Heights and Distances

Example -1 A tower is $100 \sqrt{3}$ meter high. Find the angle of elevation if it's top from a point 100 metres away from its foot.

Solution: Let $A B$ be the tower of height $100 \sqrt{3}$ metres, and let C be a point at a distance of 100 metres from the foot of the tower.

Let θ be the angle of elevation of the top of the tower from point C .
Clearly, in $\triangle C A B$ the lengths of base $A C$ and perpendicular $A B$ are known. So, we will use the trigonometric ratio containing base and perpendicular. Such a ratio is tangent. Taking tangent of angle $\angle A C B$ in $\triangle C A B$, we have

$$
\begin{aligned}
& \tan \theta=\frac{A B}{A C} \\
& \Rightarrow \quad \tan \theta=\frac{100 \sqrt{3}}{100}=\sqrt{3} \\
& \Rightarrow \tan \theta=\tan 60^{\circ} \\
& \Rightarrow \quad \theta=60^{\circ}
\end{aligned}
$$

Hence, the angle of elevation of the top of the tower from a point 100 metres away from its foot is 60^{0}.

Example -2 The string of a kite is 100 metres long and it makes an angle of 60° with the horizontal. Find the height of the kite, assuming that there is no slack in the string.

Solution: Let OA be the horizontal ground, and let K be the position of the kite at a height h above the ground. Then, $\mathrm{AK}=\mathrm{h}$.

It is given that $\mathrm{OK}=100$ metres and $\angle A O K=60^{\circ}$.
Thus, in $\triangle O A K$, we have hypotenuse $\mathrm{OK}=100 \mathrm{~m}$ and $\angle A O K=60^{\circ}$ and we wish to find the perpendicular AK. So, we use the trigonometric ratio involving perpendicular and hypotenuse. Clearly, sine is such a ratio. So, we take the sine of $\angle A O K$ in $\triangle O A K$.

In $\triangle A O K$, we have

$$
\sin 60^{\circ}=\frac{A K}{O K}
$$

$\Rightarrow \sin 60^{\circ}=\frac{h}{100}$
$\Rightarrow h=100 \sin 60^{\circ}$
$\Rightarrow h=100 \frac{\sqrt{3}}{2}=50 \sqrt{3}=86.60$ metres.
Hence, the height of the kite is 86.60 metres.
Example -3 A circus artist is climbing from the ground along a rope stretched from the top of a vertical pole and tied at the ground. The height of the pole is 12 m and the angle made by the rope with ground level is 30°. Calculate the distance covered by the artist in climbing to the top of the pole.

Solution: Clearly, distance covered by the artist is equal to the length of the rope $A C$. Let $A B$ be the vertical pole of height 12 m .

It is given that $\angle A C B=30^{\circ}$.
Thus, in right - angled triangle $A B C$, we have
Perpendicular $\mathrm{AB}=12 \mathrm{~m} . \angle A C B=30^{\circ}$ and we wish to find hypotenuse AC.
$\therefore \sin 30^{\circ}=\frac{A B}{A C}$
$\Rightarrow \frac{1}{2}=\frac{12}{A C}$

$\Rightarrow A C=24 m$

Hence, the distance covered by the circus artist is 24 m .
Example -4 An observer 1.5 m tall is 28.5 m away from a tower. The angle of elevation of the top of the tower from her eyes is 45°. What is the height of the tower?

Solution: Let AB be the tower of height h and CD be the observer of height 1.5 m at a distance of 28.5 m from the tower $A B$.

In $\triangle A E D$, we have

$$
\tan 45^{\circ}=\frac{A E}{D E}
$$

$\Rightarrow 1=\frac{A E}{28.5}$
$\Rightarrow A E=28.5 \mathrm{~m}$
$\therefore h=A E+B E=A E+D C$
$=(28.5+1.5) m=30 m$

Hence, the height of the tower is 30 m .
Example -5 From a point on the ground 40m away from the foot of a tower, the angle of elevation of the top of the tower is 30°. The angle of elevation of the top of a water tank (on the top of the tower) is 45°. Find the (i) height of the tower (ii) the depth of the tank.

Solution: Let $B C$ be the tower of height h metre and $C D$ be the water tank of height h_{1} metre.
Let A be a point on the ground at a distance of 40 m away from the foot B of the tower.
In $\triangle A B D$, we have

$$
\tan 45^{\circ}=\frac{B D}{A B}
$$

$\Rightarrow 1=\frac{h+h_{1}}{40}$
$\Rightarrow h+h_{1}=40 m$
In $\triangle A B C$, we have

$$
\tan 30^{\circ}=\frac{B C}{A B}
$$

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{40}$
$\Rightarrow h=\frac{40}{\sqrt{3}} m=\frac{40 \sqrt{3}}{3} m=23.1 \mathrm{~m}$
Substituting the value of h in (i), we have

$$
23.1+\mathrm{h}_{1}=40
$$

$\Rightarrow h_{1}=(40-23.1) m=16.9 m$
Hence, the height of the tower is $h=23.1 \mathrm{~m}$ and the depth of the tank is $\mathrm{h}_{1}=16.9 \mathrm{~m}$

Example -6 A tree 12 m high, is broken by the wind in such a way that its top touches the ground and makes an angle 60° with the ground. At what height from the bottom the tree is broken by the wind?

Solution: Let $A B$ be the tree of height 12 metres. Suppose the tree is broken by the wind at point C and the part CB assumes the position CO and meets the ground at O .

Let $\mathrm{AC}=x$. Then, $\mathrm{CO}=\mathrm{CB}=12-x$. It is given that $\angle A O C=60^{\circ}$

$$
\sin 60^{\circ}=\frac{A C}{O C}
$$

$\Rightarrow \frac{\sqrt{3}}{2}=\frac{x}{12-x}$
$\Rightarrow 12 \sqrt{3}-\sqrt{3} x=2 x$
$\Rightarrow 12 \sqrt{3}=x(2+\sqrt{3})$
$\Rightarrow x=\frac{12 \sqrt{3}}{2+\sqrt{3}}=\frac{12 \sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}=12 \sqrt{3}(2-\sqrt{3})$
$\Rightarrow x=24 \sqrt{3}-36=5.569$ metres

Hence, the tree is broken at a h eight of 5.569 metres from the ground.
Example -7 From the top of a hill, the angles of depression of two consecutive kilometer stones due east are found to be 30° and 45°. Find the height of the hill.

Solution: Let AB be the hill of height hkm . Let C and D be two stones due east of the hill at a distance of 1 k m from each other such that the angles of depression of C and D be 45° and 30° respectively. Let $\mathrm{AC}=x \mathrm{~km}$.

In $\triangle C A B$, we have

$$
\tan 45^{\circ}=\frac{A B}{A C}
$$

$$
\begin{equation*}
\Rightarrow \quad 1=\frac{h}{x} \Rightarrow h=x \tag{i}
\end{equation*}
$$

In $\triangle D A B$, we have

$$
\tan 30^{\circ}=\frac{A B}{A D}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+1} \\
& \Rightarrow \sqrt{3} h=x+1
\end{aligned}
$$

Substituting the value of x from equation (i) in equation (ii), we get

$$
\begin{aligned}
& \sqrt{3} h=h+1 \\
& \Rightarrow h(\sqrt{3}-1)=1 \\
& \Rightarrow h=\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{(\sqrt{3}-1)(\sqrt{3}+1)} \\
& \Rightarrow h=\frac{\sqrt{3}+1}{2}=\frac{2.73}{2}=1.365 \mathrm{Km}
\end{aligned}
$$

Hence, the height of the hill is 1.365 km .
Example - 8 Two pillars of equal height and on either side of a road, which is 100 m wide. The angles of elevation of the top of the pillars are 60° and 30° at a point on the road between the pillars. Find the position of the point between the pillars and the height of each pillar.

Solution: Let AB and CD be two pillars, each of height h metres. Let P be a point on the road such that $\mathrm{AP}=x$ metres. Then, $\mathrm{CP}=(100-x)$ metres. It is given that $\angle A P B=60^{\circ}$ and $\angle C P D=30^{\circ}$.

In $\triangle P A B$, we have

$$
\tan 60^{\circ}=\frac{A B}{A P}
$$

$\Rightarrow \quad \sqrt{3}=\frac{h}{x}$
$\Rightarrow \quad h=\sqrt{3} x$
In $\triangle P C D$, we have

$$
\tan 30^{\circ}=\frac{C D}{P C}
$$

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{100-x}$

$\Rightarrow h \sqrt{3}=100-x$
Eliminating h between equation (i) and (ii), we get

$$
3 x=100-x \Rightarrow 4 x=100 \Rightarrow x=25
$$

Substituting $x=25$ in equation (i), we get

$$
h=25 \sqrt{3}=25 \times 1.732=43.3 \mathrm{~m}
$$

Thus, the required point is at a distance of 25 metres from the first pillar and 75 metres from the second pillar. The height of the pillars is 43.3 metres.

Example -9 The angle of elevation of a jet plane from a point A on the ground is 60°. After a fight of 30 seconds, the angle of elevation changes to 30°. If the jet plane is flying at a constant height of $3600 \sqrt{3} \mathrm{~m}$, find the speed of the jet plane.

Solution: Let P and Q be the two positions of the plane and let A be the point of observation. Let ABC be the horizontal line through A. it is given that angles of elevation of the plane in two positions P and Q from a point A are 60° and 30° respectively.
$\therefore \angle P A B=60^{\circ}, \angle Q A B=30^{\circ}$. It is also given that $\mathrm{PB}=3600 \sqrt{3}$ metres
In $\triangle A B P$, we have

$$
\tan 60^{\circ}=\frac{B P}{A B}
$$

$\Rightarrow \sqrt{3}=\frac{3600 \sqrt{3}}{A B}$
$\Rightarrow A B=3600 m$
In $\triangle A C Q$, we have

$$
\tan 30^{\circ}=\frac{C Q}{A C}
$$

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{3600 \sqrt{3}}{A C}$
$\Rightarrow A C=3600 \times 3=10800 \mathrm{~m}$
$\therefore P Q=B C=A C-A B=10800-3600=7200 \mathrm{~m}$
Thus, the plane travels 7200 m in 30 seconds.
Hence, Speed of plane $=\frac{7200}{30}=240 \mathrm{~m} / \mathrm{sec}=\frac{240}{1000} \times 60 \times 60=864 \mathrm{~km} / \mathrm{hr}$

Example -10 A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height h. At a point on the plane, the angles of elevation of the bottom and the top of the flag-staff are α and β respectively. Prove that the height of the tower is $\frac{h \tan \alpha}{\tan \beta-\tan \alpha}$.

Solution: Let AB be the tower and BC be the flag-staff. Let O be a point on the plane containing the foot of the tower such that the angles of elevation of t he bottom B and top C of the flag-staff at O are α and β respectively. Let $\mathrm{OA}=x$ metres,
$A B=y$ metres and $B C=h$ metres.
In $\triangle O A B$, we have

$$
\tan \alpha=\frac{A B}{O A}
$$

$\Rightarrow \tan \alpha=\frac{y}{x}$
$\Rightarrow x=\frac{y}{\tan \alpha}$
$\Rightarrow x=y \cot \alpha$
In $\triangle O A C$, we have

$$
\tan \beta=\frac{y+h}{x}
$$

$\Rightarrow x=\frac{y+h}{\tan \beta}$
$\Rightarrow x=(y+h) \cot \beta$
On equating the values of x given in equations (i) and (ii), we get
$\Rightarrow y \cot \alpha=(y+h) \cot \beta$
$\Rightarrow(y \cot \alpha-y \cot \beta)=h \cot \beta$
$\Rightarrow y(\cot \alpha-\cot \beta)=h \cot \beta$
$\Rightarrow y=\frac{h \cot \beta}{\cot \alpha-\cot \beta}=\frac{\frac{h}{\tan \beta}}{\frac{1}{\tan \alpha}-\frac{1}{\tan \beta}}=\frac{h \tan \alpha}{\tan \beta-\tan \alpha}$
Hence, the height of the tower is $\frac{h \tan \alpha}{\tan \beta-\tan \alpha}$

