CO- ORDINATE GEOMETRY

Key Concepts

$\rightarrow \quad$ A French mathematician Rene - De- Cartes (1596-1650) has developed the study of Co -ordinate Geometry.
$\rightarrow \quad$ The Cartesian plane is also called Coordinate plane or XY plane.
$\rightarrow \quad$ The $\quad x$ coordinate is called the Abscissa and the y coordinate is called the ordinate.
$\rightarrow \quad$ The intersection of X - axis and Y - axis is called the origin.
The coordinates of origin $=(0,0)$
$\rightarrow \quad$ The distance between points lying on X - axis to the difference between the x coordinates. In general for the points $\left(x_{1}, 0\right)\left(x_{2}, 0\right)$ on the X - axis.

The distance between these points $=\left|x_{2}-x_{1}\right|$.
$\rightarrow \quad$ The distance between two points $\left(0, y_{1}\right),\left(0, y_{2}\right)=\left|y_{2}-y_{1}\right|$.
$\rightarrow \quad$ The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\rightarrow \quad$ The distance of a points (x, y) from the origin is $\sqrt{x^{2}+y^{2}}$.
$\rightarrow \quad$ Points lie on the same line are called Collinear Points.
$\rightarrow \quad$ The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on a line parallel to Y - axis is $\left|y_{2}-y_{1}\right|$.
$\rightarrow \quad$ The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on a line parallel to X - axis is $\left|x_{2}-x_{1}\right|$.
$\rightarrow \quad$ The coordinates of the point $P(x, y)$ which divides the line segment joining the points $\quad A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ internally in the ratio $m_{1}: m_{2}$ are $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$ This is known as " Section formula".
$\rightarrow \quad$ The midpoint of the linesegment joining the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$\rightarrow \quad$ The point that divides each median in the ratio $2: 1$ is the centroid of a triangle.
$\rightarrow \quad$ The centroid of a triangle is the point of intersection of its medians. $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are the vertices of the triangle ABC coordinates of the centroid $=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
$\rightarrow \quad$ The area of the triangle formed by the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is the numerical value of the expression

$$
\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
$$

$\rightarrow \quad$ Area of Rhombus $=\frac{1}{2} \times$ product of its diagonals.
$\rightarrow \quad$ The diagonals of a parallelogram bisect each other.
$\rightarrow \quad$ The area of a triangle is zero then the three points said to be Collinear points.
$\rightarrow \quad$ Area of a triangle $=\frac{1}{2} \times$ base \times height.
$\rightarrow \quad$ Area of a triangle formula 'Heron's formula'

$$
A=\sqrt{S(S-a)(S-b)(S-c)}
$$

Problems

1 Find the coordinates of the vertices of an equilateral triangle of side $2 a$ as shown in

Solution: Since OAB is an equilateral triangle of side $2 a$ therefore,

$$
\mathrm{OA}=\mathrm{AB}=\mathrm{OB}=2 a
$$

Let BL perpendicular from B on OA. Then,

$$
\mathrm{OL}=\mathrm{LA}=a
$$

In $\triangle O L B$, we have

$$
\begin{aligned}
& O B^{2}=O L^{2}+L B^{2} \\
& \Rightarrow(2 a)^{2}=a^{2}+L B^{2} \\
& \Rightarrow L B^{2}=3 a^{2} \\
& \Rightarrow L B=\sqrt{3} a
\end{aligned}
$$

Clearly, coordinates of O are $(0,0)$ and that of A are $(2 a, 0)$. Since $\mathrm{OL}=a$ and $\mathrm{LB}=\sqrt{3} a$. So, the coordinates of B are $(a, \sqrt{3} a)$.

2 If the point (x, y) is equidistant from the points $(a+b, b-a)$ and $(a-b, a+b)$, prove that $b x=a y$.

Solution: Let $P(x, y), Q(a+b, b-a)$ and $R(a-b, a+b)$ be the given points. Then, $P Q=P R$.

$$
\begin{aligned}
\Rightarrow & \sqrt{\{x-(a+b)\}^{2}+\{y-(b-a)\}^{2}}=\sqrt{\{x-(a-b)\}^{2}+\{y-(a+b)\}^{2}} \\
\Rightarrow & \{x-(a+b)\}^{2}+\{y-(b-a)\}^{2}=\{x-(a-b)\}^{2}+\{y-(a+b)\}^{2} \\
\Rightarrow & x^{2}-2 x(a+b)+(a+b)^{2}+y^{2}-2 y(b-a)+(b-a)^{2} \\
& =x^{2}+(a-b)^{2}-2 x(a-b)+y^{2}-2 y(a+b)+(a+b)^{2} \\
\Rightarrow & -2 x(a+b)-2 y(b-a)=-2 x(a-b)-2 y(a+b) \\
\Rightarrow & a x+b x+b y-a y=a x-b x+a y+b y \\
\Rightarrow & 2 b x=2 a y \Rightarrow b x=a y
\end{aligned}
$$

Remark: We know that a point which is equidistant from points P and Q lies on the perpendicular bisector of PQ . Therefore, $\mathrm{bx}=\mathrm{ay}$ is the equation of the perpendicular bisector of PQ .

3 If the points $A(4,3)$ and $B(x, 5)$ are on the circle with centre $O(2,3)$ find the value of x.

Solution: Since A and B lie on the circle having centre O.
$\therefore \quad O A=O B$

$$
\begin{aligned}
& \Rightarrow \sqrt{(4-2)^{2}+(3-3)^{2}}=\sqrt{(x-2)^{2}+(5-3)^{2}} \\
& \Rightarrow 2=\sqrt{(x-2)^{2}+4} \\
& \Rightarrow 4=(x-2)^{2}+4 \Rightarrow(x-2)^{2}=0 \Rightarrow x-2=0 \Rightarrow x=2 .
\end{aligned}
$$

4 Find a point on x - axis which is equidistant from $A(2,-5)$ and $B(-2,9)$.
Solution: We know that a point on x - axis is of the form $(x, 0)$. So, let $\mathrm{P}(x, 0)$ be the point equidistant from $\mathrm{A}(2,-5)$ and $\mathrm{B}(-2,9)$. Then,

$$
\begin{aligned}
& \mathrm{PA}=\mathrm{PB} \\
& \Rightarrow \sqrt{(x-2)^{2}+(0+5)^{2}}=\sqrt{(x+2)^{2}+(0-9)^{2}} \\
& \Rightarrow(x-2)^{2}+25=(x+2)^{2}+81 \\
& \Rightarrow x^{2}-4 x+4+25=x^{2}+4 x+4+81 \Rightarrow-8 x=56 \Rightarrow x=-7
\end{aligned}
$$

Hence, the required point is $(-7,0)$.
5 The x-coordinate of a point \mathbf{P} is twice its y-coordinate. If \mathbf{P} is equidistant from $Q(2,-5)$ and $\mathbf{R}(-3,6)$, then find the coordinates of P.

Solution: Let the coordinates of P be (x, y). It given that $x=2 y$. It is also given that

$$
\begin{aligned}
& P Q=P R \\
& \Rightarrow \sqrt{(x-2)^{2}+(y+5)^{2}}=\sqrt{(x+3)^{2}+(y-6)^{2}} \\
& \Rightarrow \sqrt{(2 y-2)^{2}+(y+5)^{2}}=\sqrt{(2 y+3)^{2}+(y-6)^{2}} \\
& \Rightarrow \sqrt{5 y^{2}+2 y+29}=\sqrt{5 y^{2}+45} \\
& \Rightarrow 5 y^{2}+2 y+29=5 y^{2}+45 \Rightarrow 2 y=16 \Rightarrow y=8
\end{aligned}
$$

Hence, the coordinates of P are $(16,8)$

6 Show that the points $(1,-1),(5,2)$ and $(9,5)$ are collinear.
Solution: Let A $(1,-1), B(5,2)$ and $(9,5)$ be the given points. Then, we have

$$
\begin{aligned}
& A B=\sqrt{(5-1)^{2}+(2+1)^{2}}=\sqrt{16+9}=5 \\
& B C=\sqrt{(5-9)^{2}+(2-5)^{2}}=\sqrt{16+9}=5
\end{aligned}
$$

and, $A C=\sqrt{(1-9)^{2}+(-1-5)^{2}}=\sqrt{64+36}=10$
Clearly, $\mathrm{AC}=\mathrm{AB}+\mathrm{BC}$. Hence, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear points.
7 Show that $A(6,4), B(5,-2)$ and $C(7,-2)$ are the vertices of an isosceles triangle. Also find the length of the median through A.

Solution: We have

$$
A B=\sqrt{(6-5)^{2}+(4+2)^{2}}=\sqrt{37}, \quad A C=\sqrt{(6-7)^{2}+(4+2)^{2}}=\sqrt{37}
$$

$$
\therefore \quad \mathrm{AB}=\mathrm{AC}
$$

So, $\triangle A B C$ is isosceles.
Let D be the mid - point of BC . Then, coordinates of D are $\left(\frac{5+7}{2}, \frac{-2-2}{2}\right)$ i.e. (6, -2$)$.
$\therefore A D=\sqrt{(6-6)^{2}+(4+2)^{2}}=\sqrt{36}=6$
8 If $(-4,0)$ and (4, 0) are two vertices of an equilateral triangle, find the coordinates of its third vertex.

Solution: Let C (x, y) be the third vertex of triangle $A B C$ having two vertices at $A(-4,0)$ and $\mathrm{B}(4,0)$. Since $\triangle A B C$ is equilateral. Therefore,

$$
\mathrm{AC}=\mathrm{BC}=\mathrm{AB}
$$

Now, $\quad \mathrm{AC}=\mathrm{BC}$

$$
\begin{aligned}
& \Rightarrow \sqrt{(x+4)^{2}(y-0)^{2}}=\sqrt{(x-4)^{2}+(y-0)^{2}} \\
& \Rightarrow(x+4)^{2}+y^{2}=(x-4)^{2}+y^{2} \\
& \Rightarrow 16 x=0 \\
& \Rightarrow x=0
\end{aligned}
$$

Again,

$$
A C=B C=A B
$$

$$
\Rightarrow A C=A B
$$

$$
\Rightarrow \sqrt{(x+4)^{2}+(y-0)^{2}}=\sqrt{(4+4)^{2}+0^{2}}
$$

$$
\Rightarrow(0+4)^{2}+y^{2}=64
$$

$$
\Rightarrow y^{2}=48
$$

$$
\Rightarrow y= \pm 4 \sqrt{3}
$$

Hence, the coordinates of the third vertex are $C(0,4 \sqrt{3})$ and $D(0,-4 \sqrt{3})$.
9 If $A(5,2), B(2,-2)$ and $C(2, t)$ are the vertices of right angled triangle with $\angle B=90^{\circ}$, then find the value of t .

Solution: Using Pythagoras theorem in right triangle ABC, we obtain

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
\Rightarrow & (5+2)^{2}+(2-t)^{2}=\left\{(5-2)^{2}+(2+2)^{2}\right\}+\left\{(2+2)^{2}+(-2-t)^{2}\right\} \\
\Rightarrow & 49+\left(4-4 t+t^{2}\right)=(9+16)+\left(16+4+4 t+t^{2}\right) \\
\Rightarrow & t^{2}-4 t+53=t^{2}+4 t \times 45 \\
\Rightarrow & -8 t=-8 \\
\Rightarrow & t=1
\end{aligned}
$$

10 Let the opposite angular points of a square be $(3,4)$ and (1, -1). Find the coordinates of the remaining angular points.

Solution: Let ABCD be a square and let $\mathrm{A}(3,4)$ and $\mathrm{C}(1,-1)$ be the given angular points. Let $\mathrm{B}(x, y)$ be the unknown vertex.

Then,

$$
\mathrm{AB}=\mathrm{BC}
$$

$$
\begin{align*}
& \Rightarrow A B^{2}=B C^{2} \\
& \Rightarrow(x-3)^{2}+(y-4)^{2}=(x-1)^{2}+(y+1)^{2} \\
& \Rightarrow 4 x+10 y-23=0 \\
& \Rightarrow x=\frac{23-10 y}{4} \tag{i}
\end{align*}
$$

In right - angled triangle ABC , we have

$$
A B^{2}+B C^{2}=A C^{2}
$$

$\Rightarrow(x-3)^{2}+(y-4)^{2}+(x-1)^{2}+(y+1)^{2}=(3-1)^{2}+(4+1)^{2}$
$\Rightarrow x^{2}+y^{2}-4 x-3 y-1=0$
Substituting the value of x from (i) into (ii), we get

$$
\begin{gathered}
\left(\frac{23-10 y}{4}\right)^{2}+y^{2}-(23-10 y)-3 y-1=0 \\
\Rightarrow 4 y^{2}-12 y+5=0 \Rightarrow(2 y-1)(2 y-5)=0 \Rightarrow y=\frac{1}{2} \text { or }, \frac{5}{2}
\end{gathered}
$$

Putting $y=\frac{1}{2}$ and $y=\frac{5}{2}$ respectively in (i), we get $x=\frac{9}{2}$ and $x=\frac{-1}{2}$ respectively.

Hence, the required vertices of the square are $(9 / 2,1 / 2)$ and $(-1 / 2,5 / 2)$.

11 Prove that the points $(-3,0),(1,-3)$ and $(4,1)$ are the vertices of an isosceles right angled triangle. Find the area of this triangle.

Solution: Let A $(-3,0), B(1,-3)$ and $C(4,1)$ be the given points. Then,

$$
A B=\sqrt{\{1-(-3)\}^{2}+(-3-0)^{2}}=\sqrt{4^{2}+(-3)^{2}}=\sqrt{16+9}=5 \text { units. }
$$

$$
B C=\sqrt{(4-1)^{2}+(1+3)^{2}}=\sqrt{9+16}=5 \text { units }
$$

and, $C A=\sqrt{(4+3)^{2}+(1-0)^{2}}=\sqrt{49+1}=5 \sqrt{2}$ units clearly, $\mathrm{AB}=\mathrm{BC}$. Therefore, $\triangle A B C$ is isosceles.

Also, $A B^{2}+B C^{2}=25+25=(5 \sqrt{2})^{2}=C A^{2}$

$\therefore \quad \triangle A B C$ is right - angled at B.
Thus, $\triangle A B C$ is a right - angled isosceles triangle.

Now, Area of $\triangle A B C=\frac{1}{2}($ Base \times Height $)=\frac{1}{2}(A B \times B C)=\left(\frac{1}{2} \times 5 \times 5\right)$ sq. units $=\frac{25}{2}$ sq. units
Type I On finding the section point when the section ratio is given
12 Find the coordinates of the point which divides the line segment joining the points $(6,3)$ and $(-4,5)$ in the ratio $3: 2$ internally.

Solution: Let $\mathrm{P}(x, y)$ be the required point. Then,

$$
x=\frac{3 \times-4+2 \times 6}{3+2} \text { and } y=\frac{3 \times 5+2 \times 3}{3+2}
$$

$\Rightarrow x=0$ and $y=\frac{21}{5}$

So, the coordinates of P are $(0,21 / 5)$.
13 Find the coordinates of points which trisect the line segment joining (1, -2) and (-3, 4).

Solution: Let A $(1,-2)$ and $B(-3,4)$ be the given points. Let the points of trisection be P and Q . Then, $\mathrm{AP}=\mathrm{QB}=\lambda$ (say).

$\therefore P B=P Q+Q B=2 \lambda$ and $A Q=A P+P Q=2 \lambda$
$\Rightarrow A P: P B=\lambda: 2 \lambda=1: 2$ and $A Q: Q B=2 \lambda: \lambda=2: 1$

So, P divides AB internally in the ratio $1: 2$ while Q divides internally in the ratio $2: 1$. Thus, the coordinates of P and Q are

$$
\begin{aligned}
& P\left(\frac{1 \times-3+2 \times 1}{1+2}, \frac{1 \times 4+2 \times-2}{1+2}\right)=P\left(\frac{-1}{3}, 0\right) \\
& Q\left(\frac{2 \times-3+1 \times 1}{2+1}, \frac{2 \times 4+1 \times(-2)}{2+1}\right)=Q\left(\frac{-5}{3}, 2\right) \text { respectively }
\end{aligned}
$$

Hence, the two points of trisection are $(-1 / 3,0)$ and $(-5 / 3,2)$.
Remark: As Q is the mid - point of BP. So, the coordinates of Q can also be obtained by using mid - point formula.

14 If the pint $C(-1,2)$ divides internally the line segment joining $A(2,5)$ and B in ratio $3: 4$, find the coordinates of B.

Solution: Let the coordinates of B be (α, β). It is given that $\mathrm{AC}: \mathrm{BC}=3: 4$ So, the coordinates of Care

$$
\begin{aligned}
& \left(\frac{3 \alpha+4 \times 2}{3+4}, \frac{3 \beta+4 \times 5}{3+4}\right)=\left(\frac{3 \alpha+8}{7}, \frac{3 \beta+20}{7}\right)
\end{aligned}
$$

But, the coordinates of C are $(-1,2)$.
$\therefore \frac{3 \alpha+8}{7}=-1$ and $\frac{3 \beta+20}{7}=2$
$\Rightarrow \alpha=-5$ and $\beta=-2$

Thus, the coordinates of B are $(-5,-2)$.
15 Find the ratio in which the point (-3, p) divides the line segment joining the points (-5, -4) and (-2,3). Hence, find the value of p.

Solution: Suppose the point $\mathrm{P}(-3, \mathrm{p})$ divides the line segment joining points $\mathrm{A}(-5,-4)$ and $\mathrm{B}(-2,3)$ in the ratio $\mathrm{k}: 1$.

Then, the coordinates of p are $\left(\frac{-2 k-5}{k+1}, \frac{3 k-4}{k+1}\right)$
But, the coordinates of P are given as $(-3, p)$.
$\therefore \quad \frac{-2 k-5}{k+1}=-3$ and $\frac{3 k-4}{k+1}=p$
$\Rightarrow-2 k-5=-3 k-3$ and $\frac{3 k-4}{k+1}=p$
$\Rightarrow k=2$ andp $=\frac{3 k-4}{k+1}$
$\Rightarrow k=2$ and $p=2 / 3$

Hence, the ratio is $2: 1$ and $\mathrm{p}=2 / 3$.
Type II On determination of the type of a given quadrilateral
16 Prove that the points $(-2,-1),(1,0),(4,3)$ and $(1,2)$ are the vertices of a parallelogram. Is it a rectangle ?

Solution: Let the given point be $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively. Then, Coordinates of the mid - point of Ac are $\left(\frac{-2+4}{2}, \frac{-1+3}{2}\right)=(1,1)$ Coordinates of the mid - point of BD are $\left(\frac{1+1}{2}, \frac{0+2}{2}\right)=(1,1)$

Thus, AC and BD have the same mid - point. Hence, ABCD is a parallelogram.
Now, we shall see whether $A B C D$ is a rectangle or not.
We have,

$$
\mathrm{AC}=\sqrt{(4-(-2))^{2}+(3-(-1))^{2}}=2 \sqrt{13}
$$

and, $B D=\sqrt{(1-1)^{2}+(0-2)^{2}}=2$

Clearly, $\mathrm{AC} \neq \mathrm{BD}$. So, ABCD is not a rectangle.
Type III On finding the unknown vertex from given points

17 If the points $A(6,1), B(8,2), C(9,4)$ and $D(p, 3)$ are the vertices of a parallelogram, taken in order, find the value of p.

Solution: We know that the diagonals of a parallelogram bisect each other. So, coordinates of the mid - point of diagonal AC are same as the coordinates of the mid point of diagonal BD.
$\therefore \quad\left(\frac{6+9}{2}, \frac{1+4}{2}\right)=\left(\frac{8+p}{2}, \frac{2+3}{2}\right)$
$\Rightarrow\left(\frac{15}{2}, \frac{5}{2}\right)=\left(\frac{8+p}{2}, \frac{5}{2}\right)$
$\Rightarrow \frac{15}{2}=\frac{8+p}{2} \Rightarrow 15=8+p \Rightarrow p=7$

18 If $\mathbf{A}(-2,-1), \mathbf{B}(a, 0), \mathbf{C}(4, \mathbf{b})$ and $\mathbf{D}(1,2)$ are the vertices of a parallelogram, find the values of a and \mathbf{b}.

Solution: We know that the diagonals of a parallelogram bisect each other. Therefore, the coordinates of the mid - point of AC are same as the coordinates of the mid - point of $B D$ i.e.,

$$
\begin{aligned}
& \left(\frac{-2+4}{2}, \frac{-1+b}{2}\right)=\left(\frac{a+1}{2}, \frac{0+2}{2}\right) \\
\Rightarrow & \left(1, \frac{b-1}{2}\right)=\left(\frac{a+1}{2}, 1\right) \\
\Rightarrow & \frac{a+1}{2}=1 \text { and } \frac{b-1}{2}=1 \\
\Rightarrow & a+1=2 \text { and } b-1=2 \\
\Rightarrow & a=1 \text { and } b=3
\end{aligned}
$$

Hence, $a=1$ and $\mathrm{b}=3$
19 Find the lengths of the medians of a $\triangle A B C$ whose vertices are $\mathbf{A}(7,-3), \mathbf{B}(5,3)$ and $C(3,-1)$.

Solution: Let D, E, F be the mid - points of the sides $B C, C A$ and $A B$ respectively. Then, the coordinates of D, E and F are
$\mathrm{D}\left(\frac{5+3}{2}, \frac{3-1}{2}\right)=D(4,1), E\left(\frac{3+7}{2}, \frac{-1-3}{2}\right)=E(5,-2)$

and $F\left(\frac{7+5}{2}, \frac{-3+3}{2}\right)=F(6,0)$

$$
\begin{aligned}
\therefore & A D=\sqrt{(7-4)^{2}+(-3-1)^{2}}=\sqrt{9+16}=5 \text { units } \\
& B E=\sqrt{(5-5)^{2}+(-2-3)^{2}}=\sqrt{0+25}=5 \text { units }
\end{aligned}
$$

and $C F=\sqrt{(6-3)^{2}+(0+1)^{2}}=\sqrt{9+1}=\sqrt{10}$ units.
20 Point P divides the line segment joining the pints $A(2,1)$ and $B(5,-8)$ such that $\frac{A P}{A B}=\frac{1}{3}$. If \mathbf{P} lies on the line $2 x-y+k=0$. find the value of \mathbf{k}.

Solution: We have,

$$
\frac{A P}{A B}=\frac{1}{3}
$$

$\Rightarrow \frac{A P}{A P=P B}=\frac{1}{3}$
$\Rightarrow 3 A P=A P+B P$
$\Rightarrow 2 A P=B P$
$\Rightarrow \frac{A P}{B P}=\frac{1}{2}$

So, P divides AB in the ratio $1: 2$.
\therefore Coordinates of P are $\left(\frac{1 \times 5+2 \times 2}{1+2}, \frac{1 \times-8+2 \times 1}{1+2}\right)=(3,2)$
Since, $\mathrm{P}(3,2)$ lies on the line $2 x-y+k=0$
$\therefore \quad 2 \times 3-2+k=0 \Rightarrow k=-4$
21 Find the coordinates of the centroid of a triangle whose vertices are (0,6), (8, $12)$ and $(8,0)$

Solution: We know that the coordinates of the centroid of a triangle whose angular points are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ are

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

So, the coordinates of the centroid of a triangle whose vertices are $(0,6),(8,12)$ and $(8,0)$ are

$$
\left(\frac{0+8+8}{3}, \frac{6+12+0}{3}\right) \text { or, }\left(\frac{16}{3}, 6\right)
$$

22 If $x-2 y+k=0$ is a median of the triangle whose vertices are at points $\mathbf{A}(-1,3), \mathbf{B}$ $(0,4)$ and $C(-5,2)$ find the value of k.

Solution: The coordinates of the centroid G of $\triangle A B C$ are

$$
\left(\frac{-1+0-5}{3}, \frac{3+4+2}{3}\right) \text { i.e. }(-2,3)
$$

Since G lies on the median $x-2 y+k=0$. So, coordinates of G satisfy its equation.
$\therefore-2-6+k=0 \Rightarrow k=8$.

23 Prove that the diagonals of a rectangle bisect each other and are equal.

Solution: Let OACB be a rectangle such that OA is a along x-axis and Ob is along $y-$ axis. Let $\mathrm{OA}=a$ and $\mathrm{OB}=\mathrm{b}$.

Then, the coordinates of A and B are $(a, 0)$ and $(0, \mathrm{~b})$ respectively.

Since, OACB is a rectangle. Therefore,

$$
\mathrm{AC}=\mathrm{Ob} \Rightarrow \mathrm{AC}=\mathrm{b}
$$

Thus, we have

$$
\mathrm{OA}=a \text { and } \mathrm{AC}=\mathrm{b}
$$

So, the coordinates of C are $(a, \mathrm{~b})$

The coordinates of the mid - point of OC are $\left(\frac{a+0}{2}, \frac{b+0}{2}\right)=\left(\frac{a}{2}, \frac{b}{2}\right)$
Also, the coordinates of the mid - points of AB are $\left(\frac{a+0}{2}, \frac{0+b}{2}\right)=\left(\frac{a}{2}, \frac{b}{2}\right)$

Clearly, coordinates of the mid - point of OC and AB are same.
Hence, OC and AB bisect each other.
Also, $\mathrm{OC}=\sqrt{a^{2}+b^{2}}$ and $A B=\sqrt{(a-0)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}}$
$\therefore \quad O C=A B$

24 The area of a triangle, the coordinates of whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is

$$
\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|
$$

Proof Let ABC be a triangle whose vertices are A $\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$. Draw AL, BM and CN perpendiculars from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on the x - axis.

Clearly, ABML, ALNC and BMNC are all trapeziums.
We know that

$$
\text { Area of trapezium }=\frac{1}{2} \text { (sum of parallel sides) (Distance between them) }
$$

We have,

Area of $\triangle A B C=$ Area of trapezium ABML + Area of trapezium ALNC

-Area of trapezium BMNC

Let Δ denote the area of $\triangle A B C$. Then,

$$
\begin{aligned}
& \Delta=\frac{1}{2}(B M+A L)(M L)+\frac{1}{2}(A L+C N)(L N)-\frac{1}{2}(B M+C N)(M N) \\
& \Rightarrow \Delta=\left|\frac{1}{2}\left(y_{2}-y_{1}\right)\left(x_{1}-x_{2}\right)+\frac{1}{2}\left(y_{1}+y_{3}\right)\left(x_{3}-x_{1}\right)-\frac{1}{2}\left(y_{2}+y_{3}\right)\left(x_{3}-x_{2}\right)\right| \\
& \Rightarrow \Delta=\left\lvert\, \frac{1}{2}\left\{x_{1}\left(y_{2}+y_{1}-y_{1}-y_{3}\right)+x_{2}\left(-y_{2}-y_{1}+y_{2}+y_{3}\right)+x_{3}\left(y_{1}+y_{3}-y_{2}-y_{3}\right) \mid\right.\right. \\
& \Rightarrow \Delta=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|
\end{aligned}
$$

25 Find the area of the triangle formed by the points $A(5,2), B(4,7)$ and $C(7,-4)$.
Solution: Here, $x_{1}=5, y_{1}=2, x_{2}=4, y_{2}=7, x_{3}=7$ and $y_{3}=-4$
\therefore Area of $\triangle A B C=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|5(7+4)+4(-4-2)+7(2-7)|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|(5 \times 11+4 \times-6+7 \times-5)|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|(55-24-35)|=\frac{1}{2}|-4|=2$ sq. units
ALITER We have,

$$
\begin{aligned}
& 5 \cdot 4 \\
& 2 \times 4 \times-4 \times{ }_{2}^{5}
\end{aligned}
$$

\therefore Area of $\triangle A B C=\frac{1}{2}|(5 \times 7+4 \times-4+7 \times 2)-(4 \times 2+7 \times 7+5 \times-4)|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|(35-16+14)-(8+49-20)|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|33-(37)|=\frac{1}{2}|-4|=2$ sq. units.

26 Prove that the area of triangle whose vertices are $(t, t-2),(t+2, t+2)$ and $(t+3, t)$ is independent of t.

Solution: Let $\mathrm{A}=\left(x_{1}, y_{1}\right)=(t, t-2),=\left(x_{2}, y_{2}\right)=(t+2, t+2)$ and $\mathrm{C}=\left(x_{3}, y_{3}\right)=(t+3, t)$ be the vertices of the given triangle. Then,
\therefore Area of $\triangle A B C=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|\{t(t+2-t)+(t+2)(t-t+2)+(t+3)(t-2-t-2)\}|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|\{(2 t+2 t+4-4 t-12)\}|=|-4|=4$ sq. units

Clearly, area of $\triangle A B C$ is independent of t.
ALITER We have

\therefore Area of $\Delta A B C=\frac{1}{2}|\{t(t+2)+(t+2) t+(t+3)(t-2)\}-\{t+2)(t-2)|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}\left|\left(t^{2}+2 t+t^{2}+2 t+t^{2}+t-6\right)-\left(t^{2}-4+t^{2}+5 t+6+t^{2}\right)\right|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}\left|\left(3 t^{2}+5 t-6\right)-\left(3 t^{2}+5 t+2\right)\right|$
\Rightarrow Area of $\triangle A B c=\frac{1}{2}|-6-2|$
\Rightarrow Area of $\triangle A B C=4$ sq. units
Hence, Area of $\triangle A B C$ is independent of t .
27 If $A(4,-6), B(3,-2)$ and $C(5,2)$ are the vertices of $\triangle A B C$, then verify the fact that a median of a triangle ABC divides it into two triangles of equal areas.

Solution: Let D be the mid - point of BC. Then, the coordinates of D are $(4,0)$.
We have,

vw wv vv.sanıı,ieducation.com
\therefore Area of $\triangle A B C=\frac{1}{2}|(4 \times-2+3 \times 2+5 \times-6)-(3 \times-6+5 \times-2+4 \times 2)|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|(-8+6-30)-(-18-10+8)|$
$\Rightarrow \quad$ Area of $\triangle A B C=\frac{1}{2}|-32+20|=6$ sq. units.
Also, we have

$$
4 x^{3} x^{4} x^{4} x^{4}
$$

\therefore Area of $\triangle A B C=\frac{1}{2}\left|\begin{array}{l}\{(4 \times(-2)+3 \times 0+4 \times(-6)\} \\ -\{3 \times(-6)+4 \times(-2)+4 \times 0\}\end{array}\right|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|(-8+0-24)-(-18-8+0)|$
\Rightarrow Area of $\left.\triangle A B C=\frac{1}{2} \right\rvert\,(-32+26 \mid=3$ sq. units
$\therefore \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle A B C}=\frac{6}{3}=\frac{2}{1}$
\Rightarrow Area of $\triangle A B C=2($ Area of $\triangle A B D)$

28 Find the area of the triangle $A B C$ with $A(1,-4)$ and mid - points of sides through A being $(2,-1)$ and $(0,-1)$.

Solution: Let the coordinates of B and C be $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) respectively. It is given that the points E and F are the mid - points of AB and Ac respectively.

$$
\frac{x_{1}+1}{2}=2, \frac{y_{1}-4}{2}=-1 \text { and } \frac{x_{2}+1}{2}=0, \frac{y_{2}-4}{2}=-1
$$

$\Rightarrow x_{1}=3, y_{1}=2$ and $x_{2}=-1, y_{2}=2$

Thus, the coordinates of B and C are $(3,2)$ and $(-1,2)$ respectively.

www.sakshieducatıon.com
\therefore Area of $\triangle A B C=\frac{1}{2}|(2+6+4)-(-12-2+2)|$

$$
=\frac{1}{2}|12-(-12)|=12 \text { sq.units }
$$

Type IV. On finding the area of a quadrilateral when coordinates of its vertices are given

29 Find the area of the quadrilateral $A B C D$ whose vertices are respectively $A(1$, $1), B(7,-3) C(12,2)$ and $D(7,21)$.

Solution: We have,

$$
\text { Area of quadrilateral ABCD }=\mid \text { Area of } \triangle A B C|+| \text { Area of } \triangle A C D \mid
$$

We have,

$$
1
$$

\therefore Area of $\triangle A B C=\frac{1}{2}|(1 \times-3+7 \times 2+12 \times 1)-(7 \times 1+12 \times(-3)+1 \times 2)|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|(-3+14+12)-(7-36+2)|$
\Rightarrow Area of $\triangle A B C=\frac{1}{2}|23+27|=25$ sq. units.

Also, we have

\therefore Area of $\triangle A C D=\frac{1}{2}|(1 \times 2+12 \times 21+7 \times 1)-(12 \times 1+7 \times 2+1 \times 21)|$
\Rightarrow Area of $\triangle A C D=\frac{1}{2}|(2+252+7)-(12+14+21)|$
\Rightarrow Area of $\triangle A C D=\frac{1}{2}|261-47|=107$ sq. units.
\therefore Area of quadrilateral $\mathrm{ABCD}=25+107=132$ sq. units.
30 Prove that the points $(a, b+c),(b, c,+a)$ and $(c, a+b)$ are collinear.
Solution: Let Δ be the area of the triangle formed by the points $(a, b+c),(b, c,+a)$ and $(c, a+b)$

We have

$\therefore \Delta=\frac{1}{2}|\{a(c+a)+b(a+b)+c(b+c)\}-\{b(b+c)+c(c+a)+a(a+b)\}|$
$\Rightarrow \Delta=\frac{1}{2}\left|\left(a c+a^{2}+a b+b^{2}+b c+c^{2}\right)-\left(b^{2}+b c+c^{2}+c a+a^{2}+a b\right)\right|$
$\Rightarrow \Delta=0$

Hence, the given points are collinear.
31 For what value of x will the points $(x,-1),(2,1)$ and $(4,5)$ lie on a line ?
Solution: Given pints will be collinear if the area of the triangle formed by them is zero.
We have,

\therefore Area of the triangle $=0$
$\Rightarrow \mid\{x \times 1+2 \times 5+4 \times(-1)\}-\{(2 \times-1+4 \times 1+x \times 5\} \mid=0$
$\Rightarrow(x+10-4)-(-2+4+5 x)=0$
$\Rightarrow(x+6)-(5 x+2)=0$
$\Rightarrow-4 x+4=0$
$\Rightarrow x=1$

Hence, the given points lie on a line, if $x=1$.

32 If $P(x, y)$ is any point on the line joining the points $\mathbf{A}(a, 0)$ and $\mathbf{B}(\mathbf{0}, \mathbf{b})$, then show that $\frac{x}{a}+\frac{y}{b}=1$.

Solution: It is given that the point $P(x, y)$ lies on the line segment joining points A $(a, 0)$ and $\mathrm{B}(0, \mathrm{~b})$. Therefore, points $P(x, y) \mathrm{A}(a, 0)$ and $\mathrm{B}(0, \mathrm{~b})$ are collinear points.

$\therefore(x \times 0+a \times b+0 \times y)-(a \times y+0 \times 0+x \times b)=0$
$\Rightarrow a b-(a y+b x)=0$
$\Rightarrow a b=a y+b x \quad$ (Dividing throughout by ab)
$\Rightarrow \frac{a b}{a b}=\frac{a y}{a b}+\frac{b x}{a b}$
$\Rightarrow 1=\frac{y}{b}+\frac{x}{a}$ or $\frac{x}{a}+\frac{y}{b}=1$.

33 If the area of $\triangle A B C$ formed by $\mathbf{A}(x, y), B(1,2)$ and $C(2,1)$ is 6 square units, then prove that $x+y=15$ or,$x+y+9=0$.

Solution: We have,

$$
\text { Area of } \triangle A B C=6
$$

$\Rightarrow \frac{1}{2}|(2 x+1+2 y)-(x+4+y)|=6$
$\Rightarrow|x+y-3|=12$
$\Rightarrow x+y-3= \pm 12$
$\Rightarrow x+y-15=0$ or, $x+y+9=0$
$\Rightarrow x+y=15$ or,$x+y+9=0$

