AP EAMCET Mathematics Previous Questions with Key - Test 7

1)If $f: R \rightarrow[-1,1]$ and $g: R \rightarrow A$ are two surjective mappings and $\sin \left(g(x)-\frac{\pi}{3}\right)=\frac{f(x)}{2} \sqrt{4-f^{2}(x)}$, then $\mathrm{A}=$

1) $\left[0, \frac{2 \pi}{3}\right]$
2)[-1, 1]
2) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
4)(0, π)
2)The domain of the function $f(x)=\sqrt{\frac{4-x^{2}}{[x]+2}}$, where $[\mathrm{x}]$ denotes the greatest integer not more then x , is
3) $(-\infty,-2) \cup(1,2)$
4) $(-\infty,-2) \cup(-1,2)$
$3)(-\infty,-2) \cup[-1,2]$
5) $(-\infty,-1) \cup(1,2)$
3)If $a_{n}=\sqrt{7+\sqrt{7+\sqrt{7+\ldots \text { ntimes }}}}$, then which one of the following is true?
6) $\mathrm{a}_{\mathrm{n}}>7 \forall \mathrm{n} \geq 1$
7) $\mathrm{a}_{\mathrm{n}}>3 \forall \mathrm{n} \geq 1$
8) $\mathrm{a}_{\mathrm{n}}<4 \forall \mathrm{n} \geq 1$
9) $\mathrm{a}_{\mathrm{n}}<3 \forall \mathrm{n} \geq 1$
4)If A is a square matrix of order 3 , and $A^{2}+A+2 I=0$, then
1)A can not be a skew-symmetric matrix
10) $|\mathrm{A}+\mathrm{I}|=0$
11) A is non singular and $A^{-1}=(A+I)^{-1}$
12) $|\mathrm{A}||\mathrm{A}+\mathrm{I}|=2$
5)If A is a square matrix of order 3 , then consider the following statements

I: If $|\mathrm{A}|=0$ then $|\operatorname{Adj} \mathrm{A}|=0$
II: If $|A| \neq 0$, then $\left|A^{-1}\right|=|A|^{-1}$
Which of the above statements is/are true?
1)Both I and II
2)Neither I nor II
3)I only
4)II only

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
6)The system of equations $x-2 y+3 z=5,2 x-2 y+z=0,-x+2 y-3 z=6$ has
1)infinitely many solutions
2)exactly two solutions
3)unique solution
4)no solution
7)The amplitude of $\sin \frac{\pi}{5}+i\left(1-\cos \frac{\pi}{5}\right)$ is

1) $\frac{\pi}{15}$
2) $\frac{\pi}{10}$
3) $\frac{\pi}{5}$
4) $\frac{2 \pi}{5}$
8)If a point P denotes a complex number $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ in the Argand plane and $\mathrm{if} \frac{z+1}{z+i}$ is a purely real number, then the locus of P is
5) $x+y+1=0$
6) $x^{2}+y^{2}+x+y=0$
$3) x^{2}+y^{2}+2 y+1=0,(x, y) \neq(0,-1)$
7) $x+y+1=0,(x, y) \neq(0,-1)$
9)If ω is a complex cube root of unity, then $\left[\frac{51+73 \omega+87 \omega^{2}}{73+87 \omega+51 \omega^{2}}+\frac{51+73 \omega+87 \omega^{2}}{87+51 \omega+73 \omega^{2}}\right]^{15}=$
1)1
2)-1
3)0
8) 2
10)If $z \in C$ and $i z^{3}+4 z^{2}-z+4 i=0$, then a complex root of this equation having minimum magnitude is
9) 4 i
10) $\frac{1-i}{\sqrt{2}}$
11) $\frac{\sqrt{3}+i}{2}$
12) $\frac{1+i}{\sqrt{2}}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
11)If α, β are the roots of the equation $x^{2}-4 x+5=0$, then the quadratic equation whose roots are $\alpha^{2}+\beta$ and $\alpha+\beta^{2}$ is

1) $x^{2}+10 x+34=0$
2) $x^{2}-10 x+34=0$
3) $x^{2}-10 x-34=0$
4) $x^{2}+10 x-34=0$
5) $f(x)$ is a quadratic expression such that $f(x)$ is negative when $x \in\left(-\infty,-\frac{5}{3}\right) \cup(3, \infty)$ and positive when $x \in\left(-\frac{5}{3}, 3\right) \cdot \mathrm{g}(\mathrm{x})$ is another quadratic expression such that $\mathrm{g}(\mathrm{x})$ is negative when $x \in\left(3, \frac{9}{2}\right)$ and positive when $x \in R-\left[3, \frac{9}{2}\right]$. Then the sign of $\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$ in $[0,5]$ is
1)Positive in $\left[0, \frac{9}{2}\right]$ and negative in $\left(\frac{9}{2}, 5\right)$
2)Positive in $[0,3) \cup\left(3, \frac{9}{2}\right)$ and negative in $\left(\frac{9}{2}, 5\right]$
3)Positive in $[0,3) \cup\left(3, \frac{9}{2}\right) \cup\left(\frac{9}{2}, 5\right]$
4)Negative in $[0,3) \cup\left(3, \frac{9}{2}\right) \cup\left(\frac{9}{2}, 5\right]$
13)If $a, b, c \in R$ be such that $4 a+2 b+c>0$ and $a x^{2}+b x+c=0$ has no real roots, then the value of $(c+a)(c+b)$ is
1)greater than $a b$
2)less than bc
6) greater than ca
4)less than $a b+b c+c a$
14)The minimum degree of a polynomial equation with rational coefficients having $\sqrt{3}+\sqrt{27}, \sqrt{2}+5 i$ as two of its roots is
1)8
2)6
7) 4
4)2
15)If all the digits in the number 53426 are permuted in all possible ways and are arranged in decreasing order, then the number having rank 89 , is
1)34265
2)34256
3)43526
4)43265
16)Three parallel straight lines $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} lie on the same plane, Consider 5 points on L_{1}, 7 points on L_{2} and 9 points on L_{3}. Then the maximum possible number of triangles formed with vertices at these points, is
1)1330
2)1200
3)1201
4)129
17)If $\mathrm{a}>0$ and the coefficient of x^{2} in the expansion of $\left(a x^{3}+\frac{c}{x}\right)^{6}$ is 60 , then $\mathrm{ac}^{2}=$
1)2
8) 3
3)4
4)5
18)If $x=\frac{3}{4 \cdot 8}+\frac{3 \cdot 5}{4 \cdot 8 \cdot 12}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12 \cdot 16}+\ldots$, then $2 x^{2}+5 x=$
9) $\frac{7}{8}$
2)7
10) $\frac{7}{16}$
11) $\frac{7}{4}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
19)If $\frac{3 x^{2}+1}{\left(x^{2}+1\right)\left(x^{2}+2\right)^{2}}=\frac{A x+B}{x^{2}+1}+\frac{C x+D}{x^{2}+2}+\frac{E x+F}{\left(x^{2}+2\right)^{2}}$, then $\mathrm{A}+\mathrm{C}+\mathrm{E}=$
1)0
2) $\frac{7}{3}$
3)1
4) $\frac{4}{3}$
20)If $\tan \left(\frac{\pi}{4}+\frac{y}{2}\right)=\tan ^{3}\left(\frac{\pi}{4}+\frac{x}{2}\right)$, then $\frac{3 \sin x+\sin ^{3} x}{1+3 \sin ^{2} x}=$
1)0
2)1
$3) \sin 2 y$
4) $\sin y$
21) $\left(\cos 252^{\circ}-\sin 126^{\circ}\right)\left(\cos 252^{\circ}+\sin 126^{\circ}\right)\left(\sin ^{2} 126^{\circ}+\sin ^{2} 186^{\circ}+\sin ^{2} 66^{\circ}\right)=$

1) $\frac{3 \sqrt{5}}{8}$
2) $\frac{-3 \sqrt{5}}{8}$
3) $\frac{-3 \sqrt{5}}{4}$
4) $\frac{3 \sqrt{5}}{4}$
22)If α, β, γ are any three angles, then $\cos \alpha+\cos \beta-\cos \gamma-\cos (\alpha+\beta+\gamma)=$
5) $4 \cos \frac{\alpha+\beta}{2} \cos \frac{\beta+\gamma}{2} \cos \frac{\gamma+\alpha}{2}$
6) $4 \cos \frac{\alpha+\beta}{2} \sin \frac{\beta+\gamma}{2} \sin \frac{\gamma+\alpha}{2}$
7) $4 \cos \frac{\alpha+\beta}{2} \sin \frac{\beta-\gamma}{2} \sin \frac{\gamma-\alpha}{2}$
8) $4 \sin \frac{\alpha+\beta}{2} \cos \frac{\beta+\gamma}{2} \cos \frac{\gamma+\alpha}{2}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
23)The general solution of the equation $\sqrt{3-5 \sin x+\sin ^{2} x}+\cos x=0$ is

1) $n \pi+(-1)^{n} \frac{\pi}{6}, n \in Z$
2) $2 n \pi \pm \frac{\pi}{6}, n \in Z$
3) $(2 n+1) \pi-\frac{\pi}{6}, n \in Z$
4) $2 n \pi \pm \frac{5 \pi}{6}, n \in Z$
24)Consider the following statements
I. $\sin ^{-1}\left(y^{2}-4 y+6\right)+\cos ^{-1}\left(y^{2}-4 y+6\right)=\frac{\pi}{2} . \forall y \in R$
II. $\sin ^{-1}\left(y^{2}-4 y+6\right)+\operatorname{cosec}-1\left(y^{2}-4 y+6\right)=\frac{\pi}{2} . \forall y \in R$

Which of the above statement(s) is/are true?
1)only I
2)only II
3)Both I and II
4)Neither I nor II
25)If $\sec \theta \cosh y=\operatorname{cosec} x$ and $\operatorname{cosec} \theta \sinh y=\sec x$, then $\sinh ^{2} y=$ 1) $\cos ^{2} x \quad$ 2) $\cos x \quad$ 3) $\sin ^{2} x \quad$ 4) $\sin x$
26)Consider the following statements:
I. In triangle ABC , if $\mathrm{c}=6$ and $\cos C=\frac{-11}{25}$ then $R=\frac{25}{2 \sqrt{14}}$
II. In triangle $A B C$, if $a=3, b=4, c=6$, then $A B C$ is acute angled triangle.

Which of the above statements is/are true?
1)only I
2)only II
3)Both I and II
4)Neither I nor II
27)In triangle ABC , if $\mathrm{a}=3, \mathrm{~b}=4, \mathrm{c}=6$, then $\frac{\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}}{\cot A+\cot B+\cot C}=$

1) $\frac{13}{61}$
2) $\frac{169}{61}$
3) $\frac{61}{169}$
4) $\frac{61}{13}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
28)If the reciprocals of the lengths of the sides of a $\triangle \mathrm{ABC}$ are in harmonic progression, then its exradii r_{1}, r_{2}, r_{3} are in
1)Arithmetic progression
2)Geometric progression
3)Harmonic progression
4)Arithmetico-geometric progression
29)If P and Q are two points on the curve $\mathrm{y}=2^{\mathrm{x}+2}$ such that $\overline{O P} \cdot \bar{i}=-1$ and $\overline{O Q} \cdot \bar{i}=2$, then the magnitude of $(\overline{O Q}-4 \overline{O P})$ is
1)10
2)1
3)5
4)100
30) P and Q are points on the straight line passing through the point $A(3 \bar{i}+\bar{j}-\bar{k})$ and parallel to the vector $2 \bar{i}-\bar{j}+2 \bar{k}$. If $\mathrm{AP}=\mathrm{AQ}=3$, then the vector equation of the plane OPQ is

1) $\bar{r}=(s+5 t) \bar{i}+2 s \bar{j}+(t-3 s) \bar{k}$
2) $\bar{r}=(3 \bar{i}+\bar{j}-\bar{k})+s(2 \bar{i}-\bar{j}+2 \bar{k})+t(5 \bar{i}+\bar{k})$
3) $\bar{r}=(s+5 t) \bar{i}+2 s \bar{j}+(5 s+t) \bar{k}$
4) $\bar{r}=(3 t+s) \bar{i}+2 s \bar{j}+(t-3 s) \bar{k}$
31)Let \bar{m} be the unit vector orthogonal to the vector $\bar{i}-\bar{j}+\bar{k}$ and coplanar with the vectors $2 \bar{i}+\bar{j}$ and $\bar{j}-\bar{k}$. If $\bar{a}=\bar{i}-\bar{k}$, then the length of the perpendicular from the origin to the plance $\bar{r} \cdot \bar{m}=\vec{a} \cdot \bar{m}$ is
5) $\frac{1}{\sqrt{26}}$
6) $\frac{1}{\sqrt{5}}$
7) $\frac{5}{\sqrt{26}}$
4)1

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
32)If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar unit vectors such that $\bar{a} \times(\bar{b} \times \bar{c})=\frac{\bar{b}+\bar{c}}{\sqrt{2}}$, then the angle between \bar{a} and \bar{b} is

1) $\frac{\pi}{6}$
2) $\frac{\pi}{4}$
3) $\frac{\pi}{2}$
4) $\frac{3 \pi}{4}$
33)If \bar{a} and \bar{b} are two unit vectors such that $\bar{c}=(\bar{a} \times \bar{c})+\bar{b}$, then the maximum value of $[\bar{a} \bar{b} \bar{c}]$ is
1)1
5) $\frac{1}{2}$
6) $\frac{3}{2}$
4)2
34)If $\bar{\alpha}, \bar{\beta}$ and $\bar{\gamma}$ are non zero vectors such that $|\bar{\beta}|+|\bar{\gamma}|=1$ and $|\bar{\alpha}|=10$, then $(\bar{\alpha} \times(\bar{\beta}+\bar{\gamma})) \times(\bar{\beta}+\bar{\gamma}) \cdot(\bar{\beta}-\bar{\gamma})=$
1)10
2)1
3)0
4)12
35)The arithmetic mean and standard deviation of a data of nine numbers are 13 and 5 respectively. If 3 is included as the $10^{\text {th }}$ item of the data. Then the variance of the data of ten numbers is
1)23.5
7) 21.5
3)31.5
4)27

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
36)The variance of the following distribution is

Marks	$1-3$	$3-5$	$5-7$	$7-9$
Number of students	40	30	20	10

1)2
2)4
3)6
4)8
37) A and B are two events such that $\mathrm{P}(\mathrm{A})=0.58, \mathrm{P}(\mathrm{B})=0.32$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.28$. Then the probability that neither A and B occurs is
1)0.38
2)0.62
3)0.72
4)0.9
38)Two dice are thrown simultaneously. If A is event of getting the sum of the numbers on two dice as greater than or equal to 8 and B is the event of getting a number less than or equal to 3 on at least one of the die. Then $\mathrm{P}(\mathrm{B} / \mathrm{A})=$

1) $\frac{5}{15}$
2) $\frac{6}{15}$
3) $\frac{7}{15}$
4) $\frac{8}{15}$
39)A bag contains 6 balls. If 4 balls are drawn at a time and all of them are found to be red, then the probability that exactly 5 of the balls in the bag are red is
5) $\frac{10}{19}$
6) $\frac{5}{21}$
7) $\frac{1}{21}$
8) $\frac{5}{7}$
40)If the probability distribution of a random variable X is given by
$\begin{array}{llllll}\mathrm{X}=\mathrm{x}_{\mathrm{i}} & : & 0 & 1 & 2 & 3\end{array}$
$\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right): \begin{array}{llll}\frac{1}{8} & \frac{3}{8} & 3 \mathrm{~K} & \mathrm{~K}\end{array}$
Then the variance of X is
1)3
9) $\frac{9}{4}$
10) $\frac{3}{2}$
11) $\frac{3}{4}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
41)A manufacture of locks knows that 2% of his product is defective. If he sells the locks in boxes each with 100 locks and guarantees that not more than 2 locks will be defective in a box, then the probability that a box will fail to meet the guaranteed quality is

1) $1-5 \mathrm{e}^{-2}$
2) $\sum_{k=2}^{100} 100_{C_{k}}\left(\frac{1}{50}\right)^{k}\left(\frac{49}{50}\right)^{100-k}$
3)0.02
3) $1-3 \mathrm{e}^{-2}$
42)The equation of the locus of a point ($2 \cos \theta-3,3 \sin \theta-4$) is
4) $9 x^{2}+4 y^{2}+54 x+32 y+181=0$
5) $4 x^{2}+9 y^{2}+54 x+32 y+109=0$
6) $9 x^{2}+4 y^{2}-54 x+32 y+109=0$
7) $9 x^{2}+4 y^{2}+54 x+32 y+109=0$
43)When the origin is shifted to the point $(2,3)$ and then the coordinate axes are rotated through an angle $\frac{\pi}{3}$ in the counter clockwise sense, then the transformed equation of $3 \mathrm{x}^{2}+$ $2 x y+3 y^{2}-18 x-22 y+50=0$ is.
8) $3 x^{2}+3 y^{2}-1=0$
9) $(6+\sqrt{ } 3) x^{2}-2 x y+(6-\sqrt{3}) y^{2}-2=0$
10) $4 x^{2}+2 y^{2}-1=0$
11) $(6-\sqrt{ } 3) x^{2}+(6+\sqrt{ } 3) y^{2}+2 x y=0$
44)A straight line L with negative slope passes through the point $(1,1)$ and cuts the positive coordinate axes at the points A and B . If O is the origin, then the minimum value of $\mathrm{OA}+$ OB as L varies, is
1)1
2)2
3)3
12) 4

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
45)If the straight line $\mathrm{L}=3 \mathrm{x}+4 \mathrm{y}-\mathrm{k}=0$ cuts the line segment joining the points $\mathrm{P}(2,-1)$ and $\mathrm{Q}(1,1)$ in the ratio $4: 1$, then the equation of the line parallel to the line $\mathrm{y}=\mathrm{x}$ and concurrent with the lines PQ and $\mathrm{L}=0$ is

1) $2 x-2 y+7=0$
2) $x-y+1=0$
3) $5 x-5 y-3=0$
4) $y=x+3$
46)The orthocentre and the centroid of $\Delta \mathrm{ABC}$ are $(5,8)$ and $\left(3, \frac{14}{3}\right)$ respectively. The equation of the side BC is $\mathrm{x}-\mathrm{y}=0$. Given that the image of the orthocentre of a triangle with respect to any side lies on the circumcircle of that triangle, then the diameter of the circumcircle of $\triangle \mathrm{ABC}$ is
5) $\sqrt{10}$
6) $2 \sqrt{10}$
7) $4 \sqrt{10}$
8) $8 \sqrt{10}$
47)If a pair of perpendicular lines through the origin together with the straight line $2 x+3 y=$ 6 form an isosceles triangle then the area of that triangle (in sq. units) is
9) $\frac{6}{\sqrt{13}}$
10) $\frac{6}{13}$
11) $\frac{36}{13}$
12) $\frac{27}{13}$
48)If the equation $3 x^{2}+7 x y+2 y^{2}+2 g x+2 f y+2=0$ represents a pair of intersecting lines and the square of the distance of their point of intersection from the origin is $\frac{2}{5}$ then $f^{2}+g^{2}=$
13) $\frac{25}{4}$
14) 25
3)50
15) $\frac{25}{2}$

SAKSHIDNEDUCATION

Educating, Enlightening \& Ennobling!
49)From a point $P(0, b)$ two tangents are drawn to the circle $x^{2}+y^{2}=16$ and these two tangents intersect x-axis at two points A and B. If the area of triangle $\triangle P A B$ is minimum, then the equation of its circumcircle is

1) $x^{2}+y^{2}=16 \sqrt{ } 2$
2) $x^{2}+y^{2}=64$
3) $x^{2}+y^{2}=32$
4) $x^{2}+y^{2}=4 \sqrt{ } 2$
50)If the angle between the tangents drawn to the circle $x^{2}+y^{2}-12 x-16 y=0$ at the points where the line $5 y=5 x+k$ cut the circle is 60°, then the value of k is
5) $5+\sqrt{2}$
6) $5(2 \pm 5 \sqrt{2})$
7) $2 \pm 5 \sqrt{2}$
8) $5 \pm 5 \sqrt{2}$
51)If a circle S with radius 5 touches the circle $x^{2}+y^{2}-6 x-4 y-12=0$ at $(-1,-1)$ then the length of the tangent from the centre of the circle S to the given circle is
9) $5 \sqrt{3}$
10) $\sqrt{65}$
11) 10
12) $3 \sqrt{11}$
52)If a circle S passing through the point $(3,4)$ cuts the circle $x^{2}+y^{2}+36$ orthogonally, then the locus of the centre of S is

$$
\begin{array}{ll}
\text { 1) } x^{2}+y^{2}-6 x-8 y+11=0 & \text { 2) } 6 x+8 y-61=0 \\
\text { 3) } x^{2}+y^{2}-8 x-6 y+11=0 & 4) 6 x+8 y+11=0
\end{array}
$$

53)The line $x-2=0$ cuts the circle $x^{2}+y^{2}-8 x-2 y+8=0$ at A and B. The equation of the circle passing through the points A and B and having least radius is

1) $x^{2}+y^{2}-4 x+2 y-1=0$
2) $x^{2}+y^{2}-4 x-2 y=0$
3) $x^{2}+y^{2}-4 x-2 y+1=0$
4) $x^{2}+y^{2}-4 x+4 y=0$
54)If a perpendicular drawn through the vertex O of the Parabola $y^{2}=4 a x$ to any of its tangent meets the tangent at N and the parabola at M , then $\mathrm{ON} \cdot \mathrm{OM}=$
5) $4 a^{2}$
6) $3 a^{2}$
7) $2 a^{2}$
8) a^{2}
55)Let α_{1} and α_{2} be the ordinates of two points A and B on A parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ and let α_{3} be the ordinate of the point of intersection of its tangents at A and B . Then $\alpha_{3}-\alpha_{2}=$
9) $\alpha_{3}-\alpha_{1}$
10) $\alpha_{3}+\alpha_{1}$
11) α_{1}
12) $\alpha_{1}-\alpha_{3}$
56)The equations of the latus recta of the ellipse $9 x^{2}+4 y^{2}-18 x-8 y-23=0$ are
13) $x=-1 \pm \sqrt{5}$
14) $y=1 \pm \sqrt{5}$
15) $x=1 \pm \frac{2 \sqrt{5}}{3}$
16) $y=2 \pm \sqrt{5}$
57)The equation of the tangent to the ellipse $4 x^{2}+9 y^{2}=36$ at the end of the latus rectum lying in the second quadrant, is

$$
\text { 1) } \sqrt{ } 5 x-3 y+1=0
$$

2) $x-3 y+\sqrt{ } 5=0$
3) $\sqrt{ } 5 x-3 y+3=0$
4) $\sqrt{ } 5 x-3 y+9=0$
58)If the product of the lengths of the perpendiculars from any point on the hyperbola $16 x^{2}-$ $25 y^{2}=400$ to its asymptotes is p and the angle between the two asymptotes is θ then p $\tan \frac{\theta}{2}=$
5) $\frac{400}{41}$
6) $\frac{320}{41}$
7) $\frac{4}{5}$
8) $\frac{25}{16}$
9) $\mathrm{A}(3,2,-1), \mathrm{B}(4,1,1), \mathrm{C}(6,2,5)$ and $\mathrm{D}(3,3,3)$ are four points. $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$ and G_{4} respectively are the centroids of the triangles $B C D, C D A, D A B$ and $A B C$. The point of concurrence of the lines $\mathrm{AG}_{1}, \mathrm{BG}_{2}, \mathrm{CG}_{3}$ and DG_{4} is
1)(4, 2, 2)
10) $(2,4,2)$
11) $(2,2,4)$
12) $(2,2,2)$
60)The acute angle between the lines whose direction cosines are given by the equations $1+$ $\mathrm{m}+\mathrm{n}=0$ and $21 \mathrm{~m}+2 \mathrm{ln}-\mathrm{mn}=0$ is
13) $\frac{\pi}{6}$
14) $\frac{\pi}{4}$
15) $\frac{\pi}{3}$
16) $\frac{2 \pi}{5}$
61)A variable plane passes through a fixed point (α, β, γ) and meets the coordinate axes in A, B and C. Let P_{1}, P_{2} and P_{3} be the planes passing through A, B, C and parallel to the coordinate planes YZ, ZX, XY respectively. Then the locus of the point of intersection of the planes P_{1}, P_{2} and P_{3} is
17) $\alpha x+\beta y+\gamma z=1$
18) $\frac{\alpha}{x}+\frac{\beta}{y}+\frac{\gamma}{z}=1$
19) $\alpha x^{2}+\beta y^{2}+\gamma z^{2}=1$
20) $\alpha \beta x+\beta \gamma y+\alpha \gamma z=1$
21) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1+\cos 2 x}{\cot 3 x\left(3^{\sin 2 x}-1\right)}=$
22) $\frac{1}{3 \log 9}$
23) $\frac{2}{3 \log 3}$
24) $\frac{1}{3 \log 3}$
25) $\frac{3}{\log 3}$
26) $\lim _{n \rightarrow \infty} n^{-n k}\left\{(n+1)\left(n+\frac{1}{2}\right)\left(n+\frac{1}{2^{2}}\right) \ldots\left(n+\frac{1}{2^{k-1}}\right)\right\}^{n}=$
1)2
27) $e^{2\left(1-\frac{1}{2^{k}}\right)}$
28) ${ }^{2\left(1-\frac{1}{2^{k}}\right)}$
29) e^{2}

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
64)If a and $b(a>b)$ are points of discontinuity of the function
$\mathrm{f}(\mathrm{x})= \begin{cases}3-2 x^{2} & , \text { for } x \leq 0 \\ 2 x+3 & , \text { for } 0<x \leq 1 \\ 2 x^{2}-3 x & , \text { for } 1<x<2 \\ 2 x-3 & , \text { for } 2 \leq x<3 \\ |x| & , \text { for } x \geq 3\end{cases}$ then $3 \mathrm{a}-\mathrm{b}=$
1)3
2)7
3)5
4)1
65)For $-1<\mathrm{x}<1$, if $\mathrm{f}(\mathrm{x})=\cos ^{2}\left(\operatorname{Tan}^{-1} \sqrt{\frac{1-x}{1+x}}\right)$ then $\mathrm{f}(\mathrm{x})=$

1) $\frac{1}{2}$
2)1
3)-1
2) $-\frac{1}{2}$
66)f $: R \rightarrow R$ is a function such that $f(0)=1$ and for all $x, y \in R$
$f(x y+1)=f(x) f(y)-f(y)-x+2$ then $\frac{d f}{d x}$ at $x=e$ is
1)0
2)-1
3)e
4)1
3) $y=\sin \left(\log \left(x^{2}+2 x+1\right)\right) \Rightarrow(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}=$
1)y
2)-4y
4) $4 y$
4)-y
68)The acute angle between the tangents drawn at the point of intersection (other than the origin) of the curves $x^{2}=4 y$ and $y^{2}=4 x$ is
5) $\operatorname{Tan}^{-1}\left(\frac{1}{2}\right)$
6) $\sin ^{-1}\left(\frac{3}{5}\right)$
7) $\cos ^{-1}\left(\frac{1}{3}\right)$
8) $\operatorname{Tan}^{-1}\left(\frac{2}{3}\right)$
69)If $\mathrm{x}>0$ then $\frac{x}{1+x}-\log (1+x)$
1)is less than zero
2)is greater than zero
3)is equal to zero
4)takes all the real values
70)On the curve $y=x^{3}$, the point at which the tangent line is parallel to the chord joining the points $(-1,-1)$ and $(2,8)$, is
9) $(1,-1)$
10) $(2,8)$
11) $(1,1)$
12) $(3,27)$
71)If the petrol burnt in driving a motor boat varies as the cube of the velocity, then the speed (in $\mathrm{km} /$ hour) of the boat going against a water flow of $\mathrm{C} \mathrm{kms} /$ hour so that the quantity of petrol burnt is minimum is
13) $\frac{2 C}{3}$
14) $\frac{3 C}{2}$
15) $\frac{4 C}{3}$
16) $\frac{3 C}{4}$
72)For $\mathrm{x}<1, \int \frac{x-x^{2}}{\sqrt{1-x}} d x=$
17) $\frac{4}{3}(1-x)^{\frac{3}{2}}-\frac{2}{5}(1-x)^{\frac{5}{2}}-2 \sqrt{1-x}+c$
18) $\frac{4}{3}(1-x)^{\frac{3}{2}}-\frac{2}{3}(1-x)^{\frac{5}{2}}-2 \sqrt{1-x}+c$
19) $\frac{2}{3}(1-x)^{\frac{3}{2}}-2 \sqrt{1-x}+c$
20) $-\frac{2}{15}(1-x)^{\frac{3}{2}}(2+3 x)+c$
21) $\int \frac{d x}{(2 \sin x+\sec x)^{4}}=A(1+\tan x)^{-5}+B(1+\tan x)^{-6}+C(1+\tan x)^{-7}+k$, then $\mathrm{A}+\mathrm{B}+\mathrm{C}=$
22) $\frac{-86}{105}$
23) $\frac{-1}{105}$
24) $\frac{-26}{105}$
25) $\frac{-16}{105}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
74) $\int \frac{2 x^{2}-1+x^{2} \sqrt{x^{2}+4}}{x^{2}\left(x^{2}+4\right)} d x=$

1) $\frac{9}{8} \operatorname{Tan}^{-1} \frac{x}{2}+\frac{1}{4 x}+\cosh ^{-1} \frac{x}{2}+c$
2) $\frac{9}{8} \operatorname{Tan}^{-1} \frac{x}{2}+\frac{1}{4 x}+\sinh ^{-1} \frac{x}{2}+c$
3) $\frac{9}{16} \log \left|\frac{x+2}{x-2}\right|+\frac{1}{4 x}+\log \left|\frac{x+\sqrt{x^{2}+4}}{2}\right|+c$
4) $\frac{9}{16} \log \left|\frac{2-x}{2+x}\right|+\frac{1}{4 x}+\cosh ^{-1} \frac{x}{2}+c$
75)For $\mathrm{n} \geq 2$, let $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ and $F_{n}=I_{n}+I_{n-2}$, then $\mathrm{F}_{\mathrm{n}}-\mathrm{F}_{\mathrm{n}+1}=$
5) $\frac{1}{n}$
6) $\frac{1}{n-1}$
7) $\frac{1}{n(n-1)}$
8) $1+n$
9) $\lim _{n \rightarrow \infty} n\left[\frac{1}{3 n^{2}+8 n+4}+\frac{1}{3 n^{2}+16 n+16}+\ldots+\frac{1}{15 n^{2}}\right]=$
10) $\frac{1}{2} \log \frac{9}{5}$
11) $\frac{1}{4} \log \frac{9}{5}$
12) $2 \log \frac{9}{5}$
13) $\frac{1}{4} \log \frac{5}{9}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
77) $\int_{0}^{3}\left|x^{2}-3 x+2\right| d x=$

1) $\frac{3}{2}$
2) $\frac{1}{6}$
3) $\frac{11}{6}$
4) $\frac{11}{2}$
5) OABC is a unit square where O is the origin and $\mathrm{B}=(1,1)$. The curves $y^{2}=x$ and $x^{2}=y$ divide the area of the square into three $\mathrm{OABO}, \mathrm{OBO}$ and OBCO . If $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ are the areas (in sq. units) of these parts respectively, then $a_{1}+2 a_{2}+3 a_{3}=$
1)1
6) 2
7) 6
8) 64
79)The differential equation corresponding to the family of parabolas $y^{2}=4 a(x+a)$, where a is the parameter, is
9) $y\left(\frac{d y}{d x}\right)^{2}+2 x \frac{d y}{d x}+y=0$
10) $y\left(\frac{d y}{d x}\right)^{2}+2 x\left(\frac{d y}{d x}\right)-y=0$
11) $y=2 x \frac{d y}{d x}$
12) $y\left(\frac{d y}{d x}\right)^{2}-2 x \frac{d y}{d x}-y=0$
80)The general solution of $\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x$
13) $y-x^{2}=c \sec x$
14) $y \cos x=x^{2} \sec x+c$
15) $y \sec x=x^{2}+c \cos x$
16) $y=x^{2}+c \cos x$

www.sakshieducation.com

APEAMCET-2018 -- Engineering Stream			
Final Key			
Date: 22-04-18 AN (Shift 2)			

www.sakshieducation.com

