Example - 1 Write the first five terms of the sequence defined by $a_{n}=(-1)^{n-1} \cdot 2^{n}$
Sol: \quad We have, $a_{n}=(-1)^{n-1} \cdot 2^{n}$
Putting $\mathrm{n}=1,2,3,4$, and 5 , we get

$$
\begin{aligned}
& a_{1}=(-1)^{1-1} \times 2^{1}=(-1)^{0} \times 2=2 \\
& a_{2}=(-1)^{2-1} \times 2^{2}=(-1)^{1} \times 4=-4 \\
& a_{3}=(-1)^{3-1} \times 2^{3}=(-1)^{2} \times 8=8 \\
& a_{4}=(-1)^{4-1} \times 2^{4}=(-1)^{3} \times 16=-16 .
\end{aligned}
$$

and

$$
a_{5}=(-1)^{5-1} \times 2^{5}=(-1)^{4} \times 32=32
$$

Example - 2 What is $18^{\text {th }}$ term of the sequence defined by $a_{n}=\frac{n(n-3)}{n+4}$
Sol: We have, $a_{n}=\frac{n(n-3)}{n+4}$
Putting $\mathrm{n}=18$, we get

$$
a_{18}=\frac{18 \times(18-3)}{18+4}=\frac{18 \times 15}{22}=\frac{135}{11}
$$

Example -3 Show that the sequence defined by $a_{n}=4 n+5$ is an A.P. Also, find its common difference.

Sol: We have, $a_{n}=4 n+5$
Replacing n by $(n+1)$, we get

$$
a_{n+1}=4(n+1)+5=4 n+9
$$

Now , $a_{n+1}-a_{n}=(4 n+9)-(4 n+5)=4$
Clearly, $a_{n+1}-a_{n}$ is independent of n and is equal to 4 .
So, the given sequence is an A.P. with common difference 4.
Example-4 Write an A.P. whose first term is 10 and common difference is 3.
Sol: We know that if a is the first term and d is the common difference, then the arithmetic progression is

$$
\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \mathrm{a}+3 \mathrm{~d}, \ldots .
$$

Here, $\quad a=10$ and d=3.
So, the arithmetic progression is $10,13,16,19,22, \ldots$.

Example - 5 Write an A.P. having 4 as the first term and -3 as the common difference.
Sol: The arithmetic progression with first term a and common difference d is given by $a, a+\mathrm{d}, a+2 \mathrm{~d}, a+3 \mathrm{~d}, \ldots .$.
i.e., each term is obtained by adding ' d ' to the preceding term.

Here, $\quad a=4$ and $\mathrm{d}=-3$.
So, the arithmetic progression is

$$
4,4+(-3), 4+2 \times(-3), 4+3(-3), 4+4(-3), \ldots .
$$

or, $4,1,-2,-5,-8, \ldots$

Example - 6 Find the $12^{\text {th }}, 24^{\text {th }}$ and nth term of the A.P. given by $9,13,17,21,25, \ldots$.
Sol: We have, $a=$ First term $=9$
and, $\mathrm{d}=$ Common difference $=4$

$$
[\because 13-9=4,17-13=4,21-17=4 \text { etc. }] \text { We know }
$$

that the nth term of an A.P. with first term a and common difference d is given by

$$
\begin{gathered}
a_{n}=a+(n-1) d \\
\therefore \quad a_{12}=a+(12-1) d=a+11 d=9+11 \times 4=53 \\
a_{24}=a+(24-1) d=a+23 d=9+23 \times 4=101
\end{gathered}
$$

and, $\quad a_{n}=a+(n-1) d=9+(n-1) \times 4=4 n+5$
Thus, we have

$$
a_{12}=53, a_{24}=101 \text { and } a_{n}=4 n+5
$$

Example - 7 Show that the sequence $9,12,15,18, \ldots$ is an A.P. Find its $16^{\text {th }}$ term and the general term.

Sol: We have,

$$
(12-9)=(15-12)=(18-15)=3
$$

Therefore, the given sequence is an A.P. with common difference 3.

$$
a=\text { First term }=9
$$

$\therefore \quad 16$ th term $=a_{16}=a+(16-1) d=a+15 d \quad\left[\because a_{n}=a+(n-1) d\right]$
$\Rightarrow a_{16}=9+15 \times 3=54$
$\because \quad$ General term $=$ nth term $=a+(n-1) d$
$\therefore \quad a_{n}=9+(n-1) \times 3=3 n+6$

Example - 8 Which term of the sequence $4,9,14,19, \ldots$ is 124 ?
Sol: Clearly, the given sequence is an A.P. with first term $a(=4)$ and common difference $\mathrm{d}(=5)$
Let 124 be the nth term of the given sequence. Then,
$a_{n}=124 \Rightarrow a+(n-1) d=124 \Rightarrow 4+(n-1) \times 5=124 \Rightarrow 5 n-1=124 \Rightarrow 5 n=125 \Rightarrow n=25$

Hence, 25 th term of the given sequence is 124 .

Example - 9 How many terms are there in the sequence $3,6,9,12, \ldots ., 111$?
Sol: Clearly, the given sequence is an A.P. with first term $a=3$ and common difference $\mathrm{d}=3$. Let there be n terms in the given sequence. Then,
nth term $=111$
$\Rightarrow a+(n-1) d=111$
$\Rightarrow 3+(n-1) \times 3=111 \Rightarrow n=37$
Thus, the given sequence contains 37 terms.

Example - 10 Find the middle term (s) of the A.P. 7, 13, 19, ..., 241.

Sol: Clearly, $7,13,19, \ldots, 241$ is an A.P. with first term $a=7$ and common differenced $\mathrm{d}=6$. Let there be n terms in the A.P. Then,

$$
a_{n}=241
$$

$$
\begin{aligned}
& \Rightarrow a+(n-1) d=241 \\
& \Rightarrow 7+6(n-1)=241 \\
& \Rightarrow 6 n=240 \Rightarrow n=40
\end{aligned}
$$

Clearly, n is even. So, $\left(\frac{n}{2}\right)^{\text {th }}=20^{\text {th }}$ and $\left(\frac{n}{2}+1\right)^{\text {th }}=21^{\text {th }}$ are middle terms and are given by

$$
a_{20}=a+(20-1) d=a+19 d=7+19 \times 6=121
$$

and $\quad a_{21}=a+(21-1) d=a+20 d=7+20 \times 6=127$

Example - 11 If the $8^{\text {th }}$ term of an A.P. is 31 and the $15^{\text {th }}$ term is 16 more than the $11^{\text {th }}$ term, find the A.P.

Sol : Let a be the first term and d be the common difference of the A.P. We have,

$$
\begin{aligned}
& a_{8}=31 \text { and } a_{15}=16+a_{11} \\
& \Rightarrow a+7 d=31 \text { and } a+14 d=16+a+10 d \\
& \Rightarrow a+7 d=31 \text { and } 4 d=16 \\
& \Rightarrow a+7 d=31 \text { and } d=4 \\
& \Rightarrow a+7 \times 4=31 \Rightarrow a+28=31 \Rightarrow a=3
\end{aligned}
$$

Hence, the A.P. is $a, a+\mathrm{d}, a+2 \mathrm{~d}, a+3 \mathrm{~d}, \ldots$ i.e., $3,7,11,15,19, \ldots$

Example - 12 Which term of the arithmetic progression $5,15,25, \ldots$ will be 130 more than its $31^{\text {st }}$ term?

Sol: We have, $a=5$ and $\mathrm{d}=10$
$\therefore a_{31}=a+30 d=5+30 \times 10=305$
Let $\mathrm{n}^{\text {th }}$ term of the given A.P. be 130 more than its $31^{\text {st }}$ term. Then,

$$
\begin{aligned}
\quad a_{n} & =130+a_{31} \\
\therefore \quad a+(n-1) d & =130+305 \\
\Rightarrow 5+10(n-1) & =435
\end{aligned}
$$

$\Rightarrow 10(n-1)=430$
$\Rightarrow n-1=43$
$\Rightarrow n=44$
Hence, $44^{\text {th }}$ term of the given A.P. is 130 more than its $31^{\text {st }}$ term.

Example - 13 Is 184 a term of the sequence $3,7,11, \ldots$. ?

Sol: Clearly, the given sequence is an A.P. with first term $a(=3)$ and common difference $\mathrm{d}(=4)$.

Let the nth term of the given sequence be 184. Then,

$$
\begin{gathered}
a_{n}=184 \\
\Rightarrow a+(n-1) d=184 \\
\Rightarrow 3+(n-1) \times 4=184 \Rightarrow 4 n=185 \Rightarrow n=46 \frac{1}{4}
\end{gathered}
$$

Since n is not a natural number. So, 184 is not a term of the given sequence.

Example - 14 If five times the fifth term of an A.P. is equal to 8 times its eighth term, show that its $13^{\text {th }}$ term is zero.

Sol: Let $a_{1}, a_{2}, a_{3}, \ldots . a_{n}, \ldots$ be the A.P. with its first term a and common difference d. It is given that

$$
\begin{aligned}
& 5 a_{5}=8 a_{8} \\
\Rightarrow & 5(a+4 d)=8(a+7 d) \\
\Rightarrow & 5 a+20 d=8 a+56 d \\
\Rightarrow & 3 a+36 d=0 \\
\Rightarrow & 3(a+12 d)=0 \\
\Rightarrow & a+12 d=0 \Rightarrow a+(13-1) d=0 \Rightarrow a_{13}=0
\end{aligned}
$$

Hence, $13^{\text {th }}$ term is zero.

Example - 15 If the $m^{\text {th }}$ term of an A.P. be $1 / n$ and $n^{\text {th }}$ term be $1 / \mathrm{m}$, then show that its $(\mathrm{mn})^{\text {th }}$ term is 1 .

Sol: Let a and d be the first term and common difference respectively of the given A.P. Then.

$$
\begin{aligned}
& \frac{1}{n}=m \text { th term } \Rightarrow \frac{1}{n}=a+(m-1) d \\
& \frac{1}{m}=n \text {th term } \Rightarrow \frac{1}{m}=a+(n-1) d
\end{aligned}
$$

On subtracting equation (ii) from equation (i), we get

$$
\frac{1}{n}-\frac{1}{m}=(m-n) d \Rightarrow \frac{m-n}{m n}=(m-n) d \Rightarrow d=\frac{1}{m}
$$

Putting $\mathrm{d}=\frac{1}{m n}$ in equation (i), we get

$$
\frac{1}{n}=a+\frac{(m-1)}{m n} \Rightarrow \frac{1}{n}=a+\frac{1}{n}-\frac{1}{m n} \Rightarrow a=\frac{1}{m n}
$$

$\therefore \quad(m n)$ th term $=a+(m n-1) d=\frac{1}{m n}+(m n-1) \frac{1}{m n}=1 \quad\left[\because a=\frac{1}{m n}=d\right]$

Example - 16 The sum of three numbers in A.P. is -3 , and their product is 8 . Find the numbers.

Sol: Let the numbers be $(a-d), a,(a+d)$. It is given that the sum of the numbers is -3 .
$\therefore(a-d)+a+(a+d)=-3 \Rightarrow 3 a=-3 \Rightarrow a=-1$
It is also given that the product of the product of the numbers is 8 .

$$
\left.\begin{array}{l}
\therefore(a-d)(a)(a+d)=8 \\
\Rightarrow a\left(a^{2}-d^{2}\right)=8 \\
\Rightarrow(-1)\left(1-d^{2}\right)=8 \\
\Rightarrow d^{2}=9 \Rightarrow d= \pm 3
\end{array} \quad[\because a=-1]\right)
$$

If $\mathrm{d}=3$, the numbers are $-4,-1,2$. If $\mathrm{d}=-3$, the numbers are $2,-1,-4$.

Thus, the numbers are $-4,-1,2$, or $2,-1,-4$.

Example-17 Find four numbers in A.P. whose sum is 20 and the sum of whose squares is 120.

Sol: Let the numbers be $(a-3 d),(a-d),(a+d),(a+3 d)$.Then,

$$
\text { Sum of numbers }=20
$$

$\Rightarrow(a-3 d)+(a-d)+(a+d)+(a+3 d)=20 \Rightarrow 4 a=20 \Rightarrow a=5$
It is given that, sum of the squares $=120$

$$
\begin{aligned}
& \Rightarrow(a-3 d)^{2}+(a-d)^{2}+(a+d)^{2}+(a+3 d)^{2}=120 \\
& \Rightarrow 4 a^{2}+20 d^{2}=120 \\
& \Rightarrow a^{2}+5 d^{2}=30 \\
& \Rightarrow 25+5 d^{2}=30 \\
& \Rightarrow 5 d^{2}=5 \Rightarrow d= \pm 1
\end{aligned}
$$

If $d=1$, then the numbers are $2,4,6,8$. If $d=-1$, then the numbers are $8,6,4,2$.

Thus, the numbers are $2,4,6,8$ or $8,6,4,2$.

Example - 18 Divide 32 into four parts which are in A.P. such that the product of extremes is to the product of means is 7:15.

Sol: Let the four parts be $(a-3 d),(a-d),(a+d)$ and $(a+3 d)$. Then,
Sum of the numbers $=32$
$\Rightarrow(a-3 d)+(a-d)+(a+d)+(a+3 d)=32 \Rightarrow 4 a=32 \Rightarrow a=8$
It is given that

$$
\frac{(a-3 d)(a+3 d)}{(a-d)(a+d)}=\frac{7}{15}
$$

$\Rightarrow \frac{a^{2}-9 d^{2}}{a^{2}-d^{2}}=\frac{7}{15}$
$\Rightarrow \frac{64-9 d^{2}}{64-d^{2}}=\frac{7}{15} \Rightarrow 128 d^{2}=512 \Rightarrow d^{2}=4 \Rightarrow d= \pm 2$

Thus, the four parts are $a-3 d, a-d, a+d$ and $a+3 d$ i.e., $2,6,10,14$.

Example - 19 Determine k so that $k^{2}+4 k+8,2 k^{2}+3 k+6,3 k^{2}+4 k+4$ are three consecutive terms of an A.P.

Sol: We now that if a, b, c are three consecutive terms of an A.P., then

$$
b-a=c-b \text { i.e. } 2 b=a+c
$$

Thus, if $k^{2}+4 k+8,2 k^{2}+3 k+6$ and $3 k^{2}+4 k+4$ are three consecutive terms of an A.P. then

$$
2\left(2 k^{2}+3 k+6\right)=\left(k^{2}+4 k+8\right)+\left(3 k^{2}+4 k+4\right)
$$

$\Rightarrow 4 k^{2}+6 k+12=4 k^{2}+8 k+12$
$\Rightarrow 2 k=0 \Rightarrow k=0$.

Example - 20 Find the sum of 20 terms of the A.P. 1, 4, 7, $10 \ldots$

Sol: Let a be the first term and d be the common difference of the given A.P. Then, we have

$$
a=1 \text { and } \mathrm{d}=3 \text {. }
$$

We have to find the sum of 20 terms of the given A.P.
Putting $a=1, \mathrm{~d}=3, \mathrm{n}=20$ in $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$, we get

$$
S_{20}=\frac{20}{2}\{2 \times 1+(20-1) \times 3\}=10 \times 59=590
$$

Example - 21 Find the sum of first 30 terms of an A.P. whose second term is 2 and seventh term is 22 .

Sol: Let a be the first term and d be the common difference of the given A.P. Then,

$$
a_{2}=2 \text { and } a_{7}=22
$$

$\Rightarrow a+d=2$ and $a+6 d=22$
Solving these two equations, we get $a=-2$ and $\mathrm{d}=4$. Putting $\mathrm{n}=30, a=-2$ and $\mathrm{d}=4$ in $S_{n}=\frac{n}{2}\{20+(n-1) d\}$, we obtain
$\therefore \quad S_{30}=\frac{30}{2}\{2 \times(-2)+(30-1) \times 4\}$
$\Rightarrow S_{30}=15(-4+116)=15 \times 112=1680$
Hence, the sum of first 30 terms is 1680.

Example - 22 Find the sum of all natural numbers between 250 and 1000 which are exactly divisible by 3 .

Sol : Clearly, the numbers between 250 and 1000 which are divisible by 3 are $252,255,258, \ldots$. , 999. This is an A.P. with first term $a=252$, Common difference $=3$ and last term $=999$. Let there be n terms in this A.P. then,

$$
a_{n}=999
$$

$\Rightarrow a+(n-1) d=999$
$\Rightarrow 252+(n-1) \times 3=999$
$\Rightarrow n=250$
\therefore Required sum $=S_{n}=\frac{n}{2}(a+l)=\frac{250}{2}(252+999)=156375$

Example - 23 If the sum of m terms of an A.P. is the same as the sum of its n terms, show that the sum of its $(\mathrm{m}=\mathrm{n})$ terms is zero.

Sol : Let a be the first term and d be the common difference of the given A.P. Then, $S_{m}=S_{n}$

$$
\begin{aligned}
& \Rightarrow \frac{m}{n}\{2 a+(m-1) d\}=\frac{n}{2}\{2 a+(n-1) d\} \\
& \Rightarrow 2 a(m-n)+\{m(m-1)-n(n-1)\} d=0 \\
& \left.\Rightarrow 2 a(m-n)+\left\{m^{2}-n^{2}\right)-(m-n)\right\} d=0 \\
& \Rightarrow(m-n)\{2 a+(m+n-1) d\}=0
\end{aligned}
$$

$$
\Rightarrow 2 a+(m+n-1) d=0 \quad[\because m-n \neq 0]
$$

Now,

$$
S_{m+n}=\frac{m+n}{2}\{2 a+(m+n-1) d\}=\frac{m+n}{2} \times 0=0
$$

Example - 24 The ratio of the sum of n terms of two A.P's is $(7 n+1):(4 n+27)$. Find the ratio of their $\mathbf{m}^{\text {th }}$ terms.

Sol: Let a_{1}, a_{2} be the first terms and d_{1}, d_{2} the common differences of the two given A.P.'s. Then, the sums of their n terms are given by

$$
\begin{aligned}
& \quad S_{n}=\frac{n}{2}\left\{2 a_{1}+(n-1) d_{1}\right\} \text { and }, S_{n}=\frac{n}{2}\left\{2 a_{2}+(n-1) d_{2}\right\} \\
& \therefore \frac{S_{n}}{S_{n}}=\frac{\frac{n}{2}\left\{2 a_{1}+(n-1) d_{1}\right\}}{\frac{n}{2}\left\{2 a_{2}+(n-1) d_{2}\right\}}=\frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}
\end{aligned}
$$

It is given that

$$
\begin{gathered}
\frac{S_{n}}{S_{n}^{\prime}}=\frac{7 n+1}{4 n+27} \\
\Rightarrow \frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{7 n+1}{4 n+27}
\end{gathered}
$$

To find the ratio of the $\mathrm{m}^{\text {th }}$ terms of the two given A.P.'s, we replace n by $(2 \mathrm{~m}-1)$ in equation (i).

Replacing n by ($2 \mathrm{~m}-1$) in equation (i), we get
$\therefore \quad \frac{2 a_{1}+(2 m-2) d_{1}}{2 a_{2}+(2 m-2) d_{2}}=\frac{7(2 m-1)+1}{4(2 m-1)+27}$
$\Rightarrow \frac{a_{1}+(m-1) d_{1}}{a_{2}+(m-1) d_{2}}=\frac{14 m-6}{8 m+23}$

Hence, the ratio of the $m^{\text {th }}$ terms of the two A.P.'s is $(14 m-6):(8 m+23)$.

Example - 25 The ratio of the sums of m and n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of the $\mathrm{m}^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ terms is $(2 \mathrm{~m}-1):(2 n-1)$.

Sol: Let a be the first term and d the common difference of the given $\mathrm{A}>\mathrm{p}$. Then, the sums of m and n terms are given by

$$
S_{m}=\frac{m}{2}\{2 a+(m-1) d\} \text { and, } S_{n}=\frac{n}{2}\{2 a+(n-1) d\} \text { respectively. }
$$

Then,

$$
\begin{aligned}
& \frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}} \\
& \Rightarrow \frac{\frac{m}{2}\{2 a+(m-1) d\}}{\frac{n}{2}\{2 a+(n-1) d\}}=\frac{m^{2}}{n^{2}} \\
& \Rightarrow \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n} \\
& \Rightarrow\{2 a+(m-1) d\} n=\{2 a+(n-1) d\} m \\
& \Rightarrow 2 a(n-m)=d(n-m) \\
& \Rightarrow d=2 a \\
& \therefore \frac{T_{m}}{T_{n}}=\frac{a+(m-1) d}{a+(n-1) d}=\frac{a+(m-1) 2 a}{a+(n-1) 2 a}=\frac{2 m-1}{2 n-1}
\end{aligned}
$$

Example - 26 Solve the equation : $1+4+7+10+\ldots . .+x=287$.

Sol: Here, $1,4,7,10, \ldots . x$, is an A.P. with first term $a=1$ and common difference $\mathrm{d}=3$. Let there the n terms in the A.P. Then, $x=n^{\text {th }}$ term $\Rightarrow x=1+(n-1) \times 3=3 n-2$

Now,

$$
\begin{aligned}
& 1+4+7+10+\ldots .+x=287 \\
& \Rightarrow \frac{n}{2}(1+x)=287 \quad\left[U \sin g S_{n}=\frac{n}{2}(a+l)\right] \\
& \Rightarrow \frac{n}{2}(1+3 n-2)=287 \\
& \Rightarrow 3 n^{2}-n=574 \Rightarrow 3 n^{2}-n-574=0 \Rightarrow 3 n^{2}-42 n+41 n-574=0 \\
& \Rightarrow 3 n(n-14)+41(n-14)=0 \\
& \Rightarrow(n-14)(3 n+41)=0 \Rightarrow n-14=0 \quad[\because 3 n+4 \neq 0] \\
& \Rightarrow n=14
\end{aligned}
$$

Putting $\mathrm{n}=14$ in (i), we get $x=3 \times 14-2=40$.

Example - 27 A man repays a long of $₹ 3250$ by paying $₹ 20$ in the first month and then increases the payment by ₹ 15 every month. How long will it take him to clear the loan?

Sol: Suppose the loan is cleared in n months. Clearly, the amounts form an A.P. with first term 20 and the common difference 15.
$\therefore \quad$ Sum of the amounts $=3250$

$$
\begin{aligned}
& \Rightarrow \frac{n}{2}\{2 \times 20+(n-1) \times 15\}=3250 \\
& \Rightarrow \frac{n}{2}(40+15 n-15)=3250 \\
& \Rightarrow n(15 n+25)=6500 \\
& \Rightarrow 15 n^{2}+25 n-6500=0 \\
& \Rightarrow 3 n^{2}+5 n-1300=0 \\
& \Rightarrow(n-20)(3 n+65)=0 \\
& \Rightarrow n=20 \text { or, } n=-\frac{65}{3} \Rightarrow n=20 \\
& \left.\hline \because n \neq-\frac{65}{3}\right]
\end{aligned}
$$

Thus, the loan is cleared in 20 months.

