AP EAMCET Mathematics Previous Questions with Key - Test 6

1)If $f: R \rightarrow R$ is defined by $f(x)=[2 x]-2[x]$ for $x \in R$, then the range of f is (Here [x] denotes the greatest integer not exceeding x)
1)Z, the set of all integers
2)N, the set of all natural numbers
3)R, the set of all real numbers
4) $\{0,1\}$
2)Given that a, b and c are real numbers such that $\mathrm{b}^{2}=4 \mathrm{ac}$ and $\mathrm{a}>0$. The maximal possible set $\mathrm{D} \subseteq R$ on which the function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\log \left\{\mathrm{ax}{ }^{3}+(\mathrm{a}+\mathrm{b}) \mathrm{x}^{2}+(\mathrm{b}+\mathrm{c}) \mathrm{x}+\mathrm{c}\right\}$ is defined, is

1) $R-\left\{-\frac{b}{2 a}\right\}$
2) $R-\left(\left\{-\frac{b}{2 a}\right\} \cup(-\infty,-1)\right)$
3) $R-\left(\left\{-\frac{b}{2 a}\right\} \cup\{x: x \geq 1\}\right.$
4) $R-(\{-b / 2 a\} \cup(-\infty,-1))$
3)For any natural number n, $\left(15 \times 5^{2 n}\right)+\left(2 \times 2^{3 n}\right)$ is divisible by
1)7
2)11
3)13
4)17

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
4)For the matrix $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right], A^{-1}=$

1) A
2) A^{2}
3) A^{3}
4) A^{4}
5)If $A=\left[\begin{array}{ccc}k / 2 & 0 & 0 \\ 0 & l / 3 & 0 \\ 0 & 0 & m / 4\end{array}\right]$ and $A^{-1}=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 4\end{array}\right]$ then $\mathrm{k}+1+\mathrm{m}=$
1)1
2)9
3)14
4)29
6)If A and B are the two real values of k for which the system of equations $x+2 y+z=1$, $x+3 y+4 z=k, x+5 y+10 z=k^{2}$ is consistent, then $A+B=$
1)3
5) 4
3)5
4)7
7)Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and a point P represent z in the Argand plane. If the real part of $\frac{z-1}{z+i}$ is 1 , then a point that lies on the locus of P is
6) $(2016,2017)$
$2)(-2016,2017)$
$3)(-2016,-2017)$
4)(2016, -2017)
8)If $13 e^{i T a n^{-1} \frac{5}{12}}=a+i b$, then the ordered pair ($\left.\mathrm{a}, \mathrm{b}\right)=$
7) $(12,5)$
$2)(5,12)$
8) $(24,10)$
4)(10, 24)
9)If $\mathrm{z}_{1}=1-2 \mathrm{i} ; \mathrm{z}_{2}=1+\mathrm{i}$ and $\mathrm{z}_{3}=3+4 \mathrm{i}$, then $\left(\frac{1}{z_{1}}+\frac{3}{z_{2}}\right) \frac{z_{3}}{z_{2}}=$
9) $13-6 \mathrm{i}$
10) $13-3 i$
11) $6-\frac{13}{2} i$
12) $\frac{13}{2}-3 i$
10)If $1, \omega, \omega^{2}$ are the cube roots of unity, then $\frac{1}{1+2 \omega}+\frac{1}{2+\omega}-\frac{1}{1+\omega}=$
1)1
13) ω
14) ω^{2}
4)0
11)The number of integral values of x satisfying $5 x-1<(x+1)^{2}<7 x-3$ is
1)0
2)1
3)2
4)3
12)For real number x, if the minimum value of $f(x)=x^{2}+2 b x+2 c^{2}$ is greater than the maximum value of $g(x)=-x^{2}-2 c x+b^{2}$, then
15) $c^{2}>2 b^{2}$
16) $c^{2}<2 b^{2}$
17) $b^{2}=2 c^{2}$
18) $c^{2}=2 b^{2}$
13)If a, b and c are the roots of $x^{3}+q x+r=0$, then $(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=$
19) $-4 q$
20) $6 q$
21) $4 q$
14)If the sum of two roots of the equation $x^{3}-2 p x^{2}+3 q x-4 r=0$ is zero, then the value of r is
22) $\frac{3 p q}{2}$
23) $\frac{3 p q}{4}$
3)pq
24) 2 pq
15)The sum of the four digit even numbers that can be formed with the digits $0,3,5$, 4 with out repetition is
1)14684
2)43536
3)46526
4)52336
16)If x is the number of ways in which six women and six men can be arranged to sit in a row such that no two women are together and if y is the number of ways they are seated around a table in the same manner, then $\mathrm{x}: \mathrm{y}=$
1)12: 1
2)42:1
25) $16: 1$
26) $6: 1$
17)The number of 5-letter words that can be formed by using the letters of the word SARANAM is
1)1120
2)6720
27) 480
4)720
18)The number of rational terms in the binomial expansion of $(\sqrt[4]{5}+\sqrt[5]{4})^{100}$ is
1)50
2)5
3)6
4)51
19)The numerically greatest term in the binomial expansion of ($2 \mathrm{a}-3 \mathrm{~b})^{19}$ when $a=\frac{1}{4}$ and $b=\frac{2}{3}$ is
28) ${ }^{19} C_{5} \cdot 2^{11}$
29) ${ }^{19} C_{3} \cdot \frac{1}{2^{11}}$
30) ${ }^{19} C_{4} \cdot \frac{1}{2^{13}}$
31) ${ }^{19} C_{3} \cdot 2^{13}$
20)If $\frac{x^{2}+5 x+7}{(x-3)^{3}}=\frac{A}{(x-3)}+\frac{B}{(x-3)^{2}}+\frac{C}{(x-3)^{3}}$, then the equation of the line having slope A and

Passing through the point (B, C) is

$$
\text { 1) } x+y-20=0
$$

2) $x-y+20=0$
3) $x+y+20=0$
4) $x-y-20=0$
21)If $\cos \left(x-\frac{\pi}{3}\right), \cos x, \cos \left(x+\frac{\pi}{3}\right)$ are in a harmonic progression, then $\cos \mathrm{x}=$
5) $\frac{3}{2}$
2)1
6) $\frac{\sqrt{3}}{2}$
7) $\sqrt{\frac{3}{2}}$
8) $\cos ^{3} 110^{\circ}+\cos ^{3} 10^{\circ}+\cos ^{3} 130^{\circ}=$
9) $\frac{3}{4}$
10) $\frac{3}{8}$
11) $\frac{3 \sqrt{3}}{8}$
12) $\frac{3 \sqrt{3}}{4}$
23)If the general solution of $\sin 5 \mathrm{x}=\cos 2 \mathrm{x}$ is of the form $a_{n} \cdot \frac{\pi}{2}$ for $\mathrm{n}=0, \pm 1, \pm 2, \ldots$, then $\mathrm{a}_{\mathrm{n}}=$
13) $\frac{2 n}{5+2(-1)^{n}}$
14) $\frac{2 n+(-1)^{n}}{5+2(-1)^{n}}$
15) $\frac{2 n+1}{5+2(-1)^{n}}$
16) $\frac{2 n-1}{5+2(-1)^{n}}$
24)let x, y be real numbers such that $x \neq y$ and $x y \neq 1$. If $a x+b \sec \left(\operatorname{Tan}^{-1} x\right)=c$ and ay + $\operatorname{bsec}\left(\operatorname{Tan}^{-1} y\right)=\mathrm{c}$, then $\frac{x+y}{1-x y}=$
17) $\frac{2 a b}{a^{2}-b^{2}}$
18) $\frac{2 a c}{a^{2}+c^{2}}$
19) $\frac{2 a b}{a^{2}+b^{2}}$
20) $\frac{2 a c}{a^{2}-c^{2}}$
21) $\tanh ^{-1} \frac{1}{2}+\operatorname{coth}^{-1} 3=$
22) $\log \sqrt{6}$
23) $\log 6$
24) $-\log \sqrt{6}$
4)- $\log 6$
26)If the median of a $\triangle \mathrm{ABC}$ through A is perpendicular to AC , then $\frac{\tan A}{\tan C}=$
25) $1+\sqrt{2}$
26) $-\frac{1}{\sqrt{3}}+1$
3)-2
27) $1+\frac{2}{\sqrt{3}}$
27)In $\triangle \mathrm{ABC}, \tan \frac{A}{2}+\tan \frac{B}{2}=$
28) $\frac{c \cot \frac{C}{2}}{4 s}$
29) $\frac{2 c \cot \frac{C}{2}}{a+b+c}$
30) $\frac{2 c \tan \frac{C}{2}}{s}$
31) $\frac{c \tan \frac{C}{2}}{a+b+c}$
28)In a $\triangle A B C, D, E$ and F respectively are the points of contact of the incircle with the sides AB, BC and CA such that $\mathrm{AD}=\alpha, \mathrm{BE}=\beta$ and $\mathrm{CF}=\gamma$, then $\frac{\alpha \beta \gamma}{\alpha+\beta+\gamma}=$
32) R^{2}
33) $2 R$
34) 2 r
35) r^{2}
29)Let \bar{a}, \bar{b} and \bar{c} be three non-coplanar vectors. The vector equation of a line which passes through the point of intersection of two lines, one joining the points $\bar{a}+2 \bar{b}-5 \bar{c},-\bar{a}-2 \bar{b}-3 \bar{c}$ and the other joining the points $-4 \bar{c}, 6 \bar{a}-4 \bar{b}+4 \bar{c}$ is
36) $\bar{r}=2 \bar{a}-4 \bar{b}+3 \bar{c}+\mu(\bar{a}-6 \bar{b}+4 \bar{c})$
37) $\bar{r}=3 \bar{a}+6 \bar{b}-\bar{c}+\mu(\bar{a}+2 \bar{b}+\bar{c})$
38) $\bar{r}=2 \bar{a}+3 \bar{b}-\bar{c}+\mu(\bar{a}+\bar{b}-\bar{c})$
39) $\bar{r}=2 \bar{b}+3 \bar{c}+\mu(\bar{a}-4 \bar{b}+3 \bar{c})$
30)In $\triangle P Q R, M$ is the mid-point of $Q R$ and C is the mid-point of $P M$. If $Q C$ when extended meets PR at N then $\frac{\overline{|Q N|}}{\overline{|C N|}}=$
1)1
2)2
3)3
4)4

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
31)If $\bar{a}=\bar{i}-2 \bar{j}-3 \bar{k}, \bar{b}=2 \bar{i}+\bar{j}-\bar{k}, \bar{c}=\bar{i}+3 \bar{j}-2 \bar{k}$, then $[(\bar{a} \times \bar{b}) \times(\bar{b} \times \bar{c})(\bar{b} \times \bar{c}) \times(\bar{c} \times \bar{a})(\bar{c} \times \bar{a}) \times(\bar{a} \times \bar{b})]=$
1)160000
2)-8000
3) 400
4)-40
32)If $\bar{a}=\bar{i}+2 \bar{j}+3 \bar{k}, \bar{b}=-\bar{i}+2 \bar{j}+\bar{k}, \bar{c}=\bar{i}+2 \bar{j}-2 \bar{k}, \bar{n}$ is perpendicular to both \bar{a} and \bar{b}, and θ is the angle between \bar{c} and \bar{n} then $\sin \theta=$

1) $\sqrt{\frac{2}{3}}$
2) $\frac{\sqrt{2}}{3 \sqrt{3}}$
3) $\frac{2}{\sqrt{3}}$
4) $\frac{\sqrt{3}}{2}$
33)If \bar{a}, \bar{b} and \bar{c} are mutually perpendicular vectors of the same magnitude, then the cosine of the angle between \bar{a} and $\bar{a}+\bar{b}+\bar{c}$ is
5) $\frac{1}{\sqrt{2}}$
6) $\frac{1}{\sqrt{3}}$
7) $\frac{1}{2}$
8) $\frac{\sqrt{3}}{2}$
34)If \bar{a}, \bar{b} and \bar{c} are non-coplanar vectors and the four points with position vectors $2 \bar{a}+3 \bar{b}-\bar{c}, \bar{a}-2 \bar{b}+3 \bar{c}, 3 \bar{a}+4 \bar{b}-2 \bar{c}$ and $k \bar{a}-6 \bar{b}+6 \bar{c}$ are coplanar, then $\mathrm{k}=$
1)0
2)1
3)2
4)3
35)The mean and the standard deviation of a data of 8 items are 25 and 5 respectively. If two items 15 and 25 are added to this data, then the variance of the new data is
9) 29
10) 24
11) 26
12) $\sqrt{29}$
36)The mean deviation from the median for the following distribution (corrected to two decimals) is

x_{i}	6	9	3	12	15	13	21	22
f_{i}	4	5	3	2	5	4	4	3

1)13.42
2)5.45
3)4.97
4)11.25
37)If a die is rolled three times, then the probability of getting a larger number on its face than the previous number each time, is

1) $\frac{15}{216}$
2) $\frac{5}{54}$
3) $\frac{13}{216}$
4) $\frac{1}{18}$
38)A man is known to speak the truth 2 out of 3 times. If he throws a die and reports that it is six, then the probability that it is actually five, is
5) $\frac{3}{8}$
6) $\frac{1}{7}$
7) $\frac{2}{7}$
8) $\frac{4}{5}$
39)If the probability function of a random variable X is defined by $P(X=k)=a\left(\frac{K+1}{2^{k}}\right)$ for $\mathrm{k}=$ $0,1,2,3,4,5$ then the probability that X takes a prime value is
9) $\frac{13}{20}$
10) $\frac{23}{60}$
11) $\frac{11}{20}$
12) $\frac{19}{60}$
40)If X is a binomial variate with mean 6 and variance 2 , then the value of $\mathrm{P}(5 \leq \mathrm{X} \leq 7)$ is
13) $\frac{4762}{6561}$
14) $\frac{4672}{6561}$
15) $\frac{5264}{6561}$
16) $\frac{5462}{6651}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
41)Let $A(2,3), B(3,-6), C(5,-7)$ be three points. If P is a point satisfying the condition P^{2} $+\mathrm{PB}^{2}=2 \mathrm{PC}^{2}$, then a point that lies on the locus of P is

1) $(2,-5)$
2) $(-2,5)$
$3)(13,10)$

$$
4)(-13,-10)
$$

42) If the coordinates of a point P changes to $(2,-6)$ when the coordinate axes are rotated through an angle of 135°, then the coordinates of P in the original system are

$$
\begin{aligned}
& \text { 1)(-2, 6) } \\
& \text { 2) }(-6,2) \\
& 3)(2 \sqrt{ } 2,4 \sqrt{ } 2) \\
& 4)(\sqrt{ } 2,-\sqrt{ } 2)
\end{aligned}
$$

43)If the portion of a line intercepted between the coordinate axes is divided by the point $(2,-1)$ in the ratio $3: 2$, then the equation of that line is

1) $5 x-2 y-20=0$
2) $2 x-y-5=0$
3) $3 x-y-7=0$
4) $x-3 y-5=0$
44)The equation of the line passing through the point of intersection of the lines $2 x+y-4=$ $0, x-3 y+5=0$ and lying at a distance of $\sqrt{ } 5$ units from the origin, is
5) $x-2 y-5=0$
6) $x+2 y-5=0$
7) $x+2 y+5=0$
8) $x-2 y+5=0$
45)The equation of the line joining the centroid with the orthocentre of the triangle formed by the points $(-2,3),(2,-1),(4,0)$ is
9) $x+y-20=0$
10) $11 x-y-14=0$
11) $x-11 y+6=0$
12) $2 x-y-2=0$
46)The lines represented by the equations $23 x^{2}-48 x y+3 y^{2}=0$ and $2 x+3 y+4=0$ form
1)an isosceles triangle
2)a right angled triangle
3)an equilateral triangle
4)a scalene triangle
47)If the line $x+2 y=k$ intersects the curve $x^{2}-x y+y^{2}+3 x+3 y-2=0$ at two points A and B and if O is the origin, then the condition for $\left\lfloor A O B=90^{\circ}\right.$ is
13) $\mathrm{k}^{2}+\mathrm{k}+1=0$
14) $\mathrm{k}^{2}-2 \mathrm{k}+1=0$
15) $2 \mathrm{k}^{2}+9 \mathrm{k}-10=0$
16) $3 \mathrm{k}^{2}+8 \mathrm{k}-1=0$
48)If $2 x^{2}+3 x y-2 y^{2}=0$ represents two sides of a parallellogram and $3 x+y+1=0$ is one of its diagonals, then the other diagonal is
17) $x-3 y+1=0$
18) $x-3 y+2=0$
19) $x-3 y=0$
20) $3 x-y=0$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
49)If the lengths of the tangents drawn from P to the circles $x^{2}+y^{2}-2 x+4 y-20=0$ and x^{2} $+y^{2}-2 x-8 y+1=0$ are in the ratio $2: 1$, then the locus of P is

$$
\begin{aligned}
& \text { 1) } x^{2}+y^{2}+2 x+12 y+8=0 \\
& \text { 2) } x^{2}+y^{2}-2 x+12 y+8=0 \\
& \text { 3) } x^{2}+y^{2}+2 x-12 y+8=0 \\
& \text { 4) } x^{2}+y^{2}-2 x-12 y+8=0
\end{aligned}
$$

50)The equation of a circle touching the coordinate axes and the line $3 x-4 y=12$ is

1) $x^{2}+y^{2}+6 x+6 y+9=0$
2) $x^{2}+y^{2}+6 x+6 y-9=0$
3) $x^{2}+y^{2}-6 x-6 y+9=0$
4) $x^{2}+y^{2}-6 x-6 y-9=0$
51)The pole of the straight line $9 x+y-28=0$ with respect to the circle $2 x^{2}+2 y^{2}-3 x+5 y-$ $7=0$ is
5) $(3,1)$
2)(3, -1)
3)(-3, 1)
4)(4, -8)
52)The point of intersection of the direct common tangents drawn to the circles $(x+11)^{2}+$ $(y-2)^{2}=225$ and $(x-11)^{2}+(y+2)^{2}=25$ is
6) $\left(\frac{-11}{2}, 1\right)$
7) $(-22,4)$
8) $\left(\frac{11}{2},-1\right)$
4)(22, -4)
53)In List-I, a pair of circles is given in A, B, C and in List-II, angle between those pair of circles is given. Match the items from List-I to List -II.

List-I

A) $(x-2)^{2}+y^{2}=2$
I) 90°
$(x-2)^{2}+(y-1)^{2}=1$
B) $x^{2}+y^{2}-6 x-6 y+9=0$
II) 135°
$x^{2}+y^{2}-4 x+4 y-9=0$
C) $x^{2}+y^{2}+4 x-14 y+28=0$
III) 60°
$x^{2}+y^{2}+4 x-5=0$
iv) 30°

The correct matching is
1)A-I, B-II, C-III
2)A-II, B-I, C-III
3)A-III, B-I, C-IV
4)A-IV, B-III, C-I
54)If the radical axis of the circles $x^{2}+y^{2}+2 g x+2 f y+c=0$ and $2 x^{2}+2 y^{2}+3 x+8 y+2 c=$ 0 touches the circle $x^{2}+y^{2}+2 x+2 y+1=0$, then

1) $g=\frac{3}{4}$ or $f=2$
2) $g \neq \frac{3}{4}, f=2$
3) $g=\frac{3}{4}, f \neq 2$
4) $g=\frac{2}{5}$ or $f=1$
55)The line $y=6 x+1$ touches the parabola $y^{2}=24 x$. The coordinates of a point P on this line from which the tangent to $y^{2}=24 x$ is perpendicular to the line $y=6 x+1$, is

$$
1)(-1,-5)
$$

2)(-2, -11)
3)(-6, -35)
4)(-7, -41)
56)A point on the parabola whose focus is $S(1,-1)$ and whose vertex is $A(1,1)$ is

1) $\left(3, \frac{1}{2}\right)$
2)(1,2)
2) $\left(2, \frac{1}{2}\right)$
4)(2,2)
57)An ellipse having the coordinate axes as its axes and its major axis along Y-axis, passes through the point $(-3,1)$ and has eccentricity $\sqrt{\frac{2}{5}}$. Then its equation is

$$
\text { 1) } 3 x^{2}+5 y^{2}-15=0
$$

2) $5 x^{2}+3 y^{2}-32=0$
3) $3 x^{2}+5 y^{2}-32=0$
4) $5 x^{2}+3 y^{2}-48=0$
58)The product of the perpendicular distances drawn from the points $(3,0)$ and $(-3,0)$ to the tangent of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{27}=1$ at $\left(3, \frac{9}{2}\right)$ is
1)36
2)27
3)9
4)63
59)The equation of the hyperbola whose asymptotes are the lines $3 x+4 y-2=0$, $2 x+y+1=0$ and which passes through the point $(1,1)$ is

$$
\begin{aligned}
& \text { 1) } 6 x^{2}+11 x y+4 y^{2}-30 x+2 y+7=0 \\
& \text { 2) } 6 x^{2}+11 x y+4 y^{2}-x+2 y-22=0 \\
& \text { 3) } 6 x^{2}+11 x y+4 y^{2}-x+2 y+22=0 \\
& \text { 4) } 6 x^{2}+11 x y+4 y^{2}-3 x-7 y-11=0
\end{aligned}
$$

60)If the orthocentre and the centroid of a triangle are $(-3,5,2)$ and $(3,3,4)$ respectively, then its circumcentre is

$$
\begin{aligned}
& 1)(6,2,5) \\
& 2)(6,2,-5) \\
& 3)(6,-2,5) \\
& 4)(6,-2,-5)
\end{aligned}
$$

61)A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the $\Delta \mathrm{ABC}$ is $(6,6,3)$. Then the equation of that plane is

1) $x+y+z-6=0$
2) $x+2 y+z-18=0$
3) $2 x+y+z-18=0$
4) $x+y+2 z-18=0$
62)If the foot of the perpendicular drawn from the origin to a plane is $(1,2,3)$, then a point on that plane is
5) $(3,2,1)$
2)(7,2,1)
3)(7, 3, -1)
4)($6,-3,4)$
63)If [x] denotes the greatest integer $\leq x$, then
$\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left\{\left[1^{2} x\right]+\left[2^{2} x\right]+\left[3^{2} x\right]+\ldots+\left[n^{2} x\right]\right\}=$
6) $\frac{x}{2}$
7) $\frac{x}{3}$
8) $\frac{x}{6}$
4)0
64)If a function f defined by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\frac{1-\sqrt{2} \sin x}{\pi-4 x} & , \text { if } x \neq \frac{\pi}{4} \\ k & \text {, if } x=\frac{\pi}{4}\end{array}\right.$ is continuous at $x=\frac{\pi}{4}$, then $\mathrm{k}=$
9) $\frac{1}{4}$
2)1
10) $\frac{-1}{4}$
4)2
65)The derivative of $f(x)=x^{\operatorname{Tan}^{-1} x}$ with respect to $g(x)=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$ is
11) $\frac{1}{2} \sqrt{1-x^{2}} x^{\operatorname{Tan}^{-1} x}\left[\frac{\log x}{1+x^{2}}+\frac{\operatorname{Tan}^{-1} x}{x}\right]$
12) $-\frac{1}{2} \sqrt{1-x^{2}} x^{\operatorname{Tan}^{-1} x}\left[\log \left(\operatorname{Tan}^{-1} x\right)+x\left(1+x^{2}\right) \operatorname{Tan}^{-1} x\right]$
13) $\frac{-2 \operatorname{Tan}^{-1} x\left[\frac{\log x}{1+x^{2}}+\frac{\operatorname{Tan}^{-1} x}{x}\right]}{\sqrt{1-x^{2}}}$
14) $-\frac{1}{2} \sqrt{1-x^{2}} x^{\operatorname{Tan}^{-1} x}\left[\frac{\log x}{1+x^{2}}+\frac{\operatorname{Tan}^{-1} x}{x}\right]$
66)If $\mathrm{x}=3 \cos \mathrm{t}$ and $\mathrm{y}=4 \sin \mathrm{t}$, then $\frac{d^{2 y}}{d x^{2}}$ at the point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\left(\frac{3}{2} \sqrt{2}, 2 \sqrt{2}\right)$,is
15) $\frac{4 \sqrt{2}}{9}$
16) $-\frac{4 \sqrt{2}}{9}$
17) $\frac{8 \sqrt{2}}{9}$
18) $-\frac{8 \sqrt{2}}{9}$
67)If $y=\frac{2}{\sqrt{a^{2}-b^{2}}} \operatorname{Tan}^{-1}\left[\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}\right]$, than $\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{\pi}{2}}=$
19) $\frac{b}{2 a^{2}}$
20) $\frac{b}{a^{2}}$
21) $\frac{2 b}{a}$
22) $\frac{b^{2}}{2 a}$
68)If $f(x)=x^{3}+a x^{2}+b x+5 \sin ^{2} x$ is an increasing function on R, then
23) $a^{2}-3 b-15<0$
24) $a^{2}-3 b+15>0$
25) $a^{2}-3 b-15>0$
26) $a^{2}+3 b+15>0$
69)The approximate value of $\cos 31^{\circ}$ is $\left(\right.$ Take $\left.1^{\circ}=0.0174\right)$
27) 0.7521
2)0.866
3)0.7146
4)0.8573

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
70)If x and y are two positive numbers such that $x+y=32$, then the minimum value of $x^{2}+$ y^{2} is,
1)500
2)256
3)1024
4)512
71)The constant 'c' of Lagrange's mean value theorem for the function $f(x)=\frac{2 x+3}{4 x-1}$ defind on $[1,2]$ is

1) $\frac{1+\sqrt{15}}{3}$
2) $\frac{1+\sqrt{21}}{4}$
3) $\frac{5}{3}$
4) $\frac{3}{2}$
5) $\int \frac{\sin 2 x d x}{\sin ^{4} x+\cos ^{4} x}=\operatorname{Tan}^{-1}(f(x))+c$, then $f\left(\frac{\pi}{3}\right)=$
1)1
2)2
3)3
6) $\frac{1}{3}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
73) $\int\left(\frac{\log x-1}{1+(\log x)^{2}}\right)^{2} d x=$

1) $\frac{\log x}{1+(\log x)^{2}}+c$
2) $\frac{x}{x^{2}+1}+c$
3) $\frac{x}{1+(\log x)^{2}}+c$
4) $\frac{-x}{1+(\log x)^{2}}+c$
5) $\int \frac{d x}{x^{3}+3 x^{2}+2 x}=$
6) $\log |x|+\log \left|\frac{x+2}{x+1}\right|+c$
7) $\log |x|-\log |x+1|+\log |x+2|+c$
8) $\frac{1}{2}[\log |x|+\log |x+1|+\log |x+2|]+c$
9) $\frac{1}{2} \log \left(\frac{\left|x^{2}+2 x\right|}{(x+1)^{2}}\right)+c$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling
75)For $\mathrm{n} \geq 2$, If $I_{n}=\int \sec ^{n} x d x$, then $I_{4}-\frac{2}{3} I_{2}=$

1) $\sec ^{2} x \tan x+c$
2) $\frac{1}{3} \sec ^{2} x \tan x+c$
3) $\frac{2}{3} \sec ^{2} x \tan x+c$
4) $\frac{1}{3} \log |\sec x+\tan x|+c$
5) $\lim _{n \rightarrow \infty}\left(\frac{\sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+\ldots+n \sqrt{n}}{n^{\frac{5}{2}}}\right)=$
1)1
6) $\frac{5}{2}$
3)0
7) $\frac{2}{5}$
8) $\int_{0}^{\alpha / 3} \frac{f(x)}{f(x)+f\left(\frac{\alpha-3 x}{3}\right)} d x=$
9) $\frac{2 \alpha}{3}$
10) $\frac{\alpha}{2}$
11) $\frac{\alpha}{3}$
12) $\frac{\alpha}{6}$

SAKSHIDDEDUCATION

Educating, Enlightening \& Ennobling!
78)The area (in sq. units) of the region bounded by the X-axis and the curve $y=1-x-6 x^{2}$ is

1) $\frac{125}{216}$
2) $\frac{125}{512}$
3) $\frac{25}{216}$
4) $\frac{25}{512}$
79)If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then $m n-m+n=$
1)1
2)4
3)3
4)2
80)The general solution of $\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$ is
5) $y e^{\frac{y}{x}}+x=c$
6) $y e^{\frac{x}{y}}-x=c$
7) $y e^{\frac{x}{y}}+y=c$
8) $y e^{\frac{x}{y}}+x=c$

