CONSTRUCTIONS

Illustration 1 Divide a line segment of length 10 cm internally in the ratio 3:2.

Solution: We follow the following steps of construction.

Steps of construction

- **Step I** Draw a line segment AB = 10 cm by using a ruler.
- **Step II** Draw any ray making an acute angle $\angle BAX$

With AB.

 A_1, A_2, A_3, A_4 and A_5 such that

$$AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5.$$

Step III Join *BA*₅

Step IV Through A_3 draw a line A_3P parallel to A_5B by making an angle equal to $\angle AA_5B$ at A_3 intersecting AB at a point P.

The point P so obtained is the required point, which divides AB internally in the ratio 3:2.

m

Illustration 2 Divide a line segment of length 8 cm internally in the ratio 3:4.

Solution: We follow the following steps:

Steps of construction

Step I Draw the line segment AB of length 8 cm.

Step II Draw any ray AX making an acute angle $\angle BAX$ with AB.

Step III Draw a ray BY parallel to AX by making $\angle ABY$ equal to $\angle BAX$.

Step IV Mark of three point A_1, A_2, A_3 on AX and 4 points B_1, B_2, B_3, B_4 on BY such that

www.sakshiedu

Step V Join A_3, B_4 . Suppose it intersects AB at a point P.

Then, P is the point dividing AB internally in the ratio 3:4.

Illustration 3 Draw a triangle ABC with side BC = 7 cm, $\angle B = 45^{\circ}, \angle A = 105^{\circ}$ Then construct a triangle whose sides are (4/3) times the corresponding sides of $\triangle ABC$.

Solution: In order to construct $\triangle ABC$, we follow the following steps :

Step I Draw BC = 7 cm.

Step II At B construct $\angle CBX = 45^{\circ}$ and at C construct $\angle BCY = 180^{\circ} - (45^{\circ} - 105^{\circ}) = 30^{\circ}$ suppose BX and CY intersect at A. $\triangle ABC$ so obtained is the given triangle. To construct a triangle similar to $\triangle ABC$, we follow the following steps.

Step I Construct an acute angle $\angle CBZ$ at B on opposite side of vertex A of $\triangle ABC$.

Step II Mark off our (greater 4 of and 3 in $\frac{4}{3}$) points B_1, B_2, B_3, B_4 on BZ such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$

- **Step III** Join B_3 (the third point) to C and draw a line through B_4C' parallel to B_3C , intersecting the extended line segment BC at C'.
- **Step IV** Draw a line through C' parallel to CA intersecting the extended line segment BA at A'. Triangle A'BC' so obtained is the required triangle such that

$$\frac{A'B}{AB} = \frac{BC'}{BC} = \frac{A'C'}{AC} = \frac{4}{3}$$

Type I Construction of A tangent to a circle when its centre is known

Steps of construction

www.sakshieducation.com

www.sakshieducation.com

Step I Take a point O on the plane of the paper and draw a circle of given radius.

Step II Take a point P on the circle.

Step III Join OP.

Step IV Construct $\angle OPT = 90^{\circ}$.

Step V Produce TP to T' to get TPT' as the required tangent.

Illustration 2 Draw a circle of radius 4 cm with centre O. Draw a diameter POQ. Through P or Q draw tangent to the circle.

Solution: We follow the following steps :

Steps of construction

Step I Taking O as centre and radius equal to 4 cm draw a circle.

Step II Draw diameter of POQ.

Step III Construct $\angle PQT = 90^{\circ}$.

Step IV Produce TQ to T' to obtain the required tangent TQT'.

Type II Construction of a tangent to a circle at a given point when its centre is not known

Steps of construction

Step I Draw any chord PQ through the given point P on the circle.

Step II Join P and Q to a point R either in the major arc or in the minor arc.

Step III Construct $\angle QPY$ equal to $\angle PRQ$ and on the opposite side of the chord PQ.

Step IV Produce YP to X to get YPX as the required tangent.

Type I Construction of tangents to a circle from an external point when its centre is known

Steps of construction

Step I Join the centre O of the circle to the given external point P i.e. Join OP

Step II Draw right bisector of OP, intersecting OP at Q.

Step III Taking Q as centre and OQ = PQ as radius, draw a circle to intersect the given circle at T and T'.

Step IV Join PT and PT' to get the required tangents as PT and PT'.

Type II On constructions of tangents to a circle from an external point when its centre is known.

Illustration 1 Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60° .

Solution: In order to draw the pair of tangents, we follow the following steps.

Steps of construction

Step I Take a point O on the plan e of the paper and draw a circle of radius OA = 5 cm.

Step II Produce OA to B such that OA = AB = 5 cm.

www.sakshieducation.com

Step III Taking A as t he centre draw a circle of radius AO = AB = 5 cm. suppose it cuts the circle drawn in step I at P and Q.

Step IV Join Bp and BQ to get the desired tangents.

Justification: In OAP, we have

OA = OP = 5 cm (= Radius)

Also, AP = 5 cm (= Radius of circle with centre A)

 \therefore $\triangle OAP$ is equilateral $\Rightarrow \angle PAO = 60^{\circ} \Rightarrow \angle BAP = 120^{\circ}$

In $\triangle BAP$, we have

BA = AP and $\angle BAP = 120^{\circ}$

- $\therefore \quad \angle ABP = \angle APB = 30^\circ$
- $\Rightarrow \angle PBQ = 60^{\circ}$