
	Identify 'D' in the following sequence of reactions.
C_2	$H_5 \cap H \xrightarrow{KMr_0} A \xrightarrow{NH_3} B \xrightarrow{\Delta} C \xrightarrow{K0H} D$
1.	$C_2H_5NH_2$
	CH ₃ NH ₂
	C ₂ H ₅ CONH ₂
	CH ₃ CONH ₂
	The correct decreasing order of basic strength of following amines C ₂ H ₅ NH ₂ , NH ₃ ,
(C_2)	$_{2}H_{5})_{2}NH$, $C_{6}H_{5}NH_{2}$ in gaseous state is:

1. $(C_2H_5)_2NH > C_2H_5NH_2 > NH_3 > C_6H_5NH_2$

3. $(C_2H_5)_2NH > NH_3 > C_6H_5NH_2 > C_2H_5NH_2$

2. $(C_2H_5)_2NH > C_2H_5NH_2 > (C_6H_5NH_2)_2NH > NH_3$

- 34) Monomers of nylon 2-nylon-6 are:
- 1. Hexamethylene diamine and adipic acid
- 2. Glycine and adipic acid
- 3. Glycine and aminocaproic acid
- 4. Ethylene glycol and pthalic acid
- 35) At 300K two pure liquids A and B have vapour pressures of 200 mm and 600 mm respectively. In an equimolar liquid mixture of A and B, the mole fraction of A in the vapour phase at this temperature is:
- 1. 0.75
- 2. 0.25
- 3. 0.4
- 4. 0.6
- 36) The products formed on partial hydrolysis of XeF₆:
- 1. Xe and XeO₃
- 2. XeOF₄ and XeF₂
- 3. XeOF₄ or XeO₂F₂
- 4. XeF₂ and XeO₂F₂
- 37) The products in the following reaction is:

X Y Z

1)
$$O$$
 $CH-C_6H_5$
 O
 $=CH-C_6H_5$
 $=CH_2-C_6H_5$

2)
$$CH_2-C_6H_5$$
 $CH-C_6H_5$ $CH-C_6H_5$

3)
$$CH-C_6H_5$$
 $CH-C_6H_5$ $CH-C_6H_5$

4)
$$CH-C_6H_5$$
 $CH-C_6H_5$ $CH-C_6H_5$

- 1. 1
- 2. 2
- 3. 3
- 4. 4

38) The correct decreasing order of stability of the Carbonium ions is:

I)
$$C_6H_5$$
 CH_2

$$\mathbb{II})\,\mathbb{P}-(\mathbb{H}_3\mathbb{CO})\,\mathbb{C}_6\mathbb{H}_4-\overset{\scriptsize \Phi}{\mathbb{CH}}_2$$

$${\rm III}) \, {\rm P} - {\rm NO}_2 - {\rm C}_6 {\rm H}_4 \stackrel{\Phi}{{\rm CH}}_2$$

$$\text{IV)}\, \text{P} - \text{CH}_3 \text{C}_6 \text{H}_4 \stackrel{\Phi}{\text{CH}}_2$$

- 1. |V > |I > I > |I|
- 2. II > IV > III > I
- 3. |I| > |V| > |I|
- 4. |V > |I > |I| > |I|

39) The ion which when present in excess in water (> 50 ppm) causes blue baby syndrome disease is: 1. NO3 2. SO4 4. NO2 40) The formula of the blue coloured precipitate formed in the Lassaignes test for detection of Nitrogen in an organic compound is: 1. Fe4 [Fe (CN)6]3 2. Fe4 [Fe (CN)6]2 3. Fe3 [Fe (CN)6]2 4. Fe3 [Fe (CN)6]3 41) 50 cm3 of 0.04M K2Cr2O7 in acidic medium oxidises a sample of H2S gas to S. Volume of 0.03M KMnO4 required to oxidise the same amount of H2S to S in acidic medium is:
2. SO ₄ ² 3. F 4. NO ₂ 40) The formula of the blue coloured precipitate formed in the Lassaignes test for detection of Nitrogen in an organic compound is: 1. Fe ₄ [Fe (CN) ₆] ₃ 2. Fe ₄ [Fe (CN) ₆] ₂ 3. Fe ₃ [Fe (CN) ₆] ₂ 4. Fe ₃ [Fe (CN) ₆] ₃ 41) 50 cm ³ of 0.04M K ₂ Cr ₂ O ₇ in acidic medium oxidises a sample of H ₂ S gas to S. Volume of 0.03M KMnO ₄ required to oxidise the same amount of H ₂ S to S in acidic medium is:
3. F 4. NO ₂ 40) The formula of the blue coloured precipitate formed in the Lassaignes test for detection of Nitrogen in an organic compound is: 1. Fe ₄ [Fe (CN) ₆] ₃ 2. Fe ₄ [Fe (CN) ₆] ₂ 3. Fe ₃ [Fe (CN) ₆] ₂ 4. Fe ₃ [Fe (CN) ₆] ₃ 41) 50 cm ³ of 0.04M K ₂ Cr ₂ O ₇ in acidic medium oxidises a sample of H ₂ S gas to S. Volume of 0.03M KMnO ₄ required to oxidise the same amount of H ₂ S to S in acidic medium is:
3. F 4. NO ₂ 40) The formula of the blue coloured precipitate formed in the Lassaignes test for detection of Nitrogen in an organic compound is: 1. Fe ₄ [Fe (CN) ₆] ₃ 2. Fe ₄ [Fe (CN) ₆] ₂ 3. Fe ₃ [Fe (CN) ₆] ₂ 4. Fe ₃ [Fe (CN) ₆] ₃ 41) 50 cm ³ of 0.04M K ₂ Cr ₂ O ₇ in acidic medium oxidises a sample of H ₂ S gas to S. Volume of 0.03M KMnO ₄ required to oxidise the same amount of H ₂ S to S in acidic medium is:
40) The formula of the blue coloured precipitate formed in the Lassaignes test for detection of Nitrogen in an organic compound is: 1. Fe ₄ [Fe (CN) ₆] ₃ 2. Fe ₄ [Fe (CN) ₆] ₂ 3. Fe ₃ [Fe (CN) ₆] ₂ 4. Fe ₃ [Fe (CN) ₆] ₃ 41) 50 cm ³ of 0.04M K ₂ Cr ₂ O ₇ in acidic medium oxidises a sample of H ₂ S gas to S. Volume of 0.03M KMnO ₄ required to oxidise the same amount of H ₂ S to S in acidic medium is:
40) The formula of the blue coloured precipitate formed in the Lassaignes test for detection of Nitrogen in an organic compound is: 1. Fe ₄ [Fe (CN) ₆] ₃ 2. Fe ₄ [Fe (CN) ₆] ₂ 3. Fe ₃ [Fe (CN) ₆] ₂ 4. Fe ₃ [Fe (CN) ₆] ₃ 41) 50 cm ³ of 0.04M K ₂ Cr ₂ O ₇ in acidic medium oxidises a sample of H ₂ S gas to S. Volume of 0.03M KMnO ₄ required to oxidise the same amount of H ₂ S to S in acidic medium is:
Volume of 0.03M KMnO ₄ required to oxidise the same amount of H ₂ S to S in acidic medium is:
1. 80 cm ³ 2. 60 cm ³ 3. 90 cm ³ 4. 50 cm ³
42) At similar conditions of temperature and pressure the rate of diffusion of Hydrogen gas is $3\sqrt{3}$ times of a Hydrocarbon x . The molecular formula of the Hydrocarbon x is likely to be1. C_4H_{10} 2. C_6H_6 3. C_3H_8 4. C_3H_6
 43) Which of the following statements is false? 1. Micro cosmic salt is Na(NH₄)HPO₄ 2. Thermal stability of hydrides of IA group decreases down the group 3. The solubility of IIA group sulphates increase down the group 4. Carbonates of IA group are thermally stable except Li₂CO₃
44) The bond enthalpy values of H_2 = 431.37 kJ/mole, C = C is 606.10 kJ/mole, C - C is 336.49 kJ/mole, C - H is 410.50 kJ/mole. Then ΔH reaction for $C_2H_4+H_2\rightarrow C_2H_6$ is: 1120.0 kJ/mole 2243.6 kJ/mole 3. 1523.6 kJ/mole 4. 5530 kJ/mole
 45) Ferrimagnetic substance among the following is: 1. MgFe₂O₄ 2. MnO 3. CrO₂ 4. Na₂O

NEET-1Answers

Chemistry

```
1) 2 2) 1 3) 3 4) 3 5) 4 6) 1 7) 4 8) 1 9) 3 10) 2 11) 3 12) 4
13) 2 14) 3 15) 3 16) 2 17) 4 18) 2 19) 3 20) 4 21) 1 22) 4 23) 1 24) 2
25) 3 26) 1 27) 4 28) 4 29) 3 30) 3 31) 2 32) 2 33) 1 34) 3 35) 2 36) 3
37) 4 38) 3 39) 1 40) 1 41) 1 42) 2 43) 3 44) 1 45) 1
```