

AP EAMCET Mathematics Previous Questions with Key – Test 6

1)If f: R \rightarrow R is defined by f(x) =[2x] – 2[x] for x \in R, then the range of f is (Here [x] denotes the greatest integer not exceeding x)

1)Z, the set of all integers

2)N, the set of all natural numbers

3)R, the set of all real numbers

 $4)\{0,1\}$

2)Given that a, b and c are real numbers such that $b^2 = 4ac$ and a > 0. The maximal possible set $D \subseteq R$ on which the function f: $D \rightarrow R$ given by $f(x) = \log\{ax^3 + (a + b)x^2 + (b + c)x + c\}$ is defined, is

$$1)_{R} - \left\{-\frac{b}{2a}\right\} \qquad 2)_{R} - \left\{\left\{-\frac{b}{2a}\right\} \cup \left\{-\infty, -1\right\}\right\} \\ 3)_{R} - \left\{\left\{-\frac{b}{2a}\right\} \cup \left\{x: x \ge 1\right\}\right\} \qquad 4)_{R} - \left(\left\{-\frac{b}{2a}\right\} \cup \left(-\infty, -1\right)\right) \\ 4)_{R} - \left(-\frac{b}{2a}\right) - \left(-\infty, -1\right)$$

3)For any natural number n, $(15 \times 5^{2n}) + (2 \times 2^{3n})$ is divisible by

4

4)For the matrix
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}, A^{-1} =$$

1)A
2)A²
3)A³
4)A⁴
5)If $A = \begin{bmatrix} \frac{k}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{m}{4} \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$ then k + I + m =
1)1
2)9
3)14
4)29

6)If A and B are the two real values of k for which the system of equations x + 2y + z = 1, x + 3y + 4z = k, $x + 5y + 10z = k^2$ is consistent, then A + B =

7)Let z = x + iy and a point P represent z in the Argand plane. If the real part of $\frac{z-1}{z+i}$ is 1, then a point that lies on the locus of P is

1)(2016, 2017)

2)(-2016, 2017)

3)(-2016, -2017)

4)(2016, -2017)

8) If $13e^{iTan^{-1}\frac{5}{12}} = a + ib$, then the ordered pair (a, b) =

1)(12, 5)

- 2)(5, 12)
- 3)(24, 10)
- 4)(10, 24)

9) If $z_1 = 1 - 2i$; $z_2 = 1 + i$ and $z_3 = 3 + 4i$, then $\left(\frac{1}{z_1} + \frac{3}{z_2}\right) \frac{z_3}{z_2} =$

1)13 - 6i
2)13 - 3i
3)6 -
$$\frac{13}{2}i$$

$$4)\frac{13}{2}-3i$$

10) If 1, ω , ω^2 are the cube roots of unity, then $\frac{1}{1+2\omega} + \frac{1}{2+\omega} - \frac{1}{1+\omega} =$

1)	1

- 2)w
- $3)\omega^2$
- 4)0

11)The number of integral values of x satisfying $5x - 1 < (x + 1)^2 < 7x - 3$ is

1)0	
2)1	
3)2	
4)3	

12)For real number x, if the minimum value of $f(x) = x^2 + 2bx + 2c^2$ is greater than the maximum value of $g(x) = -x^2 - 2cx + b^2$, then

1) $c^2 > 2b^2$ 2) $c^2 < 2b^2$ 3) $b^2 = 2c^2$ 4) $c^2 = 2b^2$

13)If a, b and c are the roots of $x^3 + qx + r = 0$, then $(a - b)^2 + (b - c)^2 + (c - a)^2 =$

1)-6q 2)-4q 3)6q

4)4q

14)If the sum of two roots of the equation $x^3 - 2px^2 + 3qx - 4r = 0$ is zero, then the value of r is

$$1)\frac{3pq}{2}$$

$$2)\frac{3pq}{4}$$

3)pq

4)2pq

15)The sum of the four digit even numbers that can be formed with the digits 0, 3, 5, 4 with out repetition is

1)14684
 2)43536
 3)46526
 4)52336

16)If x is the number of ways in which six women and six men can be arranged to sit in a row such that no two women are together and if y is the number of ways they are seated around a table in the same manner, then x : y =

1)12 : 1 2)42 : 1 3)16 : 1 4)6 : 1

17)The number of 5-letter words that can be formed by using the letters of the word SARANAM is

1)1120

2)6720

3)480

4)720

18) The number of rational terms in the binomial expansion of $(\sqrt[4]{5} + \sqrt[5]{4})^{100}$ is

1)50	
2)5	
3)6	
4)51	<pre>VV</pre>

19)The numerically greatest term in the binomial expansion of $(2a - 3b)^{19}$ when $a = \frac{1}{4}$ and

$$b = \frac{2}{3} \text{ is}$$

$$1)^{19}C_5 \cdot 2^{11}$$

$$2)^{19}C_3 \cdot \frac{1}{2^{11}}$$

$$3)^{19}C_4 \cdot \frac{1}{2^{13}}$$

$$4)^{19}C_3 \cdot 2^{13}$$

20) If $\frac{x^2+5x+7}{(x-3)^3} = \frac{A}{(x-3)} + \frac{B}{(x-3)^2} + \frac{C}{(x-3)^3}$, then the equation of the line having slope A and

Passing through the point (B, C) is

- 1)x + y 20 = 0
- 2(x y + 20) = 0
- 3)x + y + 20 = 0
- (4)x y 20 = 0

21) If $\cos\left(x - \frac{\pi}{3}\right)$, $\cos x$, $\cos\left(x + \frac{\pi}{3}\right)$ are in a harmonic progression, then $\cos x =$

- $1)\frac{3}{2}$
- 2)1
- $3)\frac{\sqrt{3}}{2}$
- $(4)\sqrt{\frac{3}{2}}$

 $22)\cos^3 110^\circ + \cos^3 10^\circ + \cos^3 130^\circ =$

23) If the general solution of $\sin 5x = \cos 2x$ is of the form $a_n \cdot \frac{\pi}{2}$ for $n = 0, \pm 1, \pm 2, ...,$ then $a_n =$

1)
$$\frac{2n}{5+2(-1)^n}$$

2) $\frac{2n+(-1)^n}{5+2(-1)^n}$

$$3)\frac{2n+1}{5+2(-1)^n}$$

$$4)\frac{2n-1}{5+2(-1)^n}$$

24)let x, y be real numbers such that $x \neq y$ and $xy \neq 1$. If $ax + bsec(Tan^{-1}x) = c$ and $ay + bsec(Tan^{-1}y) = c$, then $x + y = -bsec(Tan^{-1}y) = c$.

bsec(Tan⁻¹y) = c, then
$$\frac{x+y}{1-xy}$$
 =
1) $\frac{2ab}{a^2-b^2}$ 2) $\frac{2ac}{a^2+c^2}$ 3) $\frac{2ab}{a^2+b^2}$ 4) $\frac{2ac}{a^2-c^2}$
25) tanh⁻¹ $\frac{1}{2}$ + coth⁻¹ 3 =
1)log $\sqrt{6}$
2)log 6
3)-log $\sqrt{6}$
4)-log 6

26)If the median of a \triangle ABC through A is perpendicular to AC, then $\frac{\tan A}{\tan C}$ =

28)In a \triangle ABC, D, E and F respectively are the points of contact of the incircle with the sides

AB, BC and CA such that $AD = \alpha$, $BE = \beta$ and $CF = \gamma$, then $\frac{\alpha\beta\gamma}{\alpha + \beta + \gamma} =$

- $1)R^2$
- 2)2R
- 3)2r
- $4)r^{2}$

29)Let $\overline{a}, \overline{b} and \overline{c}$ be three non-coplanar vectors. The vector equation of a line which passes through the point of intersection of two lines, one joining the points $\overline{a} + 2\overline{b} - 5\overline{c}, -\overline{a} - 2\overline{b} - 3\overline{c}$ and the other joining the points $-4\overline{c}, 6\overline{a} - 4\overline{b} + 4\overline{c}$ is

1)
$$\bar{r} = 2\bar{a} - 4\bar{b} + 3\bar{c} + \mu(\bar{a} - 6\bar{b} + 4\bar{c})$$

2) $\bar{r} = 3\bar{a} + 6\bar{b} - \bar{c} + \mu(\bar{a} + 2\bar{b} + \bar{c})$
3) $\bar{r} = 2\bar{a} + 3\bar{b} - \bar{c} + \mu(\bar{a} + \bar{b} - \bar{c})$
4) $\bar{r} = 2\bar{b} + 3\bar{c} + \mu(\bar{a} - 4\bar{b} + 3\bar{c})$

30)In ΔPQR, M is the mid-point of QR and C is the mid-point of PM. If QC when extended

31) If $\overline{a} = \overline{i} - 2\overline{j} - 3\overline{k}, \overline{b} = 2\overline{i} + \overline{j} - \overline{k}, \overline{c} = \overline{i} + 3\overline{j} - 2\overline{k}$, then $\left[(\overline{a} \times \overline{b}) \times (\overline{b} \times \overline{c})(\overline{b} \times \overline{c}) \times (\overline{c} \times \overline{a})(\overline{c} \times \overline{a}) \times (\overline{a} \times \overline{b})\right] = \overline{a} + \overline{$

1)160000

2)-8000

3)400

4)-40

32) If $\overline{a} = \overline{i} + 2\overline{j} + 3\overline{k}$, $\overline{b} = -\overline{i} + 2\overline{j} + \overline{k}$, $\overline{c} = \overline{i} + 2\overline{j} - 2\overline{k}$, \overline{n} is perpendicular to both \overline{a} and \overline{b} , and θ is the angle between \overline{c} and \overline{n} then $\sin\theta =$

1) $\sqrt{\frac{2}{3}}$ 2) $\frac{\sqrt{2}}{3\sqrt{3}}$ 3) $\frac{2}{\sqrt{3}}$ 4) $\frac{\sqrt{3}}{2}$

33) If \overline{a} , \overline{b} and \overline{c} are mutually perpendicular vectors of the same magnitude, then the cosine of the angle between \overline{a} and $\overline{a} + \overline{b} + \overline{c}$ is

1) $\frac{1}{\sqrt{2}}$ 2) $\frac{1}{\sqrt{3}}$ 3) $\frac{1}{2}$ 4) $\frac{\sqrt{3}}{2}$

34) If \overline{a} , \overline{b} and \overline{c} are non-coplanar vectors and the four points with position vectors $2\overline{a}+3\overline{b}-\overline{c}, \overline{a}-2\overline{b}+3\overline{c}, 3\overline{a}+4\overline{b}-2\overline{c}$ and $k\overline{a}-6\overline{b}+6\overline{c}$ are coplanar, then k =

35)The mean and the standard deviation of a data of 8 items are 25 and 5 respectively. If two items 15 and 25 are added to this data, then the variance of the new data is

1)29
 2)24
 3)26
 4)√29

36)The mean deviation from the median for the following distribution (corrected to two decimals) is

								-	
	x _i	6	9	3	12	15	13	21	22
	\mathbf{f}_{i}	4	5	3	2	5	4	4	3
1)13.42	,		X	X				
2	2)5.45			5					
3	3)4.97		\mathcal{O}						
4)11.25								

37)If a die is rolled three times, then the probability of getting a larger number on its face than the previous number each time, is

$$1)\frac{15}{216} \qquad 2)\frac{5}{54} \qquad 3)\frac{13}{216} \qquad 4)\frac{1}{18}$$

38)A man is known to speak the truth 2 out of 3 times. If he throws a die and reports that it is six, then the probability that it is actually five, is

39) If the probability function of a random variable X is defined by $P(X = k) = a\left(\frac{K+1}{2^k}\right)$ for k =

0, 1, 2, 3, 4, 5 then the probability that X takes a prime value is

40)If X is a binomial variate with mean 6 and variance 2, then the value of $P(5 \le X \le 7)$ is

41)Let A(2, 3), B(3, -6), C(5, -7) be three points. If P is a point satisfying the condition $PA^{2} + PB^{2} = 2PC^{2}$, then a point that lies on the locus of P is

- 1)(2, -5)
- 2)(-2, 5)
- 3)(13, 10)
- 4)(-13, -10)

42) If the coordinates of a point P changes to (2, -6) when the coordinate axes are rotated through an angle of 135°, then the coordinates of P in the original system are

- 1)(-2, 6)
- 2)(-6, 2)
- $(2\sqrt{2}, 4\sqrt{2})$
- $(\sqrt{2}, -\sqrt{2})$

43)If the portion of a line intercepted between the coordinate axes is divided by the point (2, -1) in the ratio 3 : 2, then the equation of that line is

1)5x -2y -20 =0 2)2x -y -5 = 0 3)3x -y -7 = 0 4)x -3y -5 = 0

44)The equation of the line passing through the point of intersection of the lines 2x + y - 4 = 0, x - 3y + 5 = 0 and lying at a distance of $\sqrt{5}$ units from the origin, is

- 1)x -2y 5 = 0 2)x + 2y 5 = 0
- 3)x + 2y + 5 = 0 4)x 2y + 5 = 0

45)The equation of the line joining the centroid with the orthocentre of the triangle formed by the points (-2, 3), (2, -1), (4, 0) is

1)x + y - 20 = 0

2)11x - y - 14 = 0

3)x - 11y + 6 = 0

$$4)2x - y - 2 = 0$$

46)The lines represented by the equations $23x^2 - 48xy + 3y^2 = 0$ and 2x + 3y + 4 = 0 form

1)an isosceles triangle

2)a right angled triangle

4)a scalene triangle

3)an equilateral triangle

47)If the line x + 2y = k intersects the curve $x^2 - xy + y^2 + 3x + 3y - 2 = 0$ at two points A and B and if O is the origin, then the condition for $|AOB| = 90^\circ$ is

$$1)k^{2} + k + 1 = 0$$

$$2)k^{2} - 2k + 1 = 0$$

$$3)2k^{2} + 9k - 10 = 0$$

$$4)3k^{2} + 8k - 1 = 0$$

48)If $2x^2 + 3xy - 2y^2 = 0$ represents two sides of a parallellogram and 3x + y + 1 = 0 is one of its diagonals, then the other diagonal is

$$1)x - 3y + 1 = 0$$

$$2)x - 3y + 2 = 0$$

$$3)x - 3y = 0$$

$$4)3x - y = 0$$

4-4-1

49)If the lengths of the tangents drawn from P to the circles $x^2 + y^2 - 2x + 4y - 20 = 0$ and $x^2 + y^2 - 2x - 8y + 1 = 0$ are in the ratio 2:1, then the locus of P is

 $1)x^{2} + y^{2} + 2x + 12y + 8 = 0$ $2)x^{2} + y^{2} - 2x + 12y + 8 = 0$ $3)x^{2} + y^{2} + 2x - 12y + 8 = 0$ $4)x^{2} + y^{2} - 2x - 12y + 8 = 0$

50)The equation of a circle touching the coordinate axes and the line 3x - 4y = 12 is

1)
$$x^{2} + y^{2} + 6x + 6y + 9 = 0$$

2) $x^{2} + y^{2} + 6x + 6y - 9 = 0$
3) $x^{2} + y^{2} - 6x - 6y + 9 = 0$
4) $x^{2} + y^{2} - 6x - 6y - 9 = 0$

51)The pole of the straight line 9x + y - 28 = 0 with respect to the circle $2x^2 + 2y^2 - 3x + 5y - 7 = 0$ is

1)
$$(3, 1)$$
 2) $(3, -1)$ 3) $(-3, 1)$ 4) $(4, -8)$

52)The point of intersection of the direct common tangents drawn to the circles $(x + 11)^2 + (y - 2)^2 = 225$ and $(x - 11)^2 + (y + 2)^2 = 25$ is

$$1)\left(\frac{-11}{2},1\right)$$

2)(-22, 4)
3)\left(\frac{11}{2},-1\right)

4)(22, -4)

53)In List-I, a pair of circles is given in A, B, C and in List-II, angle between those pair of circles is given. Match the items from List-I to List –II.

54)If the radical axis of the circles $x^2 + y^2 + 2gx + 2fy + c = 0$ and $2x^2 + 2y^2 + 3x + 8y + 2c = 0$ touches the circle $x^2 + y^2 + 2x + 2y + 1 = 0$, then

1)
$$g = \frac{3}{4} \text{ or } f = 2$$
 2) $g \neq \frac{3}{4}, f = 2$ 3) $g = \frac{3}{4}, f \neq 2$ 4) $g = \frac{2}{5} \text{ or } f = 1$

55)The line y = 6x + 1 touches the parabola $y^2 = 24x$. The coordinates of a point P on this line from which the tangent to $y^2 = 24x$ is perpendicular to the line y = 6x + 1, is

- 1)(-1, -5)
- 2)(-2, -11)
- 3)(-6, -35)
- 4)(-7, -41)

56)A point on the parabola whose focus is S(1, -1) and whose vertex is A(1, 1) is

 $1)\left(3,\frac{1}{2}\right)$ 2)(1, 2) 3) $\left(2,\frac{1}{2}\right)$ 4)(2, 2)

57)An ellipse having the coordinate axes as its axes and its major axis along Y-axis, passes through the point(-3, 1) and has eccentricity $\sqrt{\frac{2}{5}}$. Then its equation is

$$1)3x^{2} + 5y^{2} - 15 = 0$$
$$2)5x^{2} + 3y^{2} - 32 = 0$$
$$3)3x^{2} + 5y^{2} - 32 = 0$$
$$4)5x^{2} + 3y^{2} - 48 = 0$$

58)The product of the perpendicular distances drawn from the points (3, 0) and (-3, 0) to the

tangent of the ellipse $\frac{x^2}{36} + \frac{y^2}{27} = 1$ at $\left(3, \frac{9}{2}\right)$ is

1)36

2)27

3)9

4)63

59)The equation of the hyperbola whose asymptotes are the lines 3x + 4y - 2 = 0,

2x + y + 1 = 0 and which passes through the point (1, 1) is

$$1)6x^{2} + 11xy + 4y^{2} - 30x + 2y + 7 = 0$$

$$2)6x^{2} + 11xy + 4y^{2} - x + 2y - 22 = 0$$

$$3)6x^{2} + 11xy + 4y^{2} - x + 2y + 22 = 0$$

$$4)6x^{2} + 11xy + 4y^{2} - 3x - 7y - 11 = 0$$

60)If the orthocentre and the centroid of a triangle are (-3, 5, 2) and (3, 3, 4) respectively, then its circumcentre is

1)(6, 2, 5) 2)(6, 2, -5) 3)(6, -2, 5)

4)(6, -2, -5)

61)A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the \triangle ABC is (6, 6, 3). Then the equation of that plane is

- 1)x + y + z 6 = 0
- 2)x + 2y + z 18 = 0
- 3)2x + y + z 18 = 0
- 4)x + y + 2z 18 = 0

62)If the foot of the perpendicular drawn from the origin to a plane is (1, 2, 3), then a point on that plane is

- 1)(3, 2, 1)
- 2)(7, 2, 1)
- 3)(7, 3, -1)
- 4)(6, -3, 4)

63)If [x] denotes the greatest integer \leq x, then

$$\lim_{n \to \infty} \frac{1}{n^3} \left\{ \begin{bmatrix} 1^2 x \end{bmatrix} + \begin{bmatrix} 2^2 x \end{bmatrix} + \begin{bmatrix} 3^2 x \end{bmatrix} + \dots + \begin{bmatrix} n^2 x \end{bmatrix} \right\} =$$

$$1) \frac{x}{2}$$

$$2) \frac{x}{3}$$

$$3) \frac{x}{6}$$

$$4)0$$

64) If a function f defined by
$$f(x) = \begin{cases} \frac{1-\sqrt{2}\sin x}{\pi-4x}, & \text{if } x \neq \frac{\pi}{4} \\ k, & \text{if } x = \frac{\pi}{4} \end{cases}$$

is continuous at
$$x = \frac{\pi}{4}$$
, then k =

$$1)\frac{1}{4}$$

$$(3)\frac{-1}{4}$$

65) The derivative of $f(x) = x^{Tan^{-1}x}$ with respect to $g(x) = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$ is

$$1)\frac{1}{2}\sqrt{1-x^{2}}x^{Tan^{-1}x}\left[\frac{\log x}{1+x^{2}}+\frac{Tan^{-1}x}{x}\right]$$
$$2)-\frac{1}{2}\sqrt{1-x^{2}}x^{Tan^{-1}x}\left[\log(Tan^{-1}x)+x(1+x^{2})Tan^{-1}x\right]$$
$$-\frac{2Tan^{-1}x\left[\frac{\log x}{1+x^{2}}+\frac{Tan^{-1}x}{x}\right]}{\sqrt{1-x^{2}}}$$
$$4)-\frac{1}{2}\sqrt{1-x^{2}}x^{Tan^{-1}x}\left[\frac{\log x}{1+x^{2}}+\frac{Tan^{-1}x}{x}\right]$$

66) If x = 3cos t and y = 4sin t, then
$$\frac{d^{2y}}{dx^2}$$
 at the point $(x_0, y_0) = \left(\frac{3}{2}\sqrt{2}, 2\sqrt{2}\right)$, is

1)
$$\frac{4\sqrt{2}}{9}$$

2) $-\frac{4\sqrt{2}}{9}$
3) $\frac{8\sqrt{2}}{9}$
4) $-\frac{8\sqrt{2}}{9}$
67)If $y = \frac{2}{\sqrt{a^2 - b^2}} Tan^{-1} \left[\sqrt{\frac{a - b}{a + b}} \tan \frac{x}{2} \right], than \frac{d^2 y}{dx^2} \Big|_{x = \frac{x}{2}} = 1$
1) $\frac{b}{2a^2}$ 2) $\frac{b}{a^2}$ 3) $\frac{2b}{a}$ 4) $\frac{b^2}{2a}$

68)If $f(x) = x^3 + ax^2 + bx + 5sin^2x$ is an increasing function on R, then

$$1)a^{2} - 3b - 15 < 0$$

$$2)a^{2} - 3b + 15 > 0$$

$$3)a^{2} - 3b - 15 > 0$$

$$4)a^{2} + 3b + 15 > 0$$

69)The approximate value of $\cos 31^\circ$ is (Take $1^\circ = 0.0174$)

1)0.7521
 2)0.866
 3)0.7146
 4)0.8573

70)If x and y are two positive numbers such that x + y = 32, then the minimum value of $x^2 + y^2$ is,

1)500

2)256

3)1024

4)512

71)The constant 'c' of Lagrange's mean value theorem for the function $f(x) = \frac{2x+3}{4x-1}$ defind

$$73) \int \left(\frac{\log x - 1}{1 + (\log x)^2}\right)^2 dx =$$

$$1) \frac{\log x}{1 + (\log x)^2} + c$$

$$2) \frac{x}{x^2 + 1} + c$$

$$3) \frac{x}{1 + (\log x)^2} + c$$

$$4) \frac{-x}{1 + (\log x)^2} + c$$

$$74) \int \frac{dx}{x^3 + 3x^2 + 2x} =$$

$$1) \log|x| + \log\left|\frac{x + 2}{x + 1}\right| + c$$

$$2) \log|x| - \log|x + 1| + \log|x + 2| + c$$

$$3) \frac{1}{2} [\log|x| + \log|x + 1| + \log|x + 2|] + c$$

$$4) \frac{1}{2} \log\left(\frac{|x^2 + 2x|}{(x + 1)^2}\right) + c$$

6

75)For
$$n \ge 2$$
, If $I_n = \int \sec^n x \, dx$, then $I_4 - \frac{2}{3}I_2 =$

$$2)\frac{1}{3}\sec^2 x \tan x + c$$

$$3)\frac{2}{3}\sec^2 x \tan x + c$$

$$4)\frac{1}{3}\log|\sec x + \tan x| + c$$

76)
$$\lim_{n \to \infty} \left(\frac{\sqrt{1 + 2\sqrt{2} + 3\sqrt{3} + \dots + n\sqrt{n}}}{n^{\frac{5}{2}}} \right) =$$

1)1 2)
$$\frac{5}{2}$$
 3)0

•

$$77) \int_{0}^{\frac{\alpha}{3}} \frac{f(x)}{f(x) + f\left(\frac{\alpha - 3x}{3}\right)} dx =$$

$$1) \frac{2\alpha}{3}$$

$$4)\frac{\alpha}{6}$$

 $3)\frac{\alpha}{3}$

 $2)\frac{\alpha}{2}$

 $(4)\frac{2}{5}$

4

78)The area (in sq. units) of the region bounded by the X-axis and the curve $y = 1 - x - 6x^2$ is

$$1)\frac{125}{216}$$
$$2)\frac{125}{512}$$

$$3)\frac{25}{216}$$

$$(4)\frac{25}{512}$$

79)If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n =

6

APEAMCET-2018 Engineering Stream				
Final Key				
1	4	41	4	
2	4	42	3	
3	4	43	4	
4	3	44	2	
5	4	45	2	
6	1	46	3	
7	4	47	3	
8	1	48	3	
9	4	49	4	
10	4	50	3	
11	2	51	2	
12	1	52	4	
13	1	53	2	
14	1	54	1	
15	2	55	3	
16	2	56		
17	3	57	4	
18	3	58	2	
19	4	59	2	
20	2 🐁	60	1	
21	4	61	4	
22	3	62	2	
23	2	63	2	
24	4	64	1	
25	1	65	4	
26	3	66	4	
27	2	67	2	
28	4	68	1	
29	2	69	4	
30	4	70	4	
31	1	71	2	
32	2	72	3	
33	2	73	3	
34	2	74	4	
35	1	75	2	
36	3	76	4	
37	2	77	4	
38	2	78	1	
39	2	79	3	
40	2	80	4	

