This Question Paper contains 4 printed Pages.

MODEL PAPER -1 MATHEMATICS, Paper - I

(English version)
(Parts A and B)

Time: 2 hrs. 45 min.]
[Maximum Marks: 40
Instructions:

1. In the time duration of 2 hours 45 minutes, 15 minutes of time is allotted to read and understand the Question paper.
2. Answer all the questions under Part-A on a separate answer book.
3. Write the answers to the questions under Part- B on the Question paper itself and attach it to the answer book of Part- A

Part - A

Time : 2 hours
Marks : 35
NOTE : (i) Answer all the questions from the given three sections. I, II, and III of Part - A
(ii) In section III, every question has internal choice.

SECTION-I

$$
\text { (Marks : } 7 \text { X } 1=7 \text {) }
$$

NOTE: (i) Answer all the following questions.
(ii) Each question carries 1 mark.

1. Evaluate the value of $\log _{7}{ }^{343}$?
2. $A=\left\{x: x^{2}=16\right.$ and $\left.2 x+3=11\right\}$ is not an empty set why ?
3. Check Whether -2 and 2 are the Zeroes of the Polynomial $X^{4}-16$?
4. $4 x-6 y-15=0$ and $2 x-k y-5=0$ are two parallel lines then find the ' K ' Value ?
5. Write the nature of roots of the Quadratic equation $2 x^{2}-3 x-+5=0$
6. Find the Sum of first 100 natural numbers ?
7. Verify whether the points $\mathrm{A}(1,5), \mathrm{B}(2,3)$, and $\mathrm{C}(-2,-1)$ are collinear or not?

,SECTION-II

Note: (i) Answer all the problems.
(ii) Each Question carries 2 Marks.
8. Find the HCF and LCM of 12 and 18 by the prime Factorization Method. ?
9. Find the area of a triangle whose Vertices are $(1,-1),(-4,6)$ and $(-3,-5)$?
10. Solve the following pair of Linear Equation using. Elimination method?

$$
\begin{aligned}
& 3 x+2 y=11 \\
& 2 x+3 y=4
\end{aligned}
$$

11. Find the $11^{\text {th }}$ term form the end of the A.P:10,7,4,------------62.
12. Find the roots of the equation $\mathrm{x}-\frac{1}{3 x}=\frac{1}{6}(\mathrm{x} \neq 0)$.
13. Find the quadratic polynomial whose zero are 2 and $-\frac{\mathbf{1}}{\mathbf{3}}$?

SECTION - III

14. If $(2.3)^{x}=(0.23)^{y}=1000$, then find the value of $\frac{1}{x}-\frac{1}{y}$?
(OR)
Prove that $\sqrt{2}+\sqrt{3}$ is an irrational number?
15. Draw the graph of the polynomial $p(x)=x^{2}-6 x+9$ and find the zero,justify the answer?
(OR)

Draw the gaph for the following pair of liner equation in two variables and find their solution from the graph ?

$$
2 x-3 y=5,4 x-6 y=15
$$

16. IF the geometric progressions $162,54,18, \ldots \ldots \ldots \ldots \ldots \ldots$.................. $\frac{2}{81}, \frac{2}{27}, \frac{2}{9}$
,$\ldots \ldots \ldots . .$. .have their $n^{t h}$ term equal .find the value of ' n '?
(OR)
Find the co-ordinates of the points of trisection of the line segment joining the points $\mathrm{A}(2,-2)$ and $\mathrm{B}(-7,4)$?
17. If $A=\{3,6,9,12,15,18,21\}$,
$B=\{4,8,12,16,20\}$, $C=\{2,4,6,8,10,12,14,16\}$,
$D=\{5,10,15,20\}$ then find. $?$
18. $\mathrm{A} \Omega \mathrm{B}$ 2.BÚC 3.A-B 4.C-B (OR)

In a class test, the sum of mounika's marks in Mathematics and English is 30, If she got 2 marks more in mathematics and 3 marks less in English .the products of her marks would have been 210 . Find the marks in two subjects.

PART-B

18. Find the $21^{\text {st }}$ term of the A.P whose first two term are -3 and 4 is
A] 17
B] 137
C] 143
D]-143
19. AOBC is a rectangle whose four vertices are $\mathrm{A}(0,3), \mathrm{O}(0,0), \mathrm{B}(5,0), \mathrm{C}(5,3)$ the length of its diagonal is \qquad units
A] 5
B] 3
C] $\sqrt{34}$
D] 4
20. The decimal Expression of the rational number is $\frac{43}{2^{4 \cdot 5}}$ terminates after which place of the decimal point ()
A] 7
B] 4
C] 3
D] 8
21. If a pair of linear equation is constant, then the lines will be
A] Parallel
B] Always coincident
C] Intersecting (or) coincident
D]Always intersecting
22. $\mathrm{A}=\{2,5,10,17,26\}$ which of the following is the set builder form of the set ' A ' ()
A] $A=\left\{x: x=n^{2}+1 ; n € N, n \leq 4\right\}$
B] $A=\left\{x: x=n^{2}-1 ; n \in N, 1 \leq n \leq 5\right\}$
$\mathrm{C}] \mathrm{A}=\{$
$\left.\mathrm{x}: \mathrm{x}=\mathrm{n}^{2}+1 ; \mathrm{n} \in \mathrm{N}, \mathrm{n} \leq 5\right\}$
D] $A=\left\{x: x=n^{2}+2 ; n \in N, n \leq 5\right\}$
23.which of the following is not a quadratic expression
$\mathrm{A}](x+1)^{2}=2(\mathrm{x}-3)$
B] $x^{2}+8 \mathrm{x}=-2(1-23)^{2}$
$\mathrm{C}](\mathrm{x}+2)(\mathrm{X}-1)=x^{2}+3 \mathrm{x}-2$
D $] x^{3}+x^{2}-2 \mathrm{x}+1=(x+1)^{3}$
23. $4^{\text {th }}$ and $5^{\text {th }}$ terms of G.P are $\frac{1}{24}$ and $\frac{1}{8}$ then the common ration is
A] $\frac{1}{3}$
B] 3
C] $\frac{1}{192}$
D] 12
24. $\quad \mathrm{y}=\mathrm{P}(\mathrm{x}) \quad$ The graph of $\mathrm{y}=\mathrm{P}(\mathrm{x})$ has how many zeros___
A] 2
B]1
C] 4
D] no zeros
26.P, Q are zero values of polynomial $\mathrm{P}(\mathrm{x}) 2 \mathrm{x}^{2}-7 \mathrm{x}-3$ then $\mathrm{P}^{2}+\mathrm{Q}^{2}=$ how many zeros \qquad
A] $\frac{1}{4}$
B] 1
C] ${ }_{4}^{3}$
D] None
27.If $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{B}\left(x_{2}, y_{2}\right) \mathrm{C}\left(x_{3}, y_{3}\right)$ are vertices of a triangle ABC .which of the following represents centroid.
$\mathrm{A}]\left[\frac{\cdot x_{1}+x_{2}+x_{3}}{3}, \quad \frac{y_{1}+y_{2}+y_{3}}{3}\right]$
B] $\left[\frac{y_{1}+y_{2}+y_{3}}{3}, \frac{x_{1}+x_{2}+x_{3}}{3}\right]$
C) $\left[\frac{x_{1}+y_{2}+y_{3}}{3}, \quad \frac{y_{1}+x_{2}+x_{3}}{3}\right]$
D] $\left[\frac{x_{2}+y_{3}+y_{1}}{3}, \frac{y_{2}+x_{2}+x_{3}}{3}\right]$

The end

