CIRCLES

1. A circle is a collection of all points in a plane which are at a constant distance from a fixed point. The fixed point is called the centre and the constant distance is known as the radius.
2. A line which intersects a circle in two distinct points is called a secant of the circle.
3. A tangent to a circle is a line that intersects the circle in exactly one point.
4. The common point of a tangent and the circle is called (i) Point of contact
5. A circle may have two parallel tangents.
6. A tangent to a circle intersects it in one point (s).
7. The angle between tangent at a point on a circle and the radius through the point is 90°.
8. Length of tangent The length of the segment of the tangent between the point and the given point of contact with the circle is called the length of the tangent from the point to the circle.

Some Properties of Tangent to A Circle

Theorem 1: A tangent to a circle is perpendicular to the radius through the point of contact.

Given A circle $(\mathrm{O}, r$) and a tangent AB at a point p .
To Prove $O P \perp A B$.
Construction Take any point Q, other than P , on the tangent AB . Join $O Q$. Suppose $O Q$ meets the circle at R .

Proof We know that among all line segments joining the point O to a point on $A B$, the shortest one is perpendicular to AB . So, to prove that $O P \perp A B$, it is sufficient to prove that $O P$ is shorter than any other segment joining O to any point of $A B$.

Clearly, $O P=O R \quad$ (Radii of the same circle)
Now, $\quad O Q=O R+R Q$

$\Rightarrow O Q>O R$
$\Rightarrow O Q>O P$

$$
[\because O P=O R]
$$

$\Rightarrow O P<O Q$
Thus, OP is shorter than any other segment joining O to any point of $A B$.
Hence, $\quad O P \perp A B$.
Theorem 2 A line drawn through the end point of a radius and perpendicular to it is a tangent to the circle.

Given A radius OP of a circle $\mathrm{C}(\mathrm{O}, r)$ and a line APB , perpendicular to OP .
To prove $A B$ is a tangent to the circle at the point P.
Proof Take a point Q, different from P , on the line AB .
Now, $O P \perp A B$.
$\Rightarrow \quad$ Among all the line segment joining O to a point on AB, OP is the shortest.
$\Rightarrow \quad O P<O Q$
$\Rightarrow \quad O Q>O P$

$\Rightarrow \quad Q$ lies outside the circle.
Thus, every point on AB , other than P , lies outside the circle. This shows that AB meets the circle only at the point P.

Hence, AB is a tangent to the circle at P .
Theorem 3 The lengths of two tangents drawn from an external point to a circle are equal.

Given $A P$ and $A Q$ are two tangents from a pint A to a circle $C(O, r)$.
To Prove $\mathrm{AP}=A Q$
Construction Join OP, $O Q$ and OA.
Proof In order to prove that $\mathrm{AP}=A Q$, we shall first prove that $\triangle O P A \cong O Q A$.

Since a tangent at any point of a circle is perpendicular to the radius through the point of contact.
$\therefore \quad O P \perp A P$ and $O Q \perp A Q$.
$\Rightarrow \quad \angle O P A=\angle O Q A=90^{\circ}$

Now, in right triangles OPA and $O Q A$, we have
$O P=O Q$
$\angle O P A=\angle O Q A$

And $\mathrm{OA}=\mathrm{OA}$
So, by RHS - criterion of congruence, we get
(Common)

$$
\begin{aligned}
& \Delta O P A=\triangle O Q A \\
\Rightarrow \quad & A P=A Q
\end{aligned}
$$

Theorem 4 If two tangents are drawn to a circle from an external point, then:
(i) They subtend equal angles at the centre,
(ii) They are equally inclined to the segment, joining the centre to that point.

Given A circle $\mathrm{C}(\mathrm{O}, r)$ and a point A outside the circle such that AP and $A Q$ are the tangents drawn to the circle from point A .

To Prove (i) $\angle A O P=\angle A O Q$
(ii) $\angle O A P=\angle O A Q$.

Proof In right triangles OAP and $O A Q$, we have
$\mathrm{AP}=A Q$
$\mathrm{OP}=O Q$
and, $\quad \mathrm{OA}=\mathrm{OA}$
(Tangents from an external point are equal)

So, by SSS - criterion of congruence, we have

$$
\begin{aligned}
& \Delta O A P \cong \triangle O A Q \\
\Rightarrow \quad & \angle A O P=\angle A O Q \text { and } \angle O A P=\angle O A Q .
\end{aligned}
$$

Example 1 Find the length of the tangent drawn from a point whose distance from the centre of a circle is 25 cm . Given that the radius of the circle is 7 cm .

Solution Let P be the given point, O be the centre of the circle and PT be the length of tangent from P . Then, $\mathrm{OP}=25 \mathrm{~cm}$ and $\mathrm{OT}=7 \mathrm{~cm}$.

Since tangent to a circle is always perpendicular to the radius through the point of contact.

$$
\therefore \quad \angle O T P=90^{\circ}
$$

In right triangle OTP, we have

$$
O P^{2}=O T^{2}+P T^{2}
$$

$\Rightarrow \quad 25^{2}=7^{2}+P T^{2}$

$\Rightarrow P T^{2}=25^{2}-7^{2}=(25-7)(25+7)=576$
$\Rightarrow P T=24 \mathrm{~cm}$.
Hence, length of tangent from $\mathrm{P}=24 \mathrm{~cm}$.
Example 2 In if $A B=A C$, prove that $B E=E C$.
(or)
$A B C$ is an isosceles triangle in which $A B=A C$, circumscribed about a circle, as shown in Prove that the base is bisected by the point of contact.

Solution Since tangents from an exterior point to a circle are equal in length.

$$
\begin{align*}
& \mathrm{AD}=\mathrm{AF} \\
& \mathrm{BD}=\mathrm{BE} \\
& \mathrm{CE}=\mathrm{CF} \tag{iii}
\end{align*}
$$

(Tangents from A) ...(i)
(Tangents from C)

Now,

$$
\mathrm{AB}=\mathrm{AC}
$$

$\Rightarrow A B-A D=A C-A D$
$\Rightarrow A B-A D=A C-A F$
$\Rightarrow \quad B D=C F$
$\Rightarrow \quad B E=C F$
$\Rightarrow \quad B E=C E$
(Subtracting AD from both sides)
(Using (i))

)

(Using (ii))
(Using (iii))

Example 3 In, the in circle of $\triangle A B C$ touches the sides $B C, C A$ and $A B$ at D, E and F respectively. Show that

$$
A F+B D+C E=A E+B F+C D+\frac{1}{2}(\text { Perimeter of } \triangle A B C)
$$

Solution Since lengths of the tangents from an exterior point to a circle are equal.
$\therefore \quad A F=A E$

$$
\begin{equation*}
\mathrm{BD}=\mathrm{BF} \tag{FromA}
\end{equation*}
$$

(From B) ... (ii)
and, $C E=C D$
adding equations (i), (ii) and (iii), we get

$$
A F+B D+C E=A E+B F+C D
$$

Now,

$$
\text { Perimeter of } \triangle A B C=A B+B C+A C
$$

\Rightarrow Perimeter of $\triangle A B C=(A F+F B)+(B D+C D)+(A E+E C)$

\Rightarrow Perimeter of $\triangle A B C=(A F+A E)+(B F+B D)+(C D+C E)$
\Rightarrow Perimeter of $\triangle A B C=2 A F+2 B D+2 C E$
\Rightarrow Perimeter of $\triangle A B C=2(A F+B D+C E)$

$$
\left[\begin{array}{l}
\text { From (i),(ii) and (iii), we get } \\
A E=A F, B D=B F \text { and } C D=C E
\end{array}\right]
$$

$\Rightarrow A F+B D+C E=\frac{1}{2}($ Perimeter of $\triangle A B C)$
Hence, $A F+B D+C E=A E+B F+C D=\frac{1}{2}($ Perimeter of $\triangle A B C)$

Example 4 A circle touches all the four sides of a quadrilateral ABCD. Prove that :

$$
\mathbf{A B}+\mathbf{C D}=\mathbf{B C}+\mathbf{D A} .
$$

Solution Since tangents drawn from an exterior point to a circle are equal in length.
$\therefore \quad A P=A S$

$$
\mathrm{BP}=\mathrm{BQ}
$$

$$
\mathrm{CR}=\mathrm{CQ}
$$

and, $\mathrm{DR}=\mathrm{DS}$
(From A)(i)
(From B) ... (ii)
(From C) ... (iii)
(From D) ... (iv)

adding (i), (ii), (iii) and (iv), we get

$$
\begin{aligned}
& \mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS} \\
\Rightarrow \quad & (\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{DR})=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ}) \\
\Rightarrow \quad & \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

Hence, $\mathrm{AB}+\mathrm{CD}=\mathrm{BC}+\mathrm{DA}$
Example 5 If a hexagon $A B C D E F$ circumscribes a circle, prove that

$$
\mathbf{A B}+\mathbf{C D}+\mathbf{E F}=\mathbf{B C}+\mathbf{D E}+\mathbf{F A} .
$$

Solution Let O be the centre of the circle touching sides AB, BC, CD, DE, EF and FA at P, Q, R, S, T and U respectively. The lengths of tangents drawn from an external point to a circle are equal.

$\therefore \quad A P=A U, B P=B Q, C Q=C R, D R=D S, E S=E T$ and $F U=F T$
Now,

$$
\begin{aligned}
& \mathrm{AB}+\mathrm{CD}+\mathrm{EF} \\
& =(\mathrm{AP}+\mathrm{PB})+(\mathrm{CR}+\mathrm{DR})+(\mathrm{ET}+\mathrm{TF}) \\
& =(\mathrm{AU}+\mathrm{PB})+(\mathrm{CQ}+\mathrm{DS})+(\mathrm{ES}+\mathrm{FU}) \quad\left[\begin{array}{c}
\because \\
A P=A U, P B=B Q, C R=C Q, \\
D R=D S, E T=E S, F T=F U
\end{array}\right] \\
& =(\mathrm{AU}+\mathrm{FU})+(\mathrm{BQ}+\mathrm{CQ})+(\mathrm{DS}+\mathrm{ES}) \\
& =\mathrm{AF}+\mathrm{BC}+\mathrm{DE}=\mathrm{BC}+\mathrm{DE}+\mathrm{FA}
\end{aligned}
$$

Example 6 Let s denote the semi perimeter of a triangle $A B C$ in which $B C=a, C A=$ b and $A B=c$. If a circle touches the sides $B C, C A, A B$ at D, E, F respectively, prove that $\mathbf{A F}=\mathbf{A E}=\mathbf{s}-\mathbf{a}, \mathrm{BD}=\mathrm{BF}=\mathbf{s}-\mathrm{b}$ and $\mathrm{CD}=\mathrm{CE}=\mathbf{s}-\mathbf{c}$.

Solution we have,

$$
s=\frac{A B+B C+C A}{2}=\frac{a+b+c}{2}
$$

$\Rightarrow a+b+c=2 s$
$\Rightarrow b+c=2 s-a, c+a=2 s-b$ and $a+b=2 s-c$
$\Rightarrow b+c-a=2(s-a), c+a-b=2(s-b)$ and $a+b-c=2(s-c)$

The lengths of tangents drawn from an external point to a circle are equal.
$\therefore \quad A F=A E, B D=B F$ and $C D=C E$
Now,

$$
2 \mathrm{~s}=\mathrm{BC}+\mathrm{CA}+\mathrm{BA}
$$

$$
\begin{aligned}
& \Rightarrow \quad 2 s=(B D+D C)+(C E+A E)+(A F+B F) \\
& \Rightarrow 2 s=(B D+D C)+(C D+A F)+(A F+B D) \\
& \Rightarrow 2 s=2(B D+D C)-2 A F \\
& \Rightarrow 2 s=2 B C+2 A F \\
& \Rightarrow 2 s=2 a+2 A F \\
& \Rightarrow A F=s-a \Rightarrow A F=A E=s-a
\end{aligned}
$$

Again,

$$
\begin{aligned}
& 2 \mathrm{~s}=\mathrm{BC}=\mathrm{CA}+\mathrm{AB} \\
& \Rightarrow 2 s=(B D+C D)+(C E+A E)+(A F+F B) \\
& \Rightarrow 2 s=(B F+C E)+(C E+A E)+(A E+F B) \\
& \Rightarrow 2 s=2 B F+2(A E+C E) \\
& \Rightarrow 2 s=2 B F+2 A C \\
& \Rightarrow 2 s=2 B F+2 b \\
& \Rightarrow B F=s-b \\
& \Rightarrow B D=B F=s-b
\end{aligned}
$$

Similarly, we can prove that $\mathrm{CD}=\mathrm{CE}=\mathrm{s}-\mathrm{c}$.
Example 7 If all the side of a parallelogram touch a circle, show that the parallelogram is a rhombus.

(or)

Prove that a parallelogram circumscribing a circle is a rhombus.
Solution Let ABCD be a parallelogram such that its
Sides touch a circle with centre O.
We know that the tangents to a circle from an exterior point are equal in length.
$\therefore \quad A P=A S$
(From A) (i)

$$
\begin{array}{ll}
\mathrm{BP}=\mathrm{BQ} & \text { (From B) } \ldots \text { (ii) } \\
\mathrm{CR}=\mathrm{CQ} & \text { (From C) } \ldots \text { (iii) }
\end{array}
$$

and, $\mathrm{DR}=\mathrm{DS}$
(From D) ... (iv)

adding (i), (ii), (iii) and (iv), we get

$$
\begin{aligned}
& \mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS} \\
\Rightarrow \quad & (\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{DR})=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ})
\end{aligned}
$$

$\Rightarrow \quad \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
$\Rightarrow \quad 2 \mathrm{AB}=2 \mathrm{BC} \quad[\because A B C D$ is a paralle \log ram $\therefore A B=C D$ and $B C=A D]$
$\Rightarrow \quad \mathrm{AB}=\mathrm{BC}$
Thus, $\quad \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$
Hence, ABCD is a rhombus.
Example 8 From an external point P, two tangents PA and PB are drawn to the circle with centre O. prove that OP is the perpendicular bisector of AB.

Solution Suppose OP intersects AB at C.
In triangles PAC and PBC, we have

$$
\begin{array}{ll}
\mathrm{PA}=\mathrm{PB} & {[\because \text { Tangents from an external po int are equal }]} \\
\angle A P C=\angle B P C & {[\because P A \text { and } P B \text { are equally inclined to } O P]}
\end{array}
$$

and, $\mathrm{PC}=\mathrm{PC}$
So, by SAS - criterion of similarity, we obtain

$$
\triangle P A C \cong \triangle P B C
$$

$\Rightarrow \quad \mathrm{AC}=\mathrm{BC}$ and $\angle A C P=\angle B C P$
But, $\angle A C P+\angle B C P=180^{\circ}$
$\therefore \quad \angle A C P+\angle B C P=90^{\circ}$

Hence, $\quad O P \perp A B$.
Example 9 Show that tangent lines at the end points of a diameter of a circle are parallel.

Solution Let AB be a diameter of a given circle, and let PQ and RS be the tangent lines drawn to the circle at points A and B respectively. Since tangent at a point to a circle is perpendicular to the radius through t he point.

$\therefore A B \perp P Q$ and $A B \perp R S$
$\Rightarrow \angle P A B=90^{\circ}$ and $\angle A B S=90^{\circ}$
$\Rightarrow \angle P A B=\angle A B S$
$\Rightarrow P Q \| R S \quad[\therefore \angle P A B$ and $\angle A B S$ are alternate angles $]$
Example 10 In two concentric circles, prove that a chord of larger circle which is tangent to smaller circle is bisected at the point of contact.

Solution Let O be the common centre of two con- centric circles, and let AB be a chord of the larger circle touching the smaller circle at P.

Join OP.
Since OP is the radius of t he smaller circle and $A B$ is a tangent to this circle at a point P.
$\therefore \quad O P \perp A B$
We know that the perpendicular drawn from the centre of a circle to any chord of the circle, bi sects the chord. So,
$O P \perp A B$
$\Rightarrow \quad \mathrm{AP}=\mathrm{BP}$
Hence, $A B$ is bisected at P.
Example 11 Prove that the segment joining the points of contact of two parallel tangents passes through the centre.

Solution Let PAQ and RBS be two parallel tangents to a circle with centre O.
Join OA and OB. Draw $O C \| P Q$.
Now, $\quad P A \| C O$

$\Rightarrow \quad \angle P A O+\angle C O A=180^{\circ}$ $\left[\begin{array}{l}\text { Sum of the angles on the same } \\ \text { side of a transversal is } 180^{\circ}\end{array}\right]$
$\Rightarrow 90^{\circ}+\angle C O A=180^{\circ} \quad\left[\because \angle P A O=\right.$ angle between $a \tan$ gent and radius $\left.=90^{\circ}\right]$
$\Rightarrow \angle C O A=90^{\circ}$
Similarly, $\angle C O B=90^{\circ}$
$\therefore \quad \angle C O A+\angle C O B=90^{\circ}+90^{\circ}=180^{\circ}$
Hence, $A O B$ is a straight line passing through O.

