CONSTRUCTIONS

Illustration 1 Divide a line segment of length 10 cm internally in the ratio 3:2.
Solution: We follow the following steps of construction.
Steps of construction
Step I Draw a line segment $\mathrm{AB}=10 \mathrm{~cm}$ by using a ruler.
Step II Draw any ray making an acute angle $\angle B A X$ With AB.
$A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} such that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}$.

Step III Join $B A_{5}$
Step IV Through A_{3} draw a line $A_{3} P$ parallel to $A_{5} B$ by making an angle equal to $\angle A A_{5} B$ at A_{3} intersecting AB at a point P .

The point P so obtained is the required point, which divides AB internally in the ratio 3:2.

Illustration 2 Divide a line segment of length 8 cm internally in the ratio $3: 4$.
Solution: We follow the following steps:
Steps of construction
Step I Draw the line segment AB of length 8 cm .
Step II Draw any ray AX making an acute angle $\angle B A X$ with AB.
Step III Draw a ray BY parallel to AX by making $\angle A B Y$ equal to $\angle B A X$.
Step IV Mark of three point A_{1}, A_{2}, A_{3} on $A X$ and 4 points $B_{1}, B_{2}, B_{3}, B_{4}$ on $B Y$ such that

$$
A A_{1}=A_{1} A_{2}=A_{2} A_{3}=B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4} .
$$

Step V Join A_{3}, B_{4}. Suppose it intersects AB at a point P .
Then, P is the point dividing AB internally in the ratio 3:4.
Illustration 3 Draw a triangle $\mathbf{A B C}$ with side $\mathbf{B C}=7 \mathrm{~cm}, \angle B=45^{\circ}, \angle A=105^{0}$ Then construct a triangle whose sides are (4/3) times the corresponding sides of $\triangle A B C$.

Solution: In order to construct $\triangle A B C$, we follow the following steps :
Step I Draw BC $=7 \mathrm{~cm}$.
Step II At B construct $\angle C B X=45^{\circ}$ and at C construct $\angle B C Y=180^{\circ}-\left(45^{\circ}-105^{\circ}\right)=30^{\circ}$ suppose $B X$ and $C Y$ intersect at $A . ~ \triangle A B C$ so obtained is the given triangle. To construct a triangle similar to $\triangle A B C$, we follow the following steps.

Step I Construct an acute angle $\angle C B Z$ at B on opposite side of vertex A of $\triangle A B C$.
Step II Mark off our (greater 4 of and 3 in $\frac{4}{3}$) points $B_{1}, B_{2}, B_{3}, B_{4}$ on $B Z$ such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$

Step III Join B_{3} (the third point) to C an d draw a line through $B_{4} C^{\prime}$ parallel to $B_{3} C$, intersecting the extended line segment BC at C^{\prime}.

Step IV Draw a line through C' parallel to CA intersecting the extended line segment BA at A'. Triangle $A^{\prime} B C$ ' so obtained is the required triangle such that

$$
\frac{A^{\prime} B}{A B}=\frac{B C^{\prime}}{B C}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{4}{3}
$$

Type I Construction of A tangent to a circle when its centre is known

Steps of construction

Step I Take a point O on the plane of the paper and draw a circle of given radius.
Step II Take a point P on the circle.

Step III Join OP.
Step IV Construct $\angle O P T=90^{\circ}$.

Step V Produce TP to T' to get TPT' as the required tangent.
Illustration 2 Draw a circle of radius 4 cm with centre O. Draw a diameter POQ. Through P or Q draw tangent to the circle.

Solution: We follow the following steps :
Steps of construction
Step I Taking O as centre and radius equal to 4 cm draw a circle.

Step II Draw diameter of POQ.
Step III Construct $\angle P Q T=90^{\circ}$.

Step IV Produce TQ to T' to obtain the required tangent TQT'.
Type II Construction of a tangent to a circle at a given point when its centre is not known

Steps of construction

Step I Draw any chord PQ through the given point P on the circle.
Step II Join P and Q to a point R either in the major arc or in the minor arc.

Step III Construct $\angle Q P Y$ equal to $\angle P R Q$ and on the opposite side of the chord PQ .
Step IV Produce YP to X to get YPX as the required tangent.
Type I Construction of tangents to a circle from an external point when its centre is known

Steps of construction
Step I Join the centre O of the circle to the given external point P i.e. Join OP

Step II Draw right bisector of OP, intersecting OP at Q.
Step III Taking Q as centre and $O Q=P Q$ as radius, draw a circle to intersect the given circle at T and T'.

Step IV Join PT and PT' to get the required tangents as PT and PT'.
Type II On constructions of tangents to a circle from an external point when its centre is known.

Illustration 1 Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.

Solution: In order to draw the pair of tangents, we follow the following steps.
Steps of construction
Step I Take a point O on the plan e of the paper and draw a circle of radius $\mathrm{OA}=5 \mathrm{~cm}$.
Step II Produce OA to B such that $\mathrm{OA}=\mathrm{AB}=5 \mathrm{~cm}$.

Step III Taking A as t he centre draw a circle of radius $A O=A B=5 \mathrm{~cm}$. suppose it cuts the circle drawn in step I at P and Q.

Step IV Join Bp and BQ to get the desired tangents.
Justification: In $O A P$, we have

$$
\mathrm{OA}=\mathrm{OP}=5 \mathrm{~cm} \text { (= Radius) }
$$

Also, $\mathrm{AP}=5 \mathrm{~cm}$ ($=$ Radius of circle with centre A)
$\therefore \quad \triangle O A P$ is equilateral $\Rightarrow \angle P A O=60^{\circ} \Rightarrow \angle B A P=120^{\circ}$
In $\triangle B A P$, we have

$$
\mathrm{BA}=\mathrm{AP} \text { and } \angle B A P=120^{\circ}
$$

$\therefore \quad \angle A B P=\angle A P B=30^{\circ}$
$\Rightarrow \quad \angle P B Q=60^{\circ}$

