Coordinate Geometry

1 Mark Questions

1. Where do these following points lie $(0,-3),(0,-8),(0,6),(0,4)$
A. Given points $(0,-3),(0,-8),(0,6),(0,4)$

The x - coordinates of each point is zero.
\therefore Given points are on the y -axis.
2. What is the distance between the given points
(1) $(-4,0)$ and $(6,0)$
(2) $(0,-3),(0,-8)$
A. 1) Given points $(-4,0),(6,0)$

Given points lie on x -axis
$(\because y$-coordinates $=0)$
\therefore The distance between two points $=\left|\mathrm{x}_{2}-\mathrm{x}_{1}\right|$

$$
=|6-(-4)|=10
$$

2) Given points $(0,-3),(0,-8)$

Given points lie on $y-$ axis
\therefore The distance between two points $=\left|y_{2}-y_{1}\right|$

$$
=|-8-(-3)|=5
$$

3. Find the distance between the following pairs of points
(i) $(-5,7)$ and $(-1,3)$
(ii) (\mathbf{a}, b) and $(-\mathrm{a},-\mathrm{b})$
A. Distance between the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

$$
=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=1
$$

i) Distance between the points $(-5,7)$ and $(-1,3)$

$$
\begin{aligned}
& =\sqrt{(-1-(-5))^{2}+(3-7)^{2}}=\sqrt{4^{2}+(-4)^{2}} \\
& =\sqrt{16+16}=\sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

ii) Distance between (a, b) and (-a, -b)

$$
\begin{aligned}
& =\sqrt{(-a-a)^{2}+(-b-b)^{2}}=\sqrt{(-2 a)^{2}+(-2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}} \\
& =\sqrt{4\left(a^{2}+b^{2}\right)}=2 \sqrt{a^{2}+b^{2}}
\end{aligned}
$$

4. Find the radius of the circle whose centre is $(3,2)$ and passes through $(-5,6)$
A.

Let the centre ' O ' $=(3,2)$
The point on the circle $\mathrm{p}=(-5,6)$
Radius of the circle $=$ distance between the points $\mathrm{O}(3,2)$ and $\mathrm{p}(-5,6)$

$$
\begin{aligned}
& =\sqrt{(-5-3)^{2}+(6-2)^{2}}=\sqrt{64+16}=\sqrt{80} \\
& =\sqrt{16 \times 5}=4 \sqrt{5} \text { units }
\end{aligned}
$$

5. Find the values of y for which the distance between the points $\mathbf{P}(2,-3)$ and $Q(10, y)$ is 10 units.
A. Given points $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10, \mathrm{y})$

Given that $\mathrm{PQ}=10$ units
i.e. $=\sqrt{(10-2)^{2}+(y-(-3))^{2}}=10$
$8^{2}+(y+3)^{2}=10^{2} \Rightarrow 64+(y+3)^{2}=100$
$(y+3)^{2}=100-64 \Rightarrow(y+3)^{2}=36 \Rightarrow y+3=\sqrt{ } 36= \pm 6$
$y= \pm 6-3 ; y=6-3$ or, $y=-6-3 \Rightarrow y=3$, or -9
Hence, the required value of y is 3 or -9 .
6. Find the distance between the points $(a \sin \alpha,-b \cos \alpha)$ and (-a $\cos \alpha, b \sin \alpha$)
A. Distance between the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is

$$
=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Similarly the distance between $(\mathrm{a} \sin \alpha,-\mathrm{b} \cos \alpha)$ and $(-\mathrm{a} \cos \alpha, \mathrm{b} \sin \alpha)$

$$
\begin{aligned}
& =\sqrt{(-a \cos \alpha-a \sin \alpha)^{2}+(b \sin \alpha-(-b \cos \alpha))^{2}} \\
& =\sqrt{a^{2}(\cos \alpha+\sin \alpha)^{2}+b^{2}(\sin \alpha+\cos \alpha)^{2}} \\
& =\sqrt{a^{2} \cos ^{2} \alpha+\sin ^{2} \alpha+2 \sin \alpha \cos \alpha} \\
& =\sqrt{a^{2}+b^{2}(\sin \alpha+\cos \alpha)^{2}} \\
& =\left(\sqrt{a^{2}+b^{2}}\right)(\sin \alpha+\cos \alpha)
\end{aligned}
$$

7. Find the coordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$
A. Given points $(-1,7)$ and $(4,-3)$

Given ratio 2:3= $\mathrm{m}_{1}: \mathrm{m}_{2}$
Let $\mathrm{p}(\mathrm{x}, \mathrm{y})$ be the required point.
Using the section formula

$$
\begin{aligned}
& p(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{2}}{m_{1}+m_{2}}\right) \\
& =\left(\frac{(2)(4)+(3)(-1)}{2+3}, \frac{(2)(-3)+(3)(7)}{2+3}\right) \\
& =\left(\frac{8-3}{5}, \frac{-6+21}{5}\right)=\left(\frac{5}{5}, \frac{15}{5}\right)=(1,3)
\end{aligned}
$$

8. If A and B are $(-2,-2)$ and (2, 4) respectively. Find the coordinates of p such that $A P=\frac{3}{7} A B$ and p lies on the segment $A B$
A. We have $A P=\frac{3}{7} A B \Rightarrow \frac{A P}{A B}=\frac{3}{7}$

$$
\frac{A P}{A P+P B}=\frac{3}{7}
$$

$$
(\because A B=A P+P B)
$$

$$
7 \mathrm{AP}=3(\mathrm{AP}+\mathrm{PB}) \Rightarrow 7 \mathrm{AP}-3 \mathrm{AP}=3 \mathrm{~PB} \Rightarrow 4 \mathrm{AP}=3 \mathrm{~PB}
$$

$$
\Rightarrow \frac{A P}{P B}=\frac{3}{4}
$$

So p divides AB in the ratio $=3: 4$

$$
\mathrm{A}=(-2,-2) ; \mathrm{B}=(2,-4)
$$

\therefore Coordinates of P are $\left(\frac{(3)(2)+(4)(-2)}{3+4}, \frac{(3)(-4)+(4)(-2)}{3+4}\right)$

$$
P(x, y)=\left(\frac{6-8}{7}, \frac{-12-8}{7}\right)=\left(\frac{-2}{7}, \frac{-20}{7}\right)
$$

9. If the mid-point of the line segment joining $A\left[\frac{x}{2}, \frac{y+1}{2}\right]$ and $B(x+1, y-3)$ is $C(5,-2)$, find x, y
A. Midpoint of the line segment joining $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Given that midpoint of $A\left[\frac{x}{2}, \frac{y+1}{2}\right]$ and $\mathrm{B}(\mathrm{x}+1, \mathrm{y}-3)$ is $\mathrm{C}(5,-2)$

$$
\begin{aligned}
& \therefore(5,-2)=\left(\frac{\frac{x}{2}+x+1}{2}, \frac{\frac{y+1}{2}+y-3}{2}\right) \\
& \frac{\frac{x}{2}+x+1}{2}=5 \Rightarrow \frac{x+2 x+2}{4}=5 \\
& \Rightarrow 3 \mathrm{x}+2=20 \Rightarrow \mathrm{x}=6 \\
& \frac{\frac{y+1}{2}+(y-3)}{2}=-2 \Rightarrow \frac{y+1+2 y-6}{4}=-2 \\
& \Rightarrow 3 \mathrm{y}-5=-8 \mathrm{y}=-1 \\
& \therefore \mathrm{x}=6, \mathrm{y}=-1
\end{aligned}
$$

10. The points $(2,3),(x, y),(3,-2)$ are vertices of a triangle. If the centroid of this triangle is origin, find (x, y)
A. Centroid of $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

Given that centroid of $(2,3),(x, y),(3,-2)$ is $(0,0)$

$$
\begin{aligned}
& \text { i.e }(0,0)=\left(\frac{2+x+3}{3}, \frac{3+y-2}{3}\right) \\
& (0,0)=\left(\frac{5+x}{3}, \frac{y+1}{3}\right) \\
& \frac{5+x}{3}=o \Rightarrow x=-5 \\
& \frac{y+1}{3}=0 \Rightarrow y=-1
\end{aligned}
$$

11. If the points $A(6,1), B(8,2), C(9,4)$ and $D(P, 3)$ are the vertices of a parallelogram, taken in order find the value of p.
A. We know that diagonals of parallelogram bisect each other. Given $\mathrm{A}(6,1), \mathrm{B}(8,2)$, C (9, 4), D (P, 3)
So, the coordinates of the midpoint of $\mathrm{AC}=$
Coordinates of the midpoint of BD

$$
\text { i.e. } \begin{aligned}
& \left(\frac{6+9}{2}, \frac{1+4}{2}\right)=\left(\frac{8+p}{2}, \frac{2+3}{2}\right) \\
& \Rightarrow\left(\frac{15}{2}, \frac{5}{2}\right)=\left(\frac{8+p}{2}, \frac{5}{2}\right) \Rightarrow \frac{8+p}{2}=\frac{15}{2} \\
& \Rightarrow \mathrm{p}=15-8=7 .
\end{aligned}
$$

12. Find the area of the triangle whose vertices are $(0,0),(3,0)$ and $(0,2)$
A. Area of triangle $\Delta=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$

$$
\Delta=\frac{1}{2}|0(0-2)+3(2-0)+0(0-0)|=\frac{1}{2}|6|=3 \text { squnits }
$$

Note: Area of the triangle whose vertices are $(0,0),\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$
13. Find the slope of the line joining the two points $\mathbf{A}(-1.4,-3.7)$ and B (-2.4, 1.3)
A. Given points $\mathrm{A}(-1.4,-3.7), \mathrm{B}(-2.4,1.3)$

Slope of $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{(1.3)-(-3.7)}{-2.4-(-1.4)}=\frac{1.3+3.7}{-2.4+1.4}=\frac{5}{-1}=-5$
14. Justify that the line $\overline{A B}$ line segment formed by $(-2,8),(-2,-2)$ is parallel to y-axis. What can you say about their slope? Why?
A. Slope of $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-8}{(-2)-(-2)}=\frac{-10}{0}=$ undefined

The slope of AB cannot defined, because the line segment $\overline{A B}$ is parallel to y -axis.
15. If $x-2 y+k=0$ is a median of the triangle whose vertices are at points
$A(-1,3), B(0,4)$ and $C(-5,2)$, find the value of K.
A. The coordinates of the centroid G of $\triangle \mathrm{ABC}$

$$
=\left(\frac{(-1)+0+(-5)}{3}, \frac{3+4+2}{3}\right)=(-2,3)
$$

Since G lies on the median $x-2 y+k=0$,
\Rightarrow Coordinates of G satisfy its equation
$\therefore-2-2(3)+K=0 \Rightarrow K=8$.
16. Determine x so that 2 is the slope of the line through $P(2,5)$ and $Q(x, 3)$
A. Given points $P(2,5)$ and $\mathrm{Q}(\mathrm{x}, 3)$

Slope of $\overline{P Q}$ is 2

$$
\begin{aligned}
& \therefore \text { slope }=2=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-5}{x-2}=\frac{-2}{x-2} \\
& \Rightarrow \frac{-2}{x-2}=2 \Rightarrow-2=2(x-2) \\
& \Rightarrow-2=2 x-4 \Rightarrow 2 x=2 \Rightarrow x=1 .
\end{aligned}
$$

17. The coordinates of one end point of a diameter of a circle are $(4,-1)$ and the coordinates of the centre of the circle are $(1,-3)$. Find the coordinates of the other end of the diameter.
A. Let AB be a diameter of the circle having its centre at $\mathrm{C}(1,-3)$ such that the coordinates of one end A are $(4,-1)$

Let the coordinates of other end be $B(x, y)$ since C is the mid-point of $A B$.
\therefore The coordinates of C are $\left(\frac{x+4}{2}, \frac{y-1}{2}\right)$

But, the coordinates of C are given to be $(1,-3)$
$\therefore\left(\frac{x+4}{2}, \frac{y-1}{2}\right)=(1,-3) \Rightarrow \frac{x+4}{2}=1 \Rightarrow x=-2$
$\frac{y-1}{2}=-3 \Rightarrow y=-5$
The other end point is $(-2,-5)$.

2 Marks

1. Find a relation between x and y such that the point (x, y) is equidistant from the points $(-2,8)$ and $(-3,-5)$
A. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be equidistant from the points $\mathrm{A}(-2,8)$ and $\mathrm{B}(-3,-5)$

Given that $\mathrm{AP}=\mathrm{BP} \Rightarrow \mathrm{AP}^{2}=\mathrm{BP}^{2}$

$$
\begin{aligned}
& \text { i.e. }(x-(-2))^{2}+(y-8)^{2}=(x-(-3))^{2}+(y-(-5))^{2} \\
& \text { i.e. }(x+2)^{2}+(y-8)^{2}=(x+3)^{2}+(y+5)^{2} \\
& x^{2}+4 x+4+y^{2}-16 y+64=x^{2}+6 x+9+y^{2}+10 y+25 \\
& -2 x-26 y+68-34=0 \\
& -2 x-26 y=-34
\end{aligned}
$$

Model Problem: Find $x+13 y=17$, Which is the required relation. A relation between x and y such that the point (x, y) is equidistant from the point $(7,1)$ and $(3,5)$
2. Find the point on the x - axis which is equidistant from $(2,-5)$ and $(-2,9)$
A. We know that a point on the x-axis is of the form $(-x, 0)$. So, let the point $P(x, 0)$ be equidistant from $\mathrm{A}(2,-5)$, and $\mathrm{B}(-2,9)$
Given that $\mathrm{PA}=\mathrm{PB}$

$$
\begin{aligned}
& \mathrm{PA}^{2}=\mathrm{PB}^{2} \\
& (\mathrm{x}-2)^{2}+(0-(-5))^{2}=(\mathrm{x}-(-2))^{2}+(0-9)^{2} \\
& \mathrm{x}^{2}-4 \mathrm{x}+4+25=\mathrm{x}^{2}+4 \mathrm{x}+4+36 \\
& -4 \mathrm{x}-4 \mathrm{x}+29-40=0 \\
& -8 \mathrm{x}-11=0 \\
& x=-\frac{11}{8}
\end{aligned}
$$

So, the required point is $\left(-\frac{11}{8}, 0\right)$.

Model problem:

Find a point on the y -axis which is equidistant from both the points $\mathrm{A}(6,5)$ and $B(-4,3)$
3. Verify that the points $(1,5),(2,3)$ and $(-2,-1)$ are collinear or not
A. Given points let $\mathrm{A}(1,5), \mathrm{B}(2,3)$ and $\mathrm{C}(-2,-1)$

$$
\begin{aligned}
& \overline{A B}=\sqrt{(2-1)^{2}+(3-5)^{2}}=\sqrt{1+4}=\sqrt{5} \\
& \overline{B C}=\sqrt{(-2-2)^{2}+(-1-3)^{2}}=\sqrt{16+16}=\sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

$$
\overline{C A}=\sqrt{(5-(-1))^{2}+(1-(-2))^{2}}=\sqrt{36+9}=\sqrt{45}=3 \sqrt{5}
$$

We observe that $\mathrm{AB}+\mathrm{BC} \neq \mathrm{CA}$
\therefore Given points are not collinear.

Model Problem: Show that the points $\mathrm{A}(4,2), \mathrm{B}(7,5)$ and $\mathrm{C}(9,7)$ are three points lie on a same line.
Note: we get $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$, so given points are collinear.

Model problem: Are the points $(3,2),(-2,-3)$ and $(2,3)$ form a triangle.
Note: We get $A B+B C \neq A C$, so given points form a triangle.
4. Check whether $(5,-2),(6,4)$ and $(7,-2)$ are the vertices of an isosceles triangle.
A. Let the points are $A(5,-2), B(6,4)$ and $C(7,-2)$

$$
\begin{aligned}
& A B=\sqrt{(6-5)^{2}+(4-(-2))^{2}}=\sqrt{1+36}=\sqrt{37} \\
& B C=\sqrt{(7-6)^{2}+(-2-4)^{2}}=\sqrt{1+36}=\sqrt{37} \\
& C A=\sqrt{(7-5)^{2}+(-2+2)^{2}}=\sqrt{1+0}=1
\end{aligned}
$$

Since $\mathrm{AB}=\mathrm{BC}$, Given vertices form an isosceles triangle.
5. In what ratio does the point $(-4,6)$ divide the line segment joining the points $A(-6,10)$ and $B(3,-8)$
A. Let $(-4,6)$ divide $A B$ internally in the ratio $m_{1}: \mathrm{m}_{2}$ using the section formula, we get

$$
\begin{aligned}
& (-4,6)=\left(\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}, \frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}\right) \\
& \Rightarrow \frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}=-4 \quad \frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}=6 \\
& \Rightarrow 3 m_{1}-6 m_{2}=-4 m_{1}-4 m_{2} \Rightarrow 7 m_{1}-2 m_{2}=0 \\
& 7 \mathrm{~m}_{1}-2 \mathrm{~m}_{2} \\
& \Rightarrow \frac{m_{1}}{m_{2}}=\frac{2}{7} \\
& \therefore \mathrm{~m}_{1}: \mathrm{m}_{2}=2: 7
\end{aligned}
$$

Model Problem: Find the ratio in which the line segment joining The points $(-3,10)$ and $(6,-8)$ is divided by $(-1,6)$.
6.Find the ratio in which the y-axis divides the line segment joining the points (5, -6) and $(-1,-4)$. Also find the point of intersection.
A.Let the ratio be $\mathrm{K}: 1$. Then by the section formula, the coordinates of the point which divides AB in the ratio $\mathrm{K}: 1$ are $\mathrm{K}: 1(5,-6)(-1,-4)$

$$
\begin{aligned}
& \left(\frac{k(-1)+1(5)}{k+1}, \frac{k(-4)+1(-6)}{K+1}\right) \\
& \text { i.e. }\left(\frac{-k+5}{k+1}, \frac{-4 k-6}{K+1}\right)
\end{aligned}
$$

This point lies on the y -axis, and we know that on the y -axis the x coordinate is o

$$
\therefore \frac{-k+5}{K+1}=0 \quad \Rightarrow-k+5=0 \Rightarrow k=5
$$

So the ratio is $\mathrm{K}: 1=5: 1$
Patting the value of $k=5$, we get the point of intersection as

$$
\left(\frac{-5+5}{5+1}, \frac{-4(5)-6}{5+1}\right)=\left(0, \frac{-26}{6}\right)=\left(0, \frac{-13}{3}\right)
$$

7. If $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.
A. Let the Given points $\mathrm{A}(1,2), \mathrm{B}(4, \mathrm{y}), \mathrm{C}(\mathrm{x}, 6)$ and $\mathrm{D}(3,5)$ are the vertices of a parallelogram.
We know that diagonally of parallelogram bisect each other
\therefore Midpoint of AC $=$ Midpoint of BD.

$$
\begin{aligned}
& \left(\frac{1+x}{2}, \frac{2+6}{2}\right)=\left(\frac{4+3}{2}, \frac{y+5}{2}\right) \\
& \Rightarrow \frac{1+x}{2}=\frac{4+3}{2} \Rightarrow \frac{1+x}{2}=\frac{7}{2} \Rightarrow 1+x=7 \Rightarrow x=6 \\
& \frac{y+5}{2}=\frac{2+6}{2} \Rightarrow y+5=8 \Rightarrow y=3 \\
& \therefore x=6, y=3
\end{aligned}
$$

8. Find the area of a triangle whose vertices are $(1,-1),(-4,6)$ and $(-3,-5)$
A. Let the points are $\mathrm{A}(1,-1), \mathrm{B}(-4,6)$ and $\mathrm{C}(-3,-5)$

Area of $\triangle A B C=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$

$$
\begin{aligned}
& =\frac{1}{2}|1(6-(-5))+(-4)(-5-(-1))+(-3)(-1-6)| \\
& =\frac{1}{2}|11+16+21|=\frac{1}{2} \times 48=24 \text { squareunits }
\end{aligned}
$$

Model Problem

Find the area of a triangle formed by the points $\mathrm{A}(3,1), \mathrm{B}(5,0), \mathrm{C}(1,2)$
9. Find the area of the square formed by $(0,-1),(2,1),(0,3)$ and $(-2,1)$ taken in order are as vertices
A. Area of the square

$$
=2 \times \text { area of } \triangle \mathrm{ABC} \rightarrow(1)
$$

Area of $\triangle A B C=\frac{1}{2}|0(1-3)+2(3+1)+0(-1-1)|$

$$
=4 \text { sq.units }
$$

\therefore From eqn (1), we get
Area of the given square $=2 \times 4=8$ sq.units.
10. The points $(3,-2),(-2,8)$ and $(0,4)$ are three points in a plane. Show that these points are collinear.
A. By using area of the triangle formula

$$
\Delta A B C=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|
$$

Given points A $(3,-2), \mathrm{B}(-2,8), \mathrm{C}(0,4)$

$$
\begin{aligned}
& \Delta=\frac{1}{2}|3(8-4)+(-2)(4-(-2))+0(-2-8)| \\
& =\frac{1}{2}|12-12+0|=0
\end{aligned}
$$

The area of the triangle is o . Hence the three points are collinear or they lie on the same line.

4 Marks Questions

1.Show that following points form a equilateral triangle $\mathbf{A}(\mathbf{A}, \mathbf{0}), B(-a, 0), C(0, a \sqrt{ } \mathbf{3})$
A. Given points $\mathrm{A}(\mathrm{a}, 0), \mathrm{B}(-\mathrm{a}, 0), \mathrm{C}(0, \mathrm{a} \sqrt{ } \mathrm{S})$

Distance between two points

$$
\begin{aligned}
& \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
A B= & \sqrt{(-a-a)^{2}+(0-0)^{2}}=\sqrt{(2 a)^{2}}=2 a \\
B C= & \sqrt{(0-(-a))^{2}+(a \sqrt{3}-0)^{2}}=\sqrt{a^{2}+3 a^{2}}=\sqrt{4 a^{2}}=2 a \\
C A= & \sqrt{(0-a)^{2}+(a \sqrt{3}-0)^{2}}=\sqrt{a^{2}+3 a^{2}}=\sqrt{4 a^{2}}=2 a
\end{aligned}
$$

Since $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$, Given points form a equilateral triangle.
2.Name the type of quadrilateral formed. If any, by the following points, and give reasons for your answer the points are $(-3,5),(3,1),(0,3),(-1,-4)$.
A. Let the Given points $\mathrm{A}(-3,5), \mathrm{B}(3,1), \mathrm{C}(0,3), \mathrm{D}(-1,-4)$.

$$
\begin{aligned}
& A B=\sqrt{(3-(-3))^{2}+(1-5)^{2}}=\sqrt{36+16}=\sqrt{52} \\
& B C=\sqrt{(0-3)^{2}+(3-1)^{2}}=\sqrt{9+4}=\sqrt{13} \\
& C D=\sqrt{(-1-0)^{2}+(-4-3)^{2}}=\sqrt{1+49}=\sqrt{50} \\
& D A=\sqrt{(-3+1)^{2}+(5+4)^{2}}=\sqrt{4+81}=\sqrt{85}
\end{aligned}
$$

$$
\mathrm{AB} \neq \mathrm{BC} \neq \mathrm{CD} \neq \mathrm{DA}
$$

\therefore The points does not form a quadrilateral
Note: A, B, C and D are four vertices of a quadrilateral
i) If $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and $\mathrm{AC}=\mathrm{BD}$, then it is square
ii) If $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and $\mathrm{AC} \neq \mathrm{BD}$, then it is Rhombus
iii) If $\mathrm{AB}=\mathrm{CD}, \mathrm{BC}=\mathrm{DA}$ and $\mathrm{AC}=\mathrm{BD}$, then it is Rectangular
iv) If $\mathrm{AB}=\mathrm{CD}, \mathrm{BC}=\mathrm{DA}$ and $\mathrm{AC} \neq \mathrm{BD}$, then it is parallelogram
v) Any two sides are not equal then it is quadrilateral
3.Prove that the points $(-7,-3),(5,10),(15,8)$ and $(3,-5)$ taken in order are the corners of a parallelogram.
A. Given corners of a parallelogram
$\mathrm{A}(-7,-3), \mathrm{B}(5,10), \mathrm{C}(15,8) \mathrm{D}(3,-5)$
$A B=\sqrt{(5-(-7))^{2}+(10-(-3))^{2}}=\sqrt{144+169}=\sqrt{313}$

$$
\begin{aligned}
& B C=\sqrt{(15-5)^{2}+(8-10)^{2}}=\sqrt{100+4}=\sqrt{104} \\
& C D=\sqrt{(3-15)^{2}+(-5-8)^{2}}=\sqrt{144+169}=\sqrt{313} \\
& D A=\sqrt{(3+7)^{2}+(-5+3)^{2}}=\sqrt{100+4}=\sqrt{104} \\
& A C=\sqrt{(15+7)^{2}+(8+3)^{2}}=\sqrt{484+121}=\sqrt{605} \\
& B D=\sqrt{(3-5)^{2}+(-5-10)^{2}}=\sqrt{4+225}=\sqrt{229}
\end{aligned}
$$

Since $A B=C D, B C=D A$ and $A C \neq B D$
$\therefore \mathrm{ABCD}$ is a parallelogram
4. Given vertices of a rhombus $\mathbf{A}(-4,-7), B(-1,2), C(8,5), D(5,-4)$
A.

$$
\begin{aligned}
& A B=\sqrt{(-1-(-4))^{2}+(2-(-7))^{2}}=\sqrt{3^{2}+9^{2}}=\sqrt{9+81}=\sqrt{90} \\
& B C=\sqrt{(8-(-1))^{2}+(5-2)^{2}}=\sqrt{9^{2}+3^{2}}=\sqrt{90} \\
& C D=\sqrt{(5-8)^{2}+(-4-5)^{2}}=\sqrt{9+81}=\sqrt{90} \\
& D A=\sqrt{(-4-5)^{2}+(-7+4)^{2}}=\sqrt{81+9}=\sqrt{90} \\
& A C=\sqrt{(8-(-4))^{2}+(5-(-7))^{2}}=\sqrt{144+144}=\sqrt{288} \\
& B D=\sqrt{(5-(-1))^{2}+(-4-2)^{2}}=\sqrt{36+36}=\sqrt{72}
\end{aligned}
$$

Since $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and $\mathrm{AC} \neq \mathrm{BD}$
$\therefore \mathrm{ABCD}$ is a rhombus
Area of rhombus

$$
\begin{aligned}
& =\frac{1}{2} \times \text { product of diagonals } \\
& =\frac{1}{2} \times \sqrt{288} \times \sqrt{72}=\frac{1}{2} \sqrt{288 \times 72} \\
& =\frac{1}{2} \sqrt{72 \times 4 \times 72}=\frac{1}{2} \times 72 \times 2=72 \text { sq.units }
\end{aligned}
$$

Model Problem: Show that the points A $(2,-2)$, $(14,10), \mathrm{C}(11,13)$ and $\mathrm{D}(-1,1)$ are the vertices of a rectangle.

Model Problem: Show the points $\mathrm{A}(3,9), \mathrm{B}(6,4), \mathrm{C}(1,1)$ and $\mathrm{D}(-2,6)$ are the vertices of a square ABCD .
5.Find the coordinates of the points of trisection (The points which divide a line segment into 3 equal part are said to be the trisection points) of the line segment joining the points $A(2,-2)$ and $(-7,4)$
(A) Trisection points: The points which divide a line segment into 3 equal parts are said to be the trisection points.
(or)

The points which divide the given line segment in the ratio 1:2 and 2:1 are called points of trisection.
A.

A $(2,-2) \mathrm{B}(-7,4)$
Let P and Q be the points of trisection of $A B$ i.e. $A P=P Q=Q B$.
Therefore, P divides AB internally in the ratio $1: 2$
By applying the section formula $m_{1}: m_{2}=1: 2$

$$
\begin{aligned}
& p(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right) \\
& =\left(\frac{(1)(-7)+(2)(2)}{1+2}, \frac{(1)(4)+(2)(-2)}{1+2}\right)=(-1,0)
\end{aligned}
$$

Q divides AB internally in the ratio 2:1

$$
Q(x, y)=\left(\frac{(2)(-7)+(1)(2)}{2+1}, \frac{(2)(4)+(1)(-2)}{2+1}\right)=\left(\frac{-12}{3}, \frac{6}{3}\right)=(-4,2)
$$

\therefore The coordinates of the points of trisection of the line segment are $p(-1.0)$ and $\mathrm{Q}(-4,2)$
Model problem: Find the trisection points of line joining $(2,6)$ and $(-4,3)$
6.Find the coordinates of the points which divides the line segment joining $\mathbf{A}(-2,2)$ and $B(2,8)$ into four equal parts.
A. Given points A $(-2,2)$ and $B(2,8)$

Let $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ divides $\overline{A B}$ into four equal parts

$$
\mathrm{A}(-2,2) \quad \mathrm{B}(2,8)
$$

P divides $\overline{A B}$ into four equal parts

$$
\begin{aligned}
& p(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right) \\
& =\left(\frac{(1)(2)+(3)(2)}{1+3}, \frac{(1)(8)+(3)(2)}{1+3}\right)=\left(-1, \frac{7}{2}\right)
\end{aligned}
$$

Q divides $\overline{A B}$ in the ratio $2: 2=1: 1$
i.e Q is the midpoint of AB

$$
Q(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)=(0,5)
$$

R divides $\overline{A B}$ in the ratio $3: 1$

$$
R(x, y)=\left(\frac{(3)(2)+(1)(-2)}{3+1}, \frac{(3)(8)=(1)(2)}{3+1}\right)=\left(\frac{4}{4}, \frac{26}{4}\right)=\left(1, \frac{13}{2}\right)
$$

\therefore The points divide $\overline{A B}$ into four equal parts are $P\left(-1, \frac{7}{2}\right), Q(0,5), R\left(1, \frac{13}{2}\right)$
Model Problem: Find the coordinates of points which divide the line segment joining $A(-4,0)$ and $B(0,6)$ into four equal parts.
7. Find the area of the quadrilateral whose vertices taken in order, are $(-4,-2),(-3,-5),(3,-2)$ and $(2,3)$
A. Let the given vertices of a quadrilateral are $A(-4,-2), B(-3,-5), C(3,-2) \quad D(2,3)$ Area of quadrilateral $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABC}+$ Area of $\triangle \mathrm{ACD}$

Area of $\triangle \mathrm{ABC}$

$$
\mathrm{A}(-4,2), \mathrm{B}(-3,-5), \mathrm{C}(3,-2)
$$

Area of $\triangle \mathrm{ABC}=\frac{1}{2}|-4(-5-(-2))+(-3)((-2)-(-2))+3(-2-(-5))|$

$$
=\frac{1}{2}|(-4)(-3)+(-3)(0)+(3)(3)|=\frac{1}{2}|12+9|=\frac{21}{2}=10.5 \text { sq.units }
$$

Area of $\triangle \mathrm{ACD}$

$$
\begin{gathered}
\mathrm{A}(-4,2), \mathrm{B}(3,-2), \mathrm{C}(2,3) \\
\text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}|-4(-2-3)+(3)(3-(-2))+2(-2-(-2))| \\
=\frac{1}{2}|20+15+0|=\frac{35}{2}=17.5 \text { sq.units }
\end{gathered}
$$

Area of quadrilateral $\mathrm{ABCD}=\operatorname{Ar}(\triangle \mathrm{ABC})+\operatorname{Ar}(\triangle \mathrm{ACD})$

$$
=10.5+17.5=28 \text { sq. units }
$$

Model Problem: If A $(-5,7), \mathrm{B}(-4,-5), \mathrm{C}(-1,-6)$ and $\mathrm{D}(4,5)$
Are the vertices of a quadrilateral. Then find the area of the quadrilateral ABCD .
8. Find the value of ' K ' for which the points $(k, k)(2,3)$ and $(4,-1)$ are collinear
A. Let the given points $\mathrm{A}(\mathrm{k}, \mathrm{k}), \mathrm{B}(2,3), \mathrm{C}(4,-1)$

If the points are collinear then the area of $\Delta \mathrm{ABC}=0$.

$$
\begin{aligned}
& \therefore \frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|=0 \\
& \therefore \frac{1}{2}|k(3-(-1))+2(-1-k)+4(k-3)|=0 \\
& \therefore \frac{1}{2}|4 k-2-2 k+4 k-12|=0 \\
& |6 \mathrm{k}-14|=0 \Rightarrow 6 \mathrm{k}-14=0 \Rightarrow 6 \mathrm{k}=14 \\
& k=\frac{14}{6}=\frac{7}{3}
\end{aligned}
$$

Model problem: Find the value of ' k ' for which the points $(7,-2),(5,1)$, $(3, \mathrm{k})$ are collinear
Model Problem: Find the value of ' b ' for which the points

$$
\mathrm{A}(1,2), \mathrm{B}(-1, \mathrm{~b}), \mathrm{C}(-3,-4)
$$

9. Find the area of the triangle formed by the points $(0,0),(4,0),(4,3)$ by using Heron's formula.
A. Let the given points be $\mathrm{A}(0,0), \mathrm{B}(4,0), \mathrm{C}(4,3)$

Let the lengths of the sides of $\triangle A B C$ are a, b, c

$$
\begin{aligned}
& a=\overline{B C}=\sqrt{(4-4)^{2}+(3-0)^{2}}=\sqrt{0+9}=3 \\
& b=\overline{C A}=\sqrt{(4-0)^{2}+(3-0)^{2}}=\sqrt{16+9}=5 \\
& c=\overline{A B}=\sqrt{(4-0)^{2}+(0-0)^{2}}=4 \\
& S=\frac{a+b+c}{2}=\frac{3+5+4}{2}=6
\end{aligned}
$$

Heron's formula
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-a)}=\sqrt{6(6-3)(6-5)(6-4)}$

$$
=\sqrt{6(3)(1)(2)}=6 \text { sq.units. }
$$

10. Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are $(0,-1),(2,1)$ and $(0,3)$. Find the ratio of this area to the area of the given triangle.
A. Let the given points of the triangle of the triangle $\mathrm{A}(0,-1), \mathrm{B}(2,1)$ and $\mathrm{C}(0,3)$. Let the mid-points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ are $\mathrm{D}, \mathrm{E}, \mathrm{F}$

$$
\begin{aligned}
& D=\left(\frac{0+2}{2}, \frac{-1+1}{2}\right)=(1,0) \\
& E=\left(\frac{2+0}{2}, \frac{1+3}{2}\right)=(1,2) \\
& F=\left(\frac{0+0}{2}, \frac{3-1}{2}\right)=(0,1)
\end{aligned}
$$

Areaof $\triangle A B C=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
$\mathrm{A}(0,-1), \mathrm{B}(2,1), \mathrm{C}(0,3)$.

$$
\begin{aligned}
& =\frac{1}{2}|0(1-3)+2(3-(-1))+0(-1-1)|=\frac{1}{2}|8|=4 \text { sq.units } \\
& \text { Area of } \triangle D E F=\frac{1}{2}|1(2-1)+1(1-0)+0(0-2)| \\
& =\frac{1}{2}|2+0|=\frac{1}{2} \times 2=1 \text { sq.units }
\end{aligned}
$$

Ratio of the $\Delta \mathrm{ABC}$ and $\Delta \mathrm{DEF}=4: 1$
11. Find the area of the square formed by $(0,-1),(2,1),(0,3)$ and $(-2,1)$
A. In a square four sides are equal

Length of a side of the square
Area of the square $=$ side \times side

$$
\begin{aligned}
& =\sqrt{ } 8 \times \sqrt{ } 8 \\
& =8 \text { sq. units. }
\end{aligned}
$$

12. Find the coordinates of the point equidistant from. Three given points
$\mathrm{A}(5,1), \mathrm{B}(-3,-7)$ and $\mathrm{C}(7,-1)$
A. Let $\mathrm{p}(\mathrm{x}, \mathrm{y})$ be equidistant from the three given points $\mathrm{A}(5,1), \mathrm{B}(-3,-7)$ and $\mathrm{C}(7,-1)$ Then $\mathrm{PA}=\mathrm{PB}=\mathrm{PC} \Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}=\mathrm{PC}^{2}$

$$
\begin{aligned}
& \mathrm{PA}^{2}=\mathrm{PB}^{2} \Rightarrow(\mathrm{x}-5)^{2}+(\mathrm{y}-1)^{2}=(\mathrm{x}+3)^{2}+(\mathrm{y}+7)^{2} \\
& \Rightarrow \mathrm{x}^{2}-10 \mathrm{x}+25+\mathrm{y}^{2}-2 \mathrm{y}+1=\mathrm{x}^{2}+6 \mathrm{x}+9+\mathrm{y}^{2}+14 \mathrm{y}+49 \\
& \Rightarrow-16 \mathrm{x}-16 \mathrm{y}+26-58=0 \\
& \Rightarrow-16 \mathrm{x}-16 \mathrm{y}-32=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x+y+2=0 \rightarrow(1) \\
& P^{2}=P C^{2} \Rightarrow(x+3)^{2}+(y+7)^{2}=(x-7)^{2}+(y+1)^{2} \\
& \Rightarrow x^{2}+6 x+9+y^{2}+14 y+49=x^{2}-14 x+49+y^{2}+2 y+1 \\
& \Rightarrow 6 x+14 x+14 y-2 y+58-50=0 \\
& 20 x+12 y+8=0 \\
& 5 x+3 y+2=0 \rightarrow(2)
\end{aligned}
$$

Solving eqns (1) \& (2)
From (1) $x+y+2=0 \Rightarrow 2+y+2=0$

$$
y=-4
$$

$$
\begin{array}{ll}
(1) \times 3 & 3 x+3 y+6=0 \\
(2) \times 1 & 5 x+3 y+2=0
\end{array}
$$

$$
\begin{array}{lcc}
- & - & - \\
\hline-2 \mathrm{x} & +4=0
\end{array}
$$

$$
x=\frac{-4}{-2}=2
$$

Hence, The required point is $(2,-4)$
13. Prove that the points $(a, b+c),(b, c+a)$ and $(c, a+b)$ are collinear.
A. Let the given points $\mathrm{A}(\mathrm{a}, \mathrm{b}+\mathrm{c}), \mathrm{B}(\mathrm{b}, \mathrm{c}+\mathrm{a}), \mathrm{C}(\mathrm{c}, \mathrm{a}+\mathrm{b})$

$$
\begin{aligned}
& \text { Area of } \triangle A B C=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& =\frac{1}{2}|a((c+a)-(a+b))+b((a+b)-(b+c))+c((b+c)-(c+a))| \\
& =\frac{1}{2}|a(c-b)+b(a-c)+c(b-a)| \\
& =\frac{1}{2}|a c-a b+b a-b c+c b-c a| \\
& =\frac{1}{2}|0|=0
\end{aligned}
$$

Since area of $\Delta \mathrm{ABC}=0$, the given points are collinear.
14. $\quad \mathbf{A}(3,2)$ and $\mathbf{B}(-2,1)$ are two vertices of a triangle ABC , Whose centroid \mathbf{G} has a coordinates $\left(\frac{5}{3},-\frac{1}{3}\right)$. Find the coordinates of the third vertex c of the triangle.
A. Given points are $\mathrm{A}(3,2)$ and $\mathrm{B}(-2,1)$

Let the coordinates of the third vertex be $\mathrm{C}(\mathrm{x}, \mathrm{y})$
Centroid of ABC, $\left(\frac{5}{3},-\frac{1}{3}\right)$

$$
\begin{aligned}
& G=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right) \\
& \left(\frac{5}{3},-\frac{1}{3}\right)=\left(\frac{3+(-2) x}{3}, \frac{2+1+y}{3}\right) \\
& \left(\frac{5}{3},-\frac{1}{3}\right)=\left(\frac{x+1}{3}, \frac{y+3}{3}\right) \\
& \frac{x+1}{3}=\frac{5}{3} \Rightarrow x+1=5 \Rightarrow x=5-1=4 \\
& \frac{y+3}{3}=-\frac{1}{3} \Rightarrow y+3=-1 \Rightarrow y=-1-3=-4
\end{aligned}
$$

\therefore The third vertex is $(4,-4)$
15. The two opposite vertices of a square are (-1, 2) and (3, 2). Find the coordinates of the other two vertices.
A. Let the opposite vertices of a square $\mathrm{A}(-1,2), \mathrm{C}(3,2)$

Let $B(x, y)$ be the unknown vertex
$\mathrm{AB}=\mathrm{BC}$
$(\because$ In a square sides are equal)

$$
\begin{aligned}
& \Rightarrow \mathrm{AB}^{2}=\mathrm{BC}^{2} \\
& (\mathrm{x}-(-1))^{2}+\mathrm{y}(\mathrm{y}-2)^{2}=(3-\mathrm{x})^{2}+(2-\mathrm{y})^{2} \Rightarrow \mathrm{x}^{2}+2 \mathrm{x}+1+\mathrm{y}^{2}-4 \mathrm{y}+4 \\
& \Rightarrow 8 \mathrm{x}=13-5 \Rightarrow \mathrm{x}=1 \rightarrow(1)
\end{aligned}
$$

Also By pythagoras theorem

$$
\begin{aligned}
& \mathrm{AC}^{2}=A B^{2}+\mathrm{BC}^{2} \\
& (3+1)^{2}+(2-2)^{2}=(x+1)^{2}+(y-2)^{2}+(x-3)^{2}+(y-2)^{2} \\
& 16=x^{2}+2 x+1+y^{2}-4 y+4+x^{2}-6 x+9+y^{2}-4 y+4 \\
& 2 x^{2}+2 y^{2}-4 x-8 y+18=16 \\
& x^{2}+y^{2}-2 x-4 y+1=0
\end{aligned}
$$

From (1) $x=1$

$$
\text { i.e. } 1^{2}+y^{2}-2(1)-4 y+1=0
$$

$$
y^{2}-4 y=0
$$

$$
\begin{aligned}
y(y-4)=0 & \Rightarrow y=0 \text { or } y-4=0 \\
& \Rightarrow y=0 \text { or } y=4
\end{aligned}
$$

Hence the other vertices are $(1,0)$ and $(1,4)$.

Multiple Choice Questions

1. For each point on x-axis, y-coordinate is equal to
a) 1
b) 2
c) 3
4) 0
2. The distance of the point $(3,4)$ from $x-$ axis is
a) 3
b) 4
c) 1
d) 7
3. The distance of the point $(5,-2)$ from origin is
a) $\sqrt{ } 29$
b) $\sqrt{ } 21$
c) $\sqrt{ } 30$
d) $\sqrt{ } 28$
4. The point equidistant from the points $(0,0),(2,0)$, and $(0,2)$ is
a) $(1,2)$
b) $(2,1)$
c) $(2,2)$
d) $(1,1)$
5. If the distance between the points $(3, a)$ and $(4,1)$ is $\sqrt{ } 10$, then, find the values of a
a) $3,-1$
b) $2,-2$
c) $4,-2$
d) $5,-3$
6. If the point (x, y) is equidistant from the points $(2,1)$ and $(1,-2)$, then
a) $x+3 y=0$
b) $3 x+y=0$
c) $x+2 y=0$
d) $2 y+3 x=0$
7. The closed figure with vertices $(-2,0),(2,0),(2,2)(0,4)$ and $(2,-2)$ is a
a) Triangle
b) quadrilateral
c) pentagon
d) hexagon
8. If the coordinates of p and Q are $(a \cos \theta, b \sin \theta)$ and $(-a \sin \theta, b \cos \theta)$. Then $\mathrm{OP}^{2}+\mathrm{OQ}^{2}=$
a) $a^{2}+b^{2}$
b) $a+b$
c) $a b$
d) 2 ab
9. In which quadrant does the point $(-3,-3)$ lie?
a) I
b) II
c) III
d) IV
10. Find the value of K if the distance between $(k, 3)$ and $(2,3)$ is 5 .
a) 5
b) 6
c) 7
d) 8
11. What is the condition that $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the successive points of a line?
a) $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$
b) $\mathrm{BC}+\mathrm{CA}=\mathrm{AB}$
c) $\mathrm{CA}+\mathrm{AB}=\mathrm{BC}$
d) $\mathrm{AB}+\mathrm{BC}=2 \mathrm{AC}$
12. The coordinates of the point, dividing the join of the point $(0,5)$ and $(0,4)$ in the ratio $2: 3$ internally, are
a) $\left(3, \frac{8}{5}\right)$
b) $\left(1, \frac{4}{5}\right)$
c) $\left(\frac{5}{2}, \frac{3}{4}\right)$
d) $\left(2, \frac{12}{5}\right)$
13. If the point $(\mathbf{0} .0),(a, 0)$ and $(0, b)$ are collinear, then
a) $a=b$
b) $a+b \neq 0$
c) $a b=0$
d) $a \neq b$
14. The coordinates of the centroid of the triangle whose vertices are $(8,-5)$, $(-4,7)$ and $(11,13)$
a) $(2,2)$
b) $(3,3)$
c) $(4,4)$
d) $(5,5)$
15. The coordinates of vertices A, B and C of the triangle $A B C$ are $(0,-1),(2,1)$ and $(0,3)$. Find the length of the median through B.
a) 1
b) 2
c) 3
d) 4
16. The vertices of a triangle are $(4, y),(6,9)$ and (x, y). The coordinates of it centroid are $(3,6)$. Find the value of x and y.
a) $-1,-5$
b) $1,-5$
c) 1,5
d) $-1,5$
17. If a vertex of a parallelogram is $(2,3)$ and the diagonals cut at $(3,-2)$. Find the opposite vertex.
a) $(4,-7)$
b) $(4,7)$
c) $(-4,7)$
d) $(-4,-7)$
18. Three consecutive vertices of a parallelogram are $(-2,1),(1,0)$ and $(4,3)$. Find the fourth vertex.
a) $(1,4)$
b) $(1,-2)$
c) $(-1,2)$
d) $(-1,-2)$
19. If the points $(1,2),(-1, x)$ and $(2,3)$ are collinear then the value of x is
a) 2
b) 0
c) -1
d) 1
20. If the points $(\mathbf{a}, \mathbf{0}),(\mathbf{0}, \mathbf{b})$ and $(\mathbf{1}, \mathbf{1})$ are collinear then $\frac{1}{a}+\frac{1}{b}=$ []
a) 0
b) 1
c) 2
d) -1

Key:

1) d; 2) b; 3) a;
2) d; 5) c;
3) a; 7) c;
4) a; 9) c; 10) c;
5) a; 12) a; 13) c;14)d; 15) b; 16) a; 17) a; 18) a; 19) b ; 20) b ;

Fill in the Blanks:

1. The coordinates of the point of intersection of $x-a x i s$ and $y-a x i s$ are
\qquad .
2. For each point on \mathbf{y}-axis, x - coordinate is equal to \qquad .
3. The distance of the point $(3,4)$ from y-axis is \qquad .
4. The distance between the points $(0,3)$ and $(-2,0)$ is \qquad .
5. The opposite vertices of a square are $(5,4)$ and $(-3,2)$. The length of its diagonal is \qquad .
6. The distance between the points $(\mathrm{a} \cos \theta+\mathrm{b} \sin \theta, 0)$ and $(0, \mathrm{a} \sin \theta-\mathrm{b} \cos \theta)$ is
\qquad
7. The coordinates of the centroid of the triangle with vertices $(0,0)(3 \mathrm{a}, 0)$ and $(0,3 \mathrm{~b})$ are \qquad .
8. If $O P Q R$ is a rectangle where O is the origin and $p(3,0)$ and $R(0,4)$, Then the Coordinates of Q are \qquad .
9. If the centroid of the triangle $(a, b),(b, c)$ and (c, a) is $O(0,0)$, then the value of $a^{3}+b^{3}+c^{3}$ is \qquad .
10. If $(-2,-1),(a, 0),(4, b)$ and $(1,2)$ are the vertices of a parallelogram, then the values of a and b are \qquad .
11. The area of the triangle whose vertices are $(0,0),(a, 0)$ and (o, b) is \qquad .
12. One end of a line is $(4,0)$ and its middle point is $(4,1)$, them the coordinates of the other end \qquad .
13. The distance of the mid-point of the line segment joining the points $(6,8)$ and $(2,4)$ from the point $(1,2)$ is \qquad .
14. The area of the triangle formed by the points $(0,0),(3,0)$ and $(0,4)$ is \qquad .
15. The co-ordinates of the mid-point of the line segment joining the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) are \qquad .
16. The distance between the points $\left(a \cos 25^{0}, 0\right)$ and $\left(0, a \cos 65^{\circ}\right)$ is \qquad .
17. The line segment joining points $(-3,-4)$ and $(1,-2)$ is divided by y-axis in the ratio
\qquad .
18. If $\mathrm{A}(5,3), \mathrm{B}(11,-5)$ and $\mathrm{p}(12, \mathrm{y})$ are the vertices of a right triangle right angled at p , Then $\mathrm{y}=$ \qquad .
19. The perimeter of the triangle formed by the points $(0,0),(1,0)$ and $(0,1)$ is \qquad .
20. The coordinates of the circumventer of the triangle formed by the points $\mathrm{O}(0,0)$, $\mathrm{A}(\mathrm{a}, 0)$ and $\mathrm{B}(\mathrm{o}, \mathrm{b})$ is \qquad
Key:

$$
\text { 6) } \sqrt{a^{2}+b^{2}}
$$

1) $(0,0)$;
2) 0 ;
3) 3 ; 4) $\sqrt{ } 13$;
4) 10 ;
; 7) (a, b);
5) $(3,4)$;
6) 3 abc ;
7) $\mathrm{a}=1, \mathrm{~b}=2 ;$
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$;
8) $\left.{ }^{\frac{1}{2} a b} ; 12\right)(4,2)$
9) 5 ;
10) 6 ;
11) a; 17) $3: 1$;
12) 2 or -4 ;
13) $2+\sqrt{ } 2 ; 20)\left(\frac{a}{2}, \frac{b}{2}\right)$;
