This Question Paper contains 4 printed Pages.

# MODEL PAPER -3 MATHEMATICS, Paper - I <br> (English version) <br> (Parts A and B) 

[Maximum Marks: 40
Time : 2 hrs. 45 min.]

## Instructions:

1. In the time duration of 2 hours 45 minutes, 15 minutes of time is allotted to read and understand the Question paper.
2. Answer all the questions under Part-A on a separate answer book.
3. Write the answers to the questions under Part- B on the Question paper itself and attach it to the answer book of Part- A

## Part - A

Time : 2 hours

1. Find the distance between $\mathrm{A}(4,0)$ and $\mathrm{B}(8,0)$ ?
2. In A. $\mathrm{Pn}^{\text {th }}$ term $\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1)$ d. Explain each term in it ?
3. The quadratic equation $2 \mathrm{x}^{2}+\mathrm{kx}+3=0$ have tow equal roots. There find ' k ' value ?
4. If $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{2,4,6,8\}$ Find $\mathrm{A} U B$ ?
5. Log 100 rational or irrational ? justify your answer ?
6. Find the value of $\log _{\frac{2}{3}}^{\frac{8}{27}}$
7. Check whether the 3 and -2 are the zeros of the polynomial $p(x)=x^{2}-x-6$

## SECTION -II

NOTE: (i) Answer all the problems.
(ii) Each question carries 2 Marks.
8. Show that the square of an odd positive interger is in the form of $8 \mathrm{~m}+1,{ }^{8 \mathrm{~m}+3}$ where ' m ' is a whole number.
9. Show that the points $\mathrm{A}(3,-2),(-2,8)$ and $(0,4)$ are collinear ?
10. Solve the given pair of equation using substitution method ?

$$
\begin{aligned}
& 2 x-y=5 \\
& 3 x-2 y=11
\end{aligned}
$$

11. Check whether -150 is a term of the AP : $11,8,5,2 \ldots \ldots$.
12. Find the roots of the Quadratic equation
$\frac{1}{x}-\frac{1}{x-2}=3 \quad x \neq 0,2$
13. If -1 is a zero of the polynomical $f(x)=x^{2}-7 x-8$, then caluate the other zero ?

## SECTION - III

14. Use division algorithm to show that the cube of any positive interger is fo the form 9 m , $9 m+1$ or $+9 m+8$

Prove that $3+2 \sqrt{5}$ is asn irrational number.
15. Draw the graph for the polynomical $p(x)=x^{2}-3 x-4$ and find the zeroes form the graph. ? (or)

Draw the graph for the following pair of linear equation in two variable and find their solution from the graph?

$$
\begin{aligned}
& 2 x+y-5=0 \\
& 3 x-2 y-4=0
\end{aligned}
$$

16. If $A=\{x: x$ is a natural number $\}, B=\{x: x$ is an even natural number $\} C=x: x$ is an odd natural number $\} D=\{x: x$ is a prime number $\}$ Find 1) $A \cap B 2) A \cap B 3) B \cap C 4) B \cap D$.
(or)
A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{h}$ more, it would have taken 1 hour less for the same journey. Find the speed of the train?
17. If the sum of first 7 terms of an AP is 49 and that of 17 terms in 289 , find the sum of first ' $n$ ' terms?
(or)

Find the coordinates of the point which divides the line segment joining the points $4,-3$ ) and $(8,5)$ in the ratio $3: 1$ internally

## PART -B

18. The number of subsets of the null set $\emptyset$ is $\qquad$
A) 0
B) 1
C) 3
D )4
19. $\log { }_{10}^{2}=0.3010: \log { }_{10}^{3}=0.4771 \log _{10}^{6}=$ $\qquad$
20. Euclid's division lemma can be applicable to all .....
A) Positive intergers B) Integers C) Real numbers D) Whole numbers (
21. The number of Zeros of the polynomial, whose graph is given below (
A) 0
B) 1
C) 2
D) 3

22. In a quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ : if $\mathrm{b}^{2}-4 \mathrm{ac}>0$

Their roots are $\qquad$
A) Real and distinct B) real and equal
C) Imaginary D) None
23. if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P, then $\mathrm{b}=$ $\qquad$
A) ac
B) $\sqrt{ } a c$
C) $\frac{a+c}{2}$
D) $a^{2} c^{2}$
24. The area of the triangly BOA is $\qquad$ sq units.
A) 1
B) 2
C) 3
D4

25. If $p(x)+x^{2}-4 x+5$ then the value of $p(1)$ is $\qquad$
A) -1
B) 0
C) 1
D) 2
26. 'I' represents $\qquad$ in the formula $\mathrm{Sn}=\frac{n}{2}(\mathrm{a}+1)$
A) First term B) last term C) ' $n$ 'th term D) None
27. Which of the following coincides with $x-y=6$
A) $10 x-60=10 y$
B) $\quad 48+8 y=8 x$
C) $x-y=6$
D) all the above

