www.sakshieducation.com

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!

AP EAMCET Physics Previous Questions with Key - Test 9

81) The current in a diode is given by the equation $\mathrm{I}=\left(\mathrm{e}^{1000 \mathrm{~V} / \mathrm{T}}-1\right)$ where ' V ' is applied voltage in volt and ' T ' is absolute temperature in Kelvin. A student measures the current as 11 mA at 300 K . If the error in measuring voltage is $\pm 0.01 \mathrm{~V}$, error in the value of current in mA is
82) ± 0.4
83) ± 3
84) ± 2
85) ± 1
82)A stone is dropped from the top of a tower of height $h=60 \mathrm{~m}$. Simultaneously another stone is projected vertically upwards from the foot of the tower. They meet at a height $\frac{2 h}{3}$ from the ground level. The initial velocity of the stone projected upwards is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$.
86) $20 \mathrm{~ms}^{-1}$
87) $60 \mathrm{~ms}^{-1}$
88) $10 \mathrm{~ms}^{-1}$
89) $30 \mathrm{~ms}^{-1}$
83)A body is projected at an angle of 45° with the horizontal with a velocity of $60 \sqrt{ } 2 \mathrm{~ms}^{-1}$. Then the angle made by its velocity with the horizontal after 6 s is
90) 45°
91) 0°
92) 30°
93) 60°
84)The top of a smooth inclined plane of length $20 \sqrt{ } 2 \mathrm{~m}$ is connected to a the edge of a well of a diameter 40 m making an angle of 45° as shown in figure. A body is projected along the inclined plane with a velocity ' u '. If the body crosses the well without falling in it then the minimum value of ' u ' is $\left(g=10 \mathrm{~ms}^{-2)}\right.$

94) $20 \mathrm{~ms}^{-1}$
95) $20 \sqrt{ } 2 \mathrm{~ms}^{-1}$
96) $10 \sqrt{ } 2 \mathrm{~ms}^{-1}$
97) $15 \sqrt{ } 2 \mathrm{~ms}^{-1}$
85)A small bead of mass 108 g slides without friction along a semicircular wire of radius 10 cm that rotates about a vertical axis at a rate of $10 \sqrt{ } 2 \mathrm{rad} \mathrm{s}^{-1}$ as shown in the figure. The value of θ for which the bead will remain stationary relative to the rotating wire is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

98) 30°
99) 45°
100) 60°
101) 75°
86)A body of mass 5 Kg is placed on a rough horizontal surface of coefficient of static friction $\frac{1}{3}$. The least pulling force to be applied on the body at an angle 45° with the horizontal to slide it, is $\quad\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
102) $25 \sqrt{2} \mathrm{~N}$
103) $\frac{25}{\sqrt{2}} \mathrm{~N}$
104) $50 \sqrt{2}$
105) $\frac{75}{\sqrt{2}} \mathrm{~N}$

SAKSHIDDEDUCATION

87)A simple pendulum of length $\frac{10}{3}$ meter with a bob of mass 3 m is hanging freely from a right rigid support. A bullet of mass ' m ' is fired with a velocity $50 \mathrm{~ms}-1$ from the ground at an angle θ with the horizontal. When the bullet is at its highest point of its trajectory, it collides head on with the bob of the pendulum and gets embedded in the bob. After collision, if the pendulum moves through a maximum angle of 120°, then the value of ' θ ' is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

1) $\cos ^{-1}(0.8)$
2) $\cos ^{-1}(0.6)$
3) $\cos ^{-1}(0.4)$
4) $\cos ^{-1}(0.3)$
88)The kinetic energy of a particle moving along a straight line is proportional to the time ' t ' of its travel. Then its acceleration is proportional to
5) $\frac{1}{\sqrt{t}}$
6) $\frac{1}{\mathrm{t}}$
3)t
7) t^{2}
89)A ball of mass 2 g moving with a velocity of $2 \mathrm{~ms}-1$ collides with another ball of mass 8 g which is at rest and comes to rest after collision. Then the coefficient of restitution is
1)1
2)0.75
8) 0.5
4)0.25

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
90)A hollow sphere rolls down a parabolic path ABC From a height ' h ' as shown in the figure. Portion AB of the path is rough while BC is smooth. The height raised by the sphere in BC is

B

1) $\frac{3 h}{5}$
2) $\frac{5 h}{7}$
3) $\frac{5 h}{3}$
4) $\frac{7 \mathrm{~h}}{5}$
91)Two particles executing SHM along a straight a line have same amplitude ' A ' and time period ' T '. At $t=0$, one particle is at a displacement $+A$ and another is at a displacement $-\frac{A}{2}$ and they are approaching towards each other. They cross each other after a time
5) $\frac{T}{3}$
6) $\frac{T}{4}$
7) $\frac{5 T}{6}$
8) $\frac{T}{3}$
9) The required percentage increase in the energy of the earth's satellite to shift it from an orbit of radius r to $\frac{3 r}{2}$
1)16.67\%
10) 20.33%
11) 66.67%
4)33.33\%

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
93)A uniform steel rod of mass 1.8 kg and length 0.8 m is hung from a nail with the help of a steel wire of area of cross section $0.01 \mathrm{~mm}^{2}$ and unstretched length of 1 m as shown in the figure. The centre of mass of the rod lies vertically below the nail. The increase in the distance between the centre of mass of the rod and nail due to stretching of the wire as the rod hungs is - mm.
(Young's modulus of steel $=2 \times 10^{11} \mathrm{NM}^{-2}$ and acceleration due to gravity $=10 \mathrm{~ms}^{-2}$)

1)50
2)25
3) 12.5
4)6.25
94)A number of small water droplets of surface tension ' T ', each of radius ' r ' are combined to form a single drop of radius ' R '. If the released energy is converted in to kinetic energy, then the velocity acquired by the bigger drop is - (ρ - density of water)

1) $\sqrt{\frac{\mathrm{R}-\mathrm{r}}{\rho \mathrm{rR}}}$
2) $\frac{6 \mathrm{TrR}}{\rho(\mathrm{R}-\mathrm{r})}$
3) $\sqrt{\frac{6 \mathrm{~T}}{\rho}\left(\frac{\mathrm{R}-\mathrm{r}}{\mathrm{rR}}\right)}$
4) $\frac{6 T(R-r)}{\rho R}$
5) 2 kg of rice at -20° is mixed with 5 kg of water at $20^{\circ} \mathrm{C}$. Final mass of water formed is
6) 7 kg
7) 6 kg
8) 4 kg
9) 2 kg
96)Three conducting rods AB, BC and BD made of same material and same across section are arranged as shown in the figure. The ratio of lengths of $B D$ to $B C$ when there is no heat flow in $A B$, is

10) $\frac{2}{9}$
11) $\frac{7}{2}$
12) $\frac{2}{7}$
13) $\frac{9}{2}$
97)A gas is governed by an equation $V=\frac{\mathrm{aT}^{3}}{\mathrm{P}}$ where P, V and T are pressure, volume and temperature of the gas respectively and ' a ' is a constant. If the temperature of the gas is doubled at constant pressure then the workdone by the gas is
14) $6 \mathrm{aT}^{3}$
15) $8 a^{3}$
16) $9 \mathrm{aT}^{3}$
17) $9 \mathrm{aT}^{3}$
98)For 1 mole of an ideal gas, during an adiabatic process, the square of the pressure of a gas is found to be proportional to the cube of its absolute temperature. The specific heat of the gas at a constant volume is (R is universal gas constant)
1)3R
18) $\frac{R}{2}$
19) $\frac{R}{3}$
20) $2 R$
99)200cc of an ideal $\operatorname{gas}(\gamma=1.5)$ expands adiabatically. If the rms speed of the gas molecules becomes half of the initial value, the final volume of the gas is
21) 900 cc
22) 1600 cc
23) 2700 cc
24) 3200 cc

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
100)56 tuning forks are arranged such that each fork produces 4 beats per second with its previous one, If the frequency of the last fork is twice that of the first, the frequency of $19^{\text {th }}$ fork is \qquad

1) 292 HZ
2) 302 HZ
3) 272 HZ
4) 312 HZ
101)A closed pipe is in resonance with a tuning fork at $27^{\circ} \mathrm{C}$ when its length is 20 cm . If the pipe is to be in resonance with the same tuning fork at $7^{\circ} \mathrm{C}$ then the change in the length of the pipe required is nearly
5) 1 mm
6) 7 mm
7) 5 mm
8) 13 mm
102)The distance between an object and its real image formed by a lens is ' D '. If the magnification is ' m ', the focal length of the lens is
9) $\left(\frac{m-1}{m}\right) D$
10) $\frac{\mathrm{mD}}{\mathrm{m}+1}$
11) $\frac{(m-1) D}{m^{2}}$
12) $\frac{\mathrm{mD}}{(\mathrm{m}+1)^{2}}$
103)In a diffraction pattern due to a single slit, the angular width of central maxima becomes half when the wavelength of the light used is changed from λ to 7000Δ. Then the value of λ is
13) 3500Δ
14) 4200Δ
3)5000 Δ
4)5890 Δ

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
104)Three concentric spherical metallic shells A, B and C of radii $a=7 \mathrm{~cm}, b=17 \mathrm{~cm}$ and ' c ' $(\mathrm{a}<\mathrm{b}<\mathrm{c})$ have surface charge densities $\sigma,-\sigma$ and σ respectively. If A and C are at the same potential, then the value of ' c ' is

1) 20 cm
2) 10 cm
3) 34 cm
4) 24 cm
105)A charged bead is sliding freely through a string held vertically under tension. An electric field is applied parallel to the string so that the bead stays at rest at the middle of the string. If the electric field is switched off momentarily and switched on again, then
1)the bead falls off momentarily and then stopped
2)the bead moves downwards and then moves upwards
3)the bead moves downwards with constant acceleration
4)the bead moves downwards with constant velocity
106)The infinitely long charged non conducting sheets are placed as shown in the figure. The electric field at point ' P ' is (σ - charge density, ϵ_{0} - permittivity of free space)

$-\sigma \longrightarrow Z=-a$
5) $\frac{2 \sigma}{\epsilon_{o}} \hat{k}$
6) $\frac{-3 \sigma}{\epsilon_{o}} \hat{k}$
7) $\frac{4 \sigma}{\epsilon_{o}} \hat{k}$
8) $\frac{-2 \sigma}{\epsilon_{o}} \hat{k}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
107)Five identical conducting plates, each of face area A are placed parallel to each other with a separation of ' d ' between two adjacent plates as shown in figure. The plates M and N are given charges Q_{1} and Q_{2} respectively and the remaining plates are neutral. If the outermost plates are grounded, the potential difference between the plates M and N is -

M
Q2

1) $\frac{2 d\left(Q_{1}-Q_{2}\right)}{\epsilon_{0} A}$
2) $\frac{d\left(Q_{1}-Q_{2}\right)}{\epsilon_{0} A}$
3) $\frac{4 \mathrm{~d}\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right)}{\epsilon_{0} \mathrm{~A}}$
4) $\frac{d\left(Q_{1}-Q_{2}\right)}{4 \epsilon_{0} A}$
108)When two cells of emfs E_{1} and E_{2} and different internal resistances are connected in series with an external load resistor, the current through the load is 5 A . If the polarity of cell of emf E_{2} is reversed then the current through the load is 2 A . Then $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=$
5) $\frac{5}{2}$
6) $\frac{2}{5}$
7) $\frac{7}{3}$
8) $\frac{3}{7}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
109)In a potentiometer, when a cell in the secondary circuit is shunted by a resistance ' R ', balancing length is ' L_{1} '. on doubting the shunt resistance, balancing length increases to ' L_{2} '. Internal resistance of the cell is

1) $\frac{2 R\left(L_{2}-L_{1}\right)}{L_{1}-2 L_{2}}$
2) $\frac{2 R\left(L_{2}-L_{1}\right)}{\left(2 L_{1}-2 L_{2}\right)}$
3) $\frac{R(L 2-L 1)}{L_{1}-2 L_{2}}$
4) $\frac{R\left(L_{2}-L_{1}\right)}{\left(2 L_{1}-L_{2}\right)}$
110)Match the following;

List - 1 List - 2
a)Flemings left hand rule
e) direction of induced current
b)Flemings right hand rule
f)south pole
c)Clockwise current
g)north pole
d)Anti Clockwise current
h)direction of force

The correct answer is
1)a-h; b-e ; c-f; d-g;
2)a-e ; b-h ; c-f ; d-g ;
3) $a-g$; b-e ; c-f ; d-h ;
4)a-h; b-e ; c-g ; d-f ;
111)A magnetic field is applied on an electron moving with a velocity of $10^{7} \mathrm{~ms}^{-1}$ at an angle of 30°. Then the time period of revolution of the electron in a circular path of radius 2 m is -

1) $5.5 \times 10^{-6} \mathrm{~s}$
2) $7.0 \times 10^{-7} \mathrm{~s}$
3) $2.5 \times 10^{-6} \mathrm{~s}$
4) $3.5 \times 10^{-7} \mathrm{~s}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
112)Assertion (A) : Electromagnets are made of soft iron

Reason (R) : Coercivity is small for soft iron
1)Both (A) and (R) are true and (R) is the correct explanation of (A)
2) Both (A) and (R) are true and (R) is not the correct explanation of (A)
$3)(\mathrm{A})$ is true, but (R) is not true
4)(A) is not true, but (R) is true
113) A circular loop made of thin copper wire of mass ' m ' is placed in a uniform magnetic field such that the plane of the loop is perpendicular to the magnetic field. If ' d ' and ' ρ ' are the density and resistivity of copper respectively and the magnetic field varies at a constant rate of $\frac{\mathrm{dB}}{\mathrm{dt}}$ then the induced current in the loop is

1) $\frac{4 \pi \mathrm{~m}}{\rho \mathrm{~d}}\left(\frac{\mathrm{~dB}}{\mathrm{dt}}\right)$
2) $\frac{4 \mathrm{~m}}{\pi \rho \mathrm{~d}}\left(\frac{\mathrm{~dB}}{\mathrm{dt}}\right)$
3) $\frac{\pi \mathrm{m}}{4 \rho \mathrm{~d}}\left(\frac{\mathrm{~dB}}{\mathrm{dt}}\right)$
4) $\frac{\mathrm{m}}{4 \pi \rho \mathrm{~d}}\left(\frac{\mathrm{~dB}}{\mathrm{dt}}\right)$
114)An emf $E=6 \cos 6000 t$ volt is applied to an L-R circuit of inductance 4 mH and resistance 7Ω. The amplitude of the current in the circuit -
5) 0.24 A
6) 0.41 A
7) 0.54 A
4)0.84 A
115)A plane electromagnetic wave of frequency 25 MHZ travels in free space along the X $\underline{\mathrm{E}}=6.3 \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
direction. At a particular point in space and time the electric field is . Then the magnetic field at that point is
8) $2.1 \times 10^{-8} \hat{\mathrm{k}} \mathrm{T}$
9) $2.1 \times 10^{8} \hat{\mathrm{k} T}$
10) $2.1 \times 10^{-8} \hat{\mathrm{j}} \mathrm{T}$
11) $2.1 \times 10^{8} \hat{\mathrm{jT}}$
116)de Broglie wavelengths associated with a proton and an electron are in the ratio 2:1. Their slopping potentials are approximately in the ratio of
12) $1: \sqrt{86}$
13) $\sqrt{86}: 1$
3)1:(86) $)^{2}$
4)1:86
117)The radius of the innermost electron Orbit of hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. Then the ratio of radii of the orbits of $n=2$ and $n=3$ is
1)9:4
2)2:3
3)4:9
4)3:2
14) Two radioactive materials Y_{1} and Y_{2} initially contain same number of nuclei. Their decay constants are $9 \lambda \mathrm{~s}^{-1}$ and $6 \lambda \mathrm{~s}^{-1}$ respectively. The time after which the ratio of number of undecayed nuclei of Y_{1} and Y_{2} becomes 1/e is
15) $\frac{1}{3 \lambda} \mathrm{~s}$
16) $\frac{1}{15 \lambda} \mathrm{~s}$
17) $\frac{1}{10 \lambda} \mathrm{~s}$
18) $\frac{1}{8 \lambda} \mathrm{~s}$
119)In the given logic circuit $A=1$ and $B=0$. The values of Y_{1} and Y_{2} are respectively

1)1,0
2)0,1
3)1,1
4)0,0
120)A TV tower has a height of 150 m . If the population density around the TV tower is $10^{3} \mathrm{~km}^{-2}$ then the population covered by the tower is (Radius of the earth, R is $6.4 \times 10^{6} \mathrm{~m}$)
1)60.288 lakh
19) 40.192 lakh
3)106.486 lakh
4)26.428 lakh

APEAMCET-2018 -- Engineering Stream Final Key Date: 24-04-18 FN (Shift 1)	
81	3
82	3
83	1
84	3
85	3
86	3
87	3
88	3
89	2
90	2
91	4
92	1
93	4
94	
95	2
96	2
97	2
98	1
99	2
100	3
101	3
102	1
103	3
104	2
105	1
106	2
107	3
108	3
109	3
110	1
111	1
112	2
113	2
114	2
115	3
116	4
117	2
118	3
119	4
120	4

