Triangles

Concept of Similarity

1. Two geometric figures having the same shape and size are known as congruent figures.
2. Geometric figures having the same shape but different sizes are known as similar figures.
3. Two congruent figures are always similar but similar figures need not be congruent
4. Any two line segments are always similar but they need not be congruent. They are congruent, if their lengths are equal.

Similar Triangles and their properties

Definition Two triangles are said to be similar, if their
(i) Corresponding angles are equal and,
(ii) Corresponding sides are proportional.

It follow from this definition that two triangles ABC and DEF are similar, if
(i) $\angle A=\angle D, \angle B=\angle E, \angle C=\angle F$ and (ii) $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Note: In the later part of this chapter we shall show that the two conditions given in the above definition are not independent. In fact, if either of the two conditions holds, then the other holds automatically. So any one of the two conditions can be used to define similar triangles.

Theorem - $\mathbf{1}$ (Basic proportionality Theorem or Thales Theorem) If a line is drawn parallel to one side of a triangle intersecting the other two sides, then it divides the two sides in the same ratio.

Given A triangle ABC in which $\mathrm{DE} \| B C$, and intersects AB in D and AC in E .
To prove $\frac{A D}{D B}=\frac{A E}{E C}$
Construction Join BE, CD and draw $\mathrm{EF} \perp B A$ and $D G \perp C A$.
Proof: Since EF is perpendicular to AB . Therefore, EF is the height of triangles ADE and DBE.

Now, Area $(\triangle A D E)=\frac{1}{2}($ base $\times h e i g h t)=\frac{1}{2}(A D \cdot E F)$
and \quad Area $(\triangle D B E)=\frac{1}{2}($ base \times height $)=\frac{1}{2}(D B . E F)$
$\therefore \frac{\operatorname{Area}(\triangle A D E)}{\text { Area }(\triangle D B E)}=\frac{\frac{1}{2}(A D \cdot E F)}{\frac{1}{2}(D B . E F)}=\frac{A D}{D B} \ldots$
Similarly, we have

$$
\begin{equation*}
\frac{\text { Area }(\triangle A D E)}{\text { Area }(\triangle D E C)}=\frac{\frac{1}{2}(A E \cdot D G)}{\frac{1}{2}(E C \cdot D G)}=\frac{A E}{E C} . \tag{ii}
\end{equation*}
$$

But, $\triangle D B E$ and $\triangle D E C$ are on the same base DE and between the same parallels $D E$ and $B C$.
\therefore Area $(\triangle D B E)=\operatorname{Area}(\triangle D E C)$
$\Rightarrow \frac{1}{\text { Area }(\triangle D B E)}=\frac{1}{\text { Area }(\triangle D E C)}$
$\Rightarrow \frac{\text { Area }(\triangle A D E)}{\text { Area }(\triangle D B E)}=\frac{\text { Area }(\triangle A D E)}{\text { Area }(\triangle D E C)}$
$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$
Theorem 2 (Converse of Basic Proportionality Theorem) If a line divides any two sides of a triangle in the same ratio, then the line must be paralled to the third side.

Given A $\triangle A B C$ and a line l intersecting AB in D and AC in E , such that $\frac{A D}{D B}=\frac{A E}{E C}$ To Prove l : BC i.e. DE $\| B C$

Proof: If possible, let DE be not parallel to BC. Then, there must be another line parallel to BC. Let DF $\| B C$.

Since DF $\| B C$. Therefore, from Basic Proportionality Theorem, we get

$$
\begin{equation*}
\frac{A D}{D B}=\frac{A F}{F C} \tag{i}
\end{equation*}
$$

But, $\quad \frac{A D}{D B}=\frac{A E}{E C} \quad$ (Given)
From (i) and (ii), we get

$$
\begin{aligned}
& \frac{A F}{F C}=\frac{A E}{E C} \\
& \Rightarrow \frac{A F}{F C}+1=\frac{A E}{E C}+1 \quad \text { [Adding 1 on both sides] } \\
& \Rightarrow \frac{A F+F C}{F C}=\frac{A E+E C}{E C} \\
& \Rightarrow \frac{A C}{F C}=\frac{A C}{E C} \\
& \Rightarrow F C=E C
\end{aligned}
$$

This is possible only when F and E coincide i.e. DF is the line l itself. But, $\mathrm{DF} \| B C$. Hence, $\quad l \| B C$.
Example: 1 In a given $\triangle A B C, D E \| B C$ and $\frac{A D}{D B}=\frac{3}{5}$. If $A C=5.6$, find $A E$.
Solution In $\triangle A B C$, we have
$D E \| B C$
$\frac{A D}{D B}=\frac{A E}{E C}$
[By Thale's Theorem]
$\Rightarrow \frac{A D}{D B}=\frac{A E}{A C-A E}$
$\Rightarrow \frac{3}{5}=\frac{A E}{5.6-A E}$
$[\therefore A C=5.6]$
$\Rightarrow 3(5.6-A E)=5 A E$

$\Rightarrow 16.8-3 A E=5 A E$
$\Rightarrow 8 A E=16.8$
$\Rightarrow A E=\frac{16.8}{8} \mathrm{~cm}=2.1 \mathrm{~cm}$.
Example: 2 In Fig. 4.13, $L M \| A B$. IF $\mathrm{AL}=x-3, A C=2 x, B M=x-2$ and $\mathrm{BC}=2 x+3$, find the value of x.

Solution: In $\triangle A B C$, we have

$$
L M \| A B
$$

$$
\begin{aligned}
& \therefore \frac{A L}{L C}=\frac{B M}{M C} \\
& \Rightarrow \frac{A L}{A C-A L}=\frac{B M}{B C-B M} \\
& \Rightarrow \frac{x-3}{2 x-(x-3)}=\frac{x-2}{(2 x+3)-(x-2)} \\
& \Rightarrow \frac{x-3}{x+3}=\frac{x-2}{x+5} \\
& \Rightarrow(x-3)(x+5)=(x-2)(x+3) \\
& \Rightarrow x^{2}+2 x-15=x^{2}+x-6 \\
& \Rightarrow x=9
\end{aligned}
$$

Example: $3 \quad \mathrm{D}$ and E are respectively the points on the sides AB and AC of a $\triangle A B C$, such that $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$ and $\mathrm{AE}=1.8 \mathrm{~cm}$, show that $D E \| B C$

Solution We have,
$\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{Ad}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$ and $\mathrm{AE}=1.8 \mathrm{~cm}$.
$\therefore B D=A B-A D=(5.6-1.4) \mathrm{cm}=4.2 \mathrm{~cm}$
and,

$$
E C=A C-A E=(7.2-1.8) \mathrm{cm}=5.4 \mathrm{~cm}
$$

Now, $\frac{A D}{D B}=\frac{1.4}{4.2}=\frac{1}{3}$ and $\frac{A E}{E C}=\frac{1.8}{5.4}=\frac{1}{3}$

$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$
Thus, De divides sides AB and AC of $\triangle A B C$, in the same ratio. Therefore, by the converse of Basic Pro- portionality Theorem, we have

$$
D E \| B C
$$

Example: 4 In Fig. 4.23, If $E F\|D C\| A B$. prove that $\frac{A E}{E D}=\frac{B F}{F C}$.
Given $E F\|D C\| A B$ in the given figure.
To prove $\frac{A E}{E D}=\frac{B F}{F C}$.

Construction Produce DA and CB to meet at P (say).
Proof: In $\triangle P E F$, We have

$$
A B \| E F
$$

$$
\begin{align*}
& \frac{P A}{A E}=\frac{P B}{B F} \\
& \Rightarrow \frac{P A}{A E}+1=\frac{P B}{B F}+1 \\
& \text { [By Thale's Theorem] } \\
& \text { [Adding } 1 \text { on both sides] } \\
& \Rightarrow \frac{P A+A E}{A E}=\frac{P B+B F}{B F} \\
& \Rightarrow \frac{P E}{A E}=\frac{P F}{B F} \tag{i}\\
& \text { In } \triangle P D C \text {, we have } \\
& E F \| D C \\
& \frac{P E}{E D}=\frac{P F}{F C} \quad[\text { By Basic } \operatorname{Pr} \text { oportionality Theorem }] \tag{ii}
\end{align*}
$$

On dividing equation (i) by equation (ii), we get

$$
\begin{aligned}
& \frac{P F}{\frac{A E}{P E}}=\frac{\frac{P F}{B F}}{\frac{B F}{F C}} \\
& \Rightarrow \frac{E D}{A E}=\frac{F C}{B F} \\
& \Rightarrow \frac{A E}{E D}=\frac{B F}{F C}
\end{aligned}
$$

Example: 5 In Fig. 4.27, $D E \| B C$ and $C D \| E F$. prove that $A D^{2}=A B \times A F$.
Solution: In $\triangle A B C$, we have
$D E \| B C$
$\Rightarrow \frac{A B}{A D}=\frac{A C}{A E}$
In $\triangle A D C$, we have
$F E \| D C$
$\Rightarrow \frac{A D}{A F}=\frac{A C}{A E}$
From (i) and (ii), we get

(C) $\frac{A B}{A D}=\frac{A D}{A F}$
$\Rightarrow A D^{2}=A B \times A F$

Example: 6 Two triangles ABC and DBC lie on the same side of the base BC . From a point P on $B C, P Q \| B D$ and $P R \| B D$ are drawn. They meet $A C$ in Q and $D C$ in \mathbb{R} respectively. Prove that $Q R \| A D$
Given Two triangles ABC and DBC lie on the same side of the base BC . Points P, Q and R are points on BC, AC and CD respectively such that $P R \| B D$ and $P Q \| A B$. To Prove $Q R \| A D$
Proof: In $\triangle A B C$, we have

$$
\begin{aligned}
& P Q \| A B \\
& \frac{C P}{P B}=\frac{C Q}{Q A}
\end{aligned}
$$

...(i) [By Basic Pr oportionality Theorem]
In $\triangle B C D$, we have

$$
\begin{aligned}
& P R \| B D \\
& \frac{C P}{P B}=\frac{C R}{R D} \quad \text {..(ii) }[\text { By Thale's Theorem }]
\end{aligned}
$$

From (i) and (ii), we have

$$
\frac{C Q}{Q A}=\frac{C R}{R D}
$$

Thus, in $\triangle A C D, Q$ and R are points on AC and CD respectively such that

$$
\frac{C Q}{Q A}=\frac{C R}{R D}
$$

$\Rightarrow Q R \| A D$
Example:7 In $\triangle A B C, D$ and E are points on the sides AB and AC respectively such that $D E \| B C$.
(iv) If $\mathrm{AD}=4, \mathrm{AE}=8, \mathrm{DB}=x-4$, and $\mathrm{EC}=3 x-19$, find x

Theorem 1 The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

Given $\mathrm{A} \triangle A B C$ in which AD is the internal bisector of $\angle A$ and meets BC in D .
To prove $\frac{B D}{D C}=\frac{A B}{A C}$
Construction Draw $C E \| D A$ to meet BA produced in E.
Proof Since $C E \| D A$ and AC cuts them.

$$
\begin{equation*}
\angle 2=\angle 3 \tag{i}
\end{equation*}
$$

[Alternate angles]
and, $\angle 1=\angle 4$ (ii) [Corresponding angle]

$$
\text { But, } \angle 1=\angle 2 \quad[\because A D \text { is the bisec tor of } \angle A]
$$

From (i) and (ii),. We get

$$
\angle 3=\angle 4
$$

Thus, in $\triangle A C E$, we have

$$
\begin{aligned}
& \angle 3=\angle 4 \\
& \Rightarrow A E=A C
\end{aligned}
$$

...(iii) [Sides opposite to equal angles are equal]
Now, in $\triangle B C E$, we have

$$
\begin{array}{ll}
& D A \| C E \\
\Rightarrow & \frac{B D}{D C}=\frac{B A}{A E} \\
\Rightarrow \frac{B D}{D C}=\frac{A B}{A C} & \text { [Using Basic Proportionality Theorem] } \\
\text { Hence, }, \frac{B D}{D C}=\frac{A B}{A C} & {[\because B A=A B \text { and } A E=A C \text { (From (iii)] }} \\
&
\end{array}
$$

In order to see whether the converse of the above theorem is true on not. Let us perform the following activity.

Theorem: 2 The external bisector of an angle of a triangle divides the opposite side externally in the ratio of the sides containing the angle.

Given A $\triangle A B C$, in which AD is the bisector of the exterior of angle $\angle \mathrm{A}$ and intersects BC produced in D.

To Prove $\frac{B D}{C D}=\frac{A B}{A C}$
Construction Draw $C E \| D A$ meeting AB in E.
Proof Since $C E \| D A$ and $A C$ intersects them.
$\therefore \quad \angle 1=\angle 3$

Also, $C E \| D A$ and BK intersects them.
$\therefore \quad \angle 2=\angle 4$
But, $\angle 1=\angle 2 \quad\left[\begin{array}{c}\because A D \text { is the bi sec tor of } \\ \angle C A K ~\end{array} \angle 1=\angle 2\right]$
$\therefore \quad \angle 3=\angle 4 \quad[$ From(i) and (ii)]
Thus, in $\triangle A C E$, we have

$$
\angle 3=\angle 4
$$

$\Rightarrow A E=A C \quad[\because$ Sides opposite to equal angles in a Δ are equal $] \ldots$ (iii)
Now, in $\triangle B A D$, we have

$$
E C \| A D
$$

$\therefore \quad \frac{B D}{C D}=\frac{B A}{E A} \quad$ (Using corollary of Basic Proportionality Theorem]
$\Rightarrow \frac{B D}{C D}=\frac{A B}{A E}$
$[\because B A=A B$ and $E A=A E]$
$\Rightarrow \frac{B D}{C D}=\frac{A B}{A C}$
$[\because A E=A C, \operatorname{From}(i i i)]$

Example: 1 If the diagonal BD a quadrilateral ABCD bisects both $\angle \mathrm{B}$ and $\angle \mathrm{D}$, show that $\frac{A B}{B C}=\frac{A D}{C D}$.
Given A quadrilateral ABCD in which the diagonal BD bisects $\angle \mathrm{B}$ and $\angle \mathrm{D}$.
To Prove $\frac{A B}{B C}=\frac{A D}{C D}$.
Construction Join $A C$ intersecting $B D$ in O.
Proof: In $\triangle A B C, B O$ is the bisector of $\angle \mathrm{B}$.
$\therefore \frac{A O}{O C}=\frac{B A}{B C}$
$\Rightarrow \frac{O A}{O C}=\frac{A B}{B C}$
In $\triangle A D C, D O$ is the bisector of $\angle \mathrm{D}$.
$\therefore \frac{A O}{O C}=\frac{D A}{D C}$
$\Rightarrow \frac{O A}{O C}=\frac{A D}{C D}$
From (i) and (ii), we get $\frac{A B}{B C}=\frac{A D}{C D}$.

Example: 2 O is any point inside a triangle ABC . The bisector of $\angle \mathrm{AOB}, \angle \mathrm{BOC}$ and $\angle \mathrm{COA}$ meet the sides AB, BC and CA in point D, E and F respectively. Show that

$$
A D \times B E \times C F=D B \times E C \times F A
$$

Solution: In $\triangle A O B, O D$ is the bisector of $\angle \mathrm{AOB}$.
$\therefore \frac{O A}{O B}=\frac{A D}{D B}$
In $\triangle B O C, O E$ is the bisector of $\angle B O C$.
$\therefore \frac{O B}{O C}=\frac{B E}{E C}$
In $\triangle C O A, O F$ is the bisector of $\angle \mathrm{COA}$.
$\therefore \frac{O C}{O A}=\frac{C F}{F A}$
Multiplying the corresponding sides of (i), (ii) and (iii), we get

$$
\frac{O A}{O B} \times \frac{O B}{O C} \times \frac{O C}{O A}=\frac{A D}{D B} \times \frac{B E}{E C} \times \frac{C F}{F A}
$$

$\Rightarrow 1=\frac{A D}{D B} \times \frac{B E}{E C} \times \frac{C F}{F A}$
$\Rightarrow D B \times E C \times F A=A D \times B E \times C F$
$\Rightarrow A D \times B E \times C F=D B \times E C \times F A$

Theorem 1: The line drawn from the mid- point of one side of a triangle parallel to another side bisects the third side.

Given A $\triangle A B C$ in which D is the mid - point of side $A B$ and the line $D E$ is drawn parallel to $B C$, meeting AC in E .
To prove E is the mid - point of $A C$ i.e., $A E=E C$.
Proof: In $\triangle A B C$, we have

$$
\begin{equation*}
D E \| B C \tag{i}
\end{equation*}
$$

$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$
[By Thale's Theorem]
But, D is the mid - point of $A B$.
$\Rightarrow A D=D B$

$\Rightarrow \frac{A D}{D B}=1$
From (i) and (ii), we get

$$
\frac{A E}{E C}=1 \Rightarrow A E=E C
$$

Hence, E bisects AC.

Theorem: 2 The line joining the mid - points of two sides of a triangle is parallel to the third side. Given $\quad \triangle A B C$ in which D and E are mid - points of sides $A B$ and $A C$ respectively.
To prove: $D E \| B C$.
Proof: Since D and E are mid - points of AB and Ac respectively.

$$
\mathrm{AD}=\mathrm{DB} \text { and } \mathrm{AE}=\mathrm{EC}
$$

$\Rightarrow \frac{A D}{D B}=1$ and $\frac{A E}{E C}=1$
$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$

Thus, the line $D E$ divides the sides AB and AC of $\triangle A B C$ in the same ratio. Therefore, by the converse of Basic Proportionality Theorem, we obtain $D E \| B C$.

Theorem: 3 If the diagonals of a quadrilateral divide each other proportionally, then it is a trapezium.
Given A quadrilateral ABCD whose diagonals AC and BD intersect at E such that $\frac{D E}{E B}=\frac{C E}{E A}$
To Prove Quadrilateral ABCD is a trapezium. For this it is sufficient to prove that $A B \| D C$.
Construction Draw $E F \| B A$, meeting AD in F .
Proof: In $\triangle A B C$, we have
$E F \| B A$,
$\Rightarrow \frac{D F}{F A}=\frac{D E}{E B}$
[By Thale's Theorem] ...(i)
But, $\frac{D E}{E B}=\frac{C E}{E A}$
[Given] ... (ii)
From (i) and (ii), we get

$$
\frac{D F}{F A}=\frac{C E}{E A}
$$

Thus, in $\triangle D C A, E$ and F are points on CA and DA respectively such that

$$
\frac{D F}{F A}=\frac{C E}{E A}
$$

Therefore, by the converse of Basic Proportionality Theorem, we have

$$
F E \| D C
$$

But, $F E \| B A$,
[By construction]
$\therefore D C\|B A \Rightarrow A B\| D C$
Hence, ABCD, is a trapezium.

Equiangular Triangles: Two triangles are said to be equiangular, if their corresponding angles are equal.

Theorem 1 (AAA Similarity Criterion) If two triangles are equiangular, then they are similar.
Given Two triangles ABC and DEF such that $\angle A=\angle D, \angle B=\angle E$ and $\angle C=\angle F$.
To Prove $\triangle A B C \sim \triangle D E F$
Proof: Recall that two triangles are similar iff their corresponding angles are equal and the corresponding sides are proportional. Since corresponding angles are given equal, we must prove that the corresponding sides are proportional i.e.,

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F} .
$$

Corollary (AA Similarity) If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.

Note:

I) Two triangles are
i) Similar if their corresponding angles are equal
ii) Two triangles are similar if their corresponding sides are proportional.
II. (SAS Similarity Criterion) If in two triangles, one pair of corresponding sides are proportional and the included angles are equal then the two triangles are similar.

Example: 1. $\triangle A C B \sim \triangle A P Q$. If $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}, \mathrm{BA}=6.5 \mathrm{~cm}, \mathrm{AP}=2.8 \mathrm{~cm}$, find CA and AQ .
Solution: We have,
$\triangle A C B \sim \triangle A P Q$

$\Rightarrow \frac{A C}{A P}=\frac{C B}{P Q}=\frac{A B}{A Q}$
$\Rightarrow \frac{A C}{A P}=\frac{C B}{P Q}$ and $\frac{C B}{P Q}=\frac{A B}{A Q}$
$\Rightarrow \frac{A C}{2.8}=\frac{8}{4}$ and $\frac{8}{4}=\frac{6.5}{A Q}$
$\Rightarrow \frac{A C}{2.8}=2$ and $\frac{6.5}{A Q}=2 \Rightarrow A C=(2 \times 2.8) \mathrm{cm}=5.6 \mathrm{~cm}$ and $A Q=\frac{6.5}{2} \mathrm{~cm}=3.25 \mathrm{~cm}$

Example: 2 If $\angle A D E=\angle B$ show that $\triangle A D E \sim \triangle A B C$. If $\mathrm{AD}=3.8 \mathrm{~cm}, \mathrm{AE}=3.6 \mathrm{~cm}, \mathrm{BE}=2.1 \mathrm{~cm}$ and $B C=4.2 \mathrm{~cm}$, find $D E$.

Solution: In triangles ADE and ABC , we have

$$
\angle A D E=\angle B \text { (Given) and } \angle A=\angle A(\text { Common })
$$

So, by AA- criterion of similarity, we have

$$
\triangle A D E \sim \triangle A B C
$$

$\Rightarrow \frac{A D}{A B}=\frac{D E}{B C}$
$\Rightarrow \frac{A D}{A E+E B}=\frac{D E}{B C}$
$\Rightarrow \frac{3.8}{3.6+2.1}=\frac{D E}{4.2}$

$\Rightarrow D E=\frac{3.8 \times 4.2}{3.6+2.1} \mathrm{~cm}=2.8 \mathrm{~cm}$
Hence, $\mathrm{DE}=2.8 \mathrm{~cm}$
Example 3: E is a point on side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Prove that D ABE $\sim \mathrm{D}$ CFB.

Solution: In $\Delta^{\prime} s \mathrm{ABE}$ and CFB , we have
$\angle A E B=\angle C B F$
$\angle A=\angle C$
Thus, by AA- criterion of similarity, we have

$\triangle A B E \sim \triangle C F B$.

Example 4: The perimeters of two similar triangles are 30 cm and 20 cm respectively. If one side of the first triangle is 12 cm , determine the corresponding side of the second triangle.

Solution: Let $\triangle A B C$ and $\triangle D E F$ be two similar triangles of perimeters P_{1} and P_{2} respectively. Also, let $A B=12 \mathrm{~cm}, P_{1}=30 \mathrm{~cm}$ and $P_{2}=20 \mathrm{~cm}$. Then,

$$
\begin{aligned}
& \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{p_{1}}{p_{2}} \\
& \Rightarrow \frac{A B}{D E}=\frac{P_{1}}{P_{2}} \\
& \Rightarrow \frac{12}{D E}=\frac{30}{20} \\
& \Rightarrow D E=\frac{12 \times 20}{30} \mathrm{~cm}=8 \mathrm{~cm}
\end{aligned}
$$

$$
[\because \text { Ratio of corresponding sides of similar triangles is }
$$ equal to the ratio of their perimeters]

Hence, the corresponding side of the second triangle is 8 cm .
Example 5: The perimeters of two similar triangles $A B C$ and $P Q R$ are respectively 36 cm and 24 cm . IF $P Q=10 \mathrm{~cm}$, find $A B$.

Solution: Since the ratio of the corresponding sides of similar triangles is same as the ratio of their perimeters.
$\therefore \quad \triangle A B C \sim \triangle P Q R$
$\Rightarrow \frac{A B}{P Q}=\frac{B C}{Q R} \frac{A C}{P R}=\frac{36}{24}$
$\Rightarrow \frac{A B}{P Q}=\frac{36}{24}$
$\Rightarrow \frac{A B}{10}=\frac{36}{24}$
$\Rightarrow A B=\frac{36 \times 10}{24} c m=15 \mathrm{~cm}$
Example 6: If $\angle B A C=90^{\circ}$ and segment $\mathrm{AD} \perp \mathrm{BC}$. Prove that $\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{DC}$.
Solution: In $\triangle A D B$ and $\triangle A C D$, We have

$$
\begin{array}{ll}
\angle \mathrm{ADB}=\angle \mathrm{ADC} & {\left[\text { Each equal to } 90^{\circ}\right]} \\
\text { and, } \angle \mathrm{DBA}=\angle \mathrm{DAC} & {[\text { Each equal to complement of }} \\
& \left.\angle \text { BAD i.e. } 90^{\circ}-\angle \mathrm{BAD}\right]
\end{array}
$$

Therefore, by AA- criterion of similarity, we have

$$
\triangle D B A^{\sim} \triangle D A C \quad[\therefore \angle D \leftrightarrow \angle D, \angle B \leftrightarrow \angle D A C
$$

and $\angle B A D \leftrightarrow \angle D C A]$
$\Rightarrow \frac{D B}{D A}=\frac{D A}{D C} \quad$ [In similar triangles corresponding sides are proportional]
$\Rightarrow \frac{B D}{A D}=\frac{A D}{D C}$
$\Rightarrow A D^{2}=B D \times D C$
Example 7: In $\triangle A B C$, if $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{DC}$, prove that $\angle \mathrm{BAC}=90^{\circ}$
Solution: We have,

$$
\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{DC}
$$

$\Rightarrow A D \times A D=B D \times D C$
$\Rightarrow \quad \frac{A D}{D C}=\frac{B D}{A D}$
Thus, in $\triangle A B D$ and $\triangle A C D$, we have

$$
\frac{A D}{D C}=\frac{B D}{A D}
$$

and, $\angle B D A=\angle C D A$
So, by SAS - criterion of similarity, we get
[Each equal to 90°]
$\triangle D B A \sim \triangle D A C$
$\Rightarrow \triangle D B A$ and $\triangle D A C$ are equiangular
$\Rightarrow \angle 1=\angle C$ and $\angle 2=\angle B$
$\Rightarrow \angle 1+\angle 2=\angle B+\angle C$
$\Rightarrow \angle A=\angle B+\angle C$
$[\therefore \angle 1+\angle 2=\angle A]$
But, $\angle A+\angle B+\angle C=180^{\circ}$
$\therefore \quad \angle A+\angle A=180^{\circ}$
$[\therefore \angle B+\angle C=\angle A]$
$\Rightarrow \quad 2 \angle A=180^{\circ} \Rightarrow \angle A=90^{\circ}$
Hence, $\angle B A C=90^{\circ}$
Example 8: $\quad \mathrm{ABC}$ is a triangle in which $\mathrm{AB}=\mathrm{AC}$ and D is a point on AC such that $\mathrm{BC}^{2}=A C X$
$C D$. Prove that $B D=B C$.
Given: $\triangle A B C$ in which $\mathrm{AB}=\mathrm{AC}$ and D is a pint on the side AC such that

$$
\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}
$$

To Prove $B D=B C$
Construction Join BD
Proof: We have,

$$
\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}
$$

$\Rightarrow \quad \frac{B C}{C D}=\frac{A C}{B C}$
Thus, in $\triangle A B C$ and $\triangle B D C$, we have

$$
\frac{A C}{B C}=\frac{B C}{C D}
$$

and, $\angle \mathrm{C}, \angle \mathrm{C}$
$\therefore \quad \triangle A B C \sim \triangle B D C$
[Common]
[By SAS criterion of similarity]
$\Rightarrow \frac{A B}{B D}=\frac{B C}{D C}$
$\Rightarrow \frac{A C}{B D}=\frac{B C}{C D}$

$$
[\because A B=A C]
$$

$\Rightarrow \frac{A C}{B C}=\frac{B D}{C D}$
From (i) and (ii), we get
$\frac{B C}{C D}=\frac{B D}{C D} \Rightarrow B D=B C$

Areas of Two Similar Triangles

Theorem: 1 The ratio of the areas of two similar triangle are equal to the ratio of the squares of any two corresponding sides.

Given Two triangles ABC and DEF such that $\triangle A B C \sim \triangle D E F$.
To Prove: $\frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}$

Construction Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{EF}$.
Proof: Since similar triangles are equiangular and their corresponding sides are proportional. Therefore,
$\triangle A B C \sim \triangle D E F$.
$\Rightarrow \angle A=\angle D, \angle B=\angle E, \angle C=\angle F$ and $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Thus, in $\triangle A L B$ and $\triangle D M E$, we have
$\Rightarrow \quad \angle A L B=\angle D M E$
and, $\angle B=\angle E$
[Each equal to 90°]
[From (i)]
So, by AA - criterion of similarity, we have
$\triangle A L B \sim \triangle D M E$
$\Rightarrow \frac{A L}{D M}=\frac{A B}{D E}$
From (i) and (ii), we get
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{A L}{D M}$
Now,

$$
\begin{aligned}
& \frac{\operatorname{Area}(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{\frac{1}{2}(B C \times A L)}{\frac{1}{2}(E F \times D M)} \\
\Rightarrow & \frac{\operatorname{Area}(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{B C}{E F} \times \frac{A L}{D M} \\
\Rightarrow & \frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{B C}{E F} \times \frac{B C}{E F} \\
\Rightarrow & \frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}
\end{aligned} \quad\left[\text { From }(\text { iiii }), \frac{B C}{E F}=\frac{A L}{D M}\right]
$$

But, $\frac{B C}{E F}=\frac{A B}{D E}=\frac{A C}{D F}$
$\Rightarrow \frac{B C^{2}}{E F^{2}}=\frac{A B^{2}}{D E^{2}}=\frac{A C^{2}}{D F^{2}}$
Hence, $\frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}$
Theorem 2 The areas of two similar triangles are in the ratio of the squares of the corresponding altitudes.

Two triangles ABC and DEF such that $\triangle A B C \sim \triangle D E F$ and $A L \perp B C, D M \perp E F$.
$\frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{A L^{2}}{D M^{2}}$

Theorem 3 The areas of two similar triangles are in the ratio of the squares of the corresponding medians.

Two triangles ABC and DEF such that $\triangle A B C \sim \triangle D E F$ and AP, DQ are their medians.
$\frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{A P^{2}}{D Q^{2}}$

Theorem 4 If the areas of two similar triangles are equal, then the triangles are congruent i.e. equal and similar triangles are congruent.

Two triangles $A B C$ and DEF such that $\triangle A B C \sim \triangle D E F$ and Area $(\triangle A B C)=\operatorname{Area}(\triangle D E F)$.
$\triangle A B C \cong \triangle D E F$
Example 1: If $\triangle A B C \sim \triangle D E F$ such that area of $\triangle A B C$ is $9 \mathrm{~cm}^{2}$ and the are of $\triangle D E F$ is $16 \mathrm{~cm}^{2}$ and $B C=2.1 \mathrm{~cm}$. Find the length of $E F$.

Solution: We have,

$$
\frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}
$$

$\Rightarrow \frac{9}{16}=\frac{(2.1)^{2}}{E F^{2}} \Rightarrow \frac{3}{4}=\frac{2.1}{E F} \Rightarrow E F=\frac{4 \times 2.1}{3} \mathrm{~cm}=2.8 \mathrm{~cm}$
Example 2 : D, E, F are the mid - points of the sides BC, CA and AB respectively of a $\triangle A B C$. Determine the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.

Solution: Since D and E are the mid- points of the sides $B C$ and $A B$ respectively of $\triangle A B C$.

$$
\therefore \quad D E\|B A \Rightarrow D E\| F A
$$

Since D and F are mid - points of the sides BC and AB respectively of $\triangle A B C$. Therefore,

$$
\begin{equation*}
D F\|C A \Rightarrow D F\| A E \tag{ii}
\end{equation*}
$$

From (i), and (ii), we conclude that AFDE is a parallelogram.
Similarly, BDEF is a parallelogram.
In $\triangle D E F$ and $\triangle A B C$, we have

$$
\angle F D E=\angle A
$$

and, $\angle \mathrm{DEF}=\angle \mathrm{B}$
[Opposite angles of parallelogram BDEF]
So, by AA- similarity criterion, we have
$\triangle D E F \sim \triangle A B C$
$\Rightarrow \frac{\text { Area }(\triangle D E F)}{\text { Area }(\triangle A B C)}=\frac{D E^{2}}{A B^{2}}=\frac{(1 / 2 A B)^{2}}{A B^{2}}=\frac{1}{4} \quad\left[\because D E=\frac{1}{2} A B\right]$
Hence, Area $(\triangle D E F)$: Area $(\triangle A B C)=1: 4$
4.10 Pythagoras Theorem

In this section, we shall prove an important theorem known as Pythagoras Theorem. This Theorem is also known as Baudhayan Theorem.

Theorem 1 In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given A right - angled triangle ABC in which $\angle \mathrm{B}=90^{\circ}$
To Prove $(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$ i.e. $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$.
Construction From B draw BD \perp AC.
and, $\angle \mathrm{A}=\angle \mathrm{A}$

[Each equal to 90°] [Common]

So, by AA- similarity criterion, we have
$\triangle A D B^{\sim} \triangle A B C$
$\Rightarrow \frac{A D}{A B}=\frac{A B}{A C}$
$\Rightarrow A B^{2}=A D \times A C$
In triangles BDC and ABC , we have
$\angle \mathrm{CDB}=\angle \mathrm{ABC} \quad$ [Each equal to 90°]
and, $\angle \mathrm{C}=\angle \mathrm{C}$
[Common]
So, by AA - Similarity criterion, we have
$\triangle B D C \sim \triangle A B C$
$\Rightarrow \frac{D C}{B C}=\frac{B C}{A C} \quad[\because$ In similar triangles corresponding sides are proportional $]$
$\Rightarrow B C^{2}=A C \times D C$
Adding equations (i) and (ii), we get

$$
A B^{2}+B C^{2}=A D \times A C+A C \times D C
$$

$\Rightarrow A B^{2}+B C^{2}=A C(A D+D C)$
$\Rightarrow A B^{2}+B C^{2}=A C \times A C$
$\Rightarrow A B^{2}+B C^{2}=A C^{2}$
Hence, $\quad A C^{2}=A B^{2}+B C^{2}$
Theorem 2 (Converse of Pythagoras Theorem) In a triangle, If the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the side is a right angle.

Given

A triangle $A B C$ such that $A C^{2}=A B^{2}+B C^{2}$.

Example 1: The hypotenuse of a right triangle is 6 m more than the twice of the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle.

Solution: Let the shortest side be x metres in length. Then, Hypotenuse $=(2 x+6) \mathrm{m}$ and , Third side $=(2 x+4) \mathrm{m}$

By Pythagoras theorem, we have

$$
\begin{aligned}
& (2 x+6)^{2}=x^{2}+(2 x+4)^{2} \\
\Rightarrow & 4 x^{2}+24 x+36=x^{2}+4 x^{2}+16 x+16 \\
\Rightarrow & x^{2}+8 x-20=0 \\
\Rightarrow & (x-10)(x+2)=0 \\
\Rightarrow & x=10 \text { or }, x=-2
\end{aligned}
$$

$\Rightarrow x=10 \quad[\because$ x cannot be negative $]$
Hence, the sides of the triangle are $10,26 \mathrm{~m}$ and 24 m .

Example 2: In an equilateral triangle with side a, prove that
(i) Altitude $=\frac{a \sqrt{3}}{2}$
(ii) Area $=\frac{\sqrt{3}}{4} a^{2}$

Solution: Let ABC be an equilateral triangle the length of whose each side is a units. Draw $A D$ $\perp B C$. Then, D is the mid - point of $B C$.
$\Rightarrow A B=a, B D=\frac{1}{2} B C=\frac{a}{2}$
Since $\triangle A B D$ is a right triangle right - angled at D .
$\therefore A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow a^{2}=A D^{2}+\left(\frac{a}{2}\right)^{2}$
$\Rightarrow A D^{2}=a^{2}-\frac{a^{2}}{4}=\frac{3 a^{2}}{4}$
$\Rightarrow A D=\frac{\sqrt{3 a}}{2}$

\therefore Altitude $\frac{\sqrt{3}}{2} a$
Now,

$$
\text { Area of } \triangle A B C=(1 / 2)(\text { Base } \times \text { Height })
$$

\Rightarrow Area of $\triangle A B C=\frac{1}{2}(B C \times A D)=\frac{1}{2} \times a \times \frac{\sqrt{3}}{2} a=\frac{\sqrt{3}}{4} a^{2}$
Example 3 : Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Solution: We know that if AD is a median of $\triangle A B C$, then

$$
A B^{2}+A C^{2}=2 A D^{2}+\frac{1}{2} B C^{2}
$$

Since diagonals of a parallelogram bisect each other. Therefore, BO and DO are medians of triangles ABC and ADC respectively.
$\therefore \quad A B^{2}+B C^{2}=2 B O^{2}+\frac{1}{2} A C^{2}$
and, $A D^{2}+C D^{2}=2 D O^{2}+\frac{1}{2} A C^{2}$
Adding (i) and (ii), we have

$$
\begin{aligned}
& A B^{2}+B C^{2}+C D^{2}+A D^{2}=2\left(B O^{2}+D O^{2}\right)+A C^{2} \\
\Rightarrow & A B^{2}+B C^{2}+C D^{2}+A D^{2}=2\left(\frac{1}{4} B D^{2}+\frac{1}{4} B D^{2}\right)+A C^{2} \\
\Rightarrow & A B^{2}+B C^{2}+C D^{2}+A D^{2}=A C^{2}+B D^{2}
\end{aligned} \quad\left[\because D O=\frac{1}{2} B D\right]
$$

