Polynomials

Key Concepts

1. An algebraic expression in which the variable involved has only non- negative integral powers is called a Polynomial.
2. Algebraic expressions such as $3 x y, x^{2}+2 x, x^{3}-x^{2}+4 x+3, \pi r^{2}, a x+b$ etc. are called Polynomials.

Note: $x^{\frac{1}{2}}+3$ is not a polynomial because the first term $x^{\frac{1}{2}}$ is a term with an exponent that is not a non- negative integer. (i.e. $\frac{1}{2}$).
$2 x^{2}-\frac{3}{x}+5$ is not polynomial because it can be written as $2 x^{2}-3 x^{-1}+5$. Here the second term ($3 x^{-1}$) has a negative exponent (i.e., -1).
3. A variable is denoted by a symbol that can take any real value. We use the letter x, y, z etc. To denote variables. We have algebraic expressions such as $2 x, 3 x,-x, \frac{3}{4} x \ldots$ all in one variable x .
4. Each term of the polynomial consists of the products of a constant, called the coefficient of the term and a finite number of variables raised to non- negative integral powers.
5. In the polynomial $3 x^{2}+7 x+5$, each of the expressions $3 x^{2}, 7 x$ and 5 are terms. Each term of the polynomial has a coefficient, so in $3 x^{2}+7 x+5$, the coefficient of x^{2} is 3 , the coefficient of x is 7 and 5 is the coefficient of x^{0} (Remember $x^{0}=1$).
6. The degree of a polynomial is the highest degree of its variable term.
7. A polynomial in one variable x of degree n is an expression of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

Where $a_{0}, a_{1}, a_{2}, \ldots \ldots, a_{n}$ are constants and $a_{n} \neq 0$.
In particulars, if $a_{0}=a_{1}=a_{2}=a_{3}=\ldots=a_{n}=0$ (i.e. all the coefficients are zero), we get the zero polynomial, which is denoted by ' 0 '.
8. A polynomial may be a multinomial but every multinomial need not be a polynomial.

A linear polynomial with one variable may be a monomial or a binomial.
E.g. : $3 x$ or $2 x-5$.
9. Zero polynomial is a constant polynomial having many zeros.
10. Types of Polynomials: (Classification on the basis of number of terms)
i) Monomial: Polynomial containing one term is called monomial.

Example: $6 x^{2}, \frac{-3}{2} x y, 5 y, 8$
ii) Binomial: Polynomial containing two terms is called binomial.

Example: $4-3 x, 5 x^{2}+4 z$
iii) Trinomial: Polynomial containing three terms is called trinomial.

Example: $x^{2}-3 x+13$,
Order (or) Degree of monomial: Sum of the powers of variables of a monomial is known as degree of a monomial.

Example: $5 x^{2} y^{3}$
Degree of monomial is $2+3=5$.
11. Polynomial of Various Degrees:
(i) Linear polynomial: If the degree of a polynomial is one, then that polynomial is said to be linear polynomial.

Example: $2 x+5$

Note: The general form of a linear polynomial in one variable ' x ' is $a x+b$, where $a, b \in R$ and $a \neq 0$.
(ii) Quadratic Polynomial: If the degree of a polynomial is two, then that polynomial is said to be quadratic polynomial.

Example: $x^{2}+2 x+6$
Note: The general form of quadratic polynomial is $a x^{2}+b x+c$, where $a, b, c \in R$ and $a \neq 0$
iii) Cubic Polynomial: If the degree of polynomial is three, then that polynomial is said to be cubic polynomial.

Example: $3 x^{3}-4 x^{2}+3 x+6$
Note: The general form of a cubic polynomial is $a x^{3}+b x^{2}+c x+d$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ $\in R$ and $a \neq 0$.

Order (or) Degree of a Polynomial: The greatest degree of the terms in the polynomial is the degree of a polynomial.

Example: Degree of $6 x^{2}-3 x+4$ is 1 .
Note: The degree of a constant polynomial is zero.
12. Zero Polynomial : If all the coefficients of the polynomial are zeroes, then the polynomial is called zero polynomial

Note: Degree of zero polynomial is undefined.

13. Zero of a Polynomial

The number for which the value of a polynomial is zero that value of a variable is called zero of the polynomial.

Example: Zero of the polynomial $5 x+6$ is $\frac{-6}{5}$.
Remainder Theorem: If $f(x)$ is a polynomial in ' x ' of degree ≥ 1, ' a ' is any real number if $f(x)$ is divided by $(x-a)$, then the remainder is $f(a)$.

Division Algorithm: If $f(x), g(x)$ are two non - zero polynomial, then there exist polynomials $q(x)$ and $r(x)$ uniquely such that $f(x)=q(x) g(x)+r(x)$, where $r(x)=0$ or $\operatorname{deg} r$ $(x)<\operatorname{deg} g(x)$.
14. The general form of a "first degree polynomial" in one variable x is $a x+b$ where a and b are real numbers and $a \neq 0$.
15. A "Quadratic polynomial" in x with real coefficients is of the form $a x^{2}+b x+c$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers with $a \neq 0$.
16. A real number k is said to be a zero of a polynomial $\mathrm{p}(\mathrm{x})$, if $\mathrm{p}(\mathrm{k})=0$.
17. The zero of the linear polynomial $\mathrm{ax}+\mathrm{b}$ is $\frac{-b}{a}$.
18. A linear polynomial $a x+b,(a \neq 0)$, the graph of $y=a x+b$ is a "straight line" which intersects the X axis at exactly one point namely $\left(\frac{-b}{a}, 0\right)$.
19. i) A quadratic polynomial can have at most 2 zeroes.
20. ii) A cubic polynomial can have at most 3 zeroes.
21. If α and β are the zeroes of the quadratic polynomial $a x^{2}+b x+c$ then
i) $\alpha+\beta=\frac{-b}{a}=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$
ii) $\alpha \beta=\frac{c}{a}=\frac{\text { cons } \tan t \text { term }}{\text { coefficient of } x^{2}}$
22. For any quadratic polynomial $a x^{2}+b x+c, a \neq 0$. the graph of the corresponding equation $y=a x^{2}+b x+c$ either opens upwards like this \cup or open downwards like this \cap depends on whether $a>0$ or $a<0$. These curves are called parabolas.
23. A polynomial $\mathrm{p}(\mathrm{x})$ of degree n has almost ' n ' zeroes.
24. If α, β, γ are the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d=0$ then
i) $\alpha+\beta+\gamma=\frac{-b}{a}$
ii) $\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$
iii) $\alpha \beta \gamma=\frac{-d}{a}$
25. Division Algorithm:

Dividend $=$ Divisor \times Quotient + Remainder .

Example -1 $p(x)=x+2$. Find $p(1), p(2), p(-1)$ and $p(-2)$. What are zeroes of the polynomial $x+2$?
Solution: Let $p(x)=x+2$
Replace x by 1
$p(1)=1+2=3$
Replace x by 2
$p(2)=2+2=4$
Replace x by -1
$p(-1)=-1+2=1$
Replace x by -2
$p(-2)=-2+2=0$
Therefore, 1, 2, -1 are not the zeroes of the polynomial $x+2$, but -2 is the zero of the polynomial.

Example -2. Find a zero of the polynomial $p(x)=3 x+1$
Solution: Finding a zero of $\mathrm{p}(\mathrm{x})$, is same as solving the equation

$$
\mathrm{p}(\mathrm{x})=0
$$

i.e. $\quad 3 x+1=0$

$$
\begin{aligned}
& 3 x=-1 \\
& x=-\frac{1}{3}
\end{aligned}
$$

So, $-\frac{1}{3}$ is a zero of the polynomial $3 x+1$.
Example -3. If $\mathrm{p}(\mathrm{x})=\mathrm{ax}+\mathrm{b}, a \neq 0$. a linear polynomial, how will you find a zero of $\mathrm{p}(\mathrm{x})$?
Solution: As we have seen to find zero of a polynomial $p(x)$, we need to solve the polynomial equation $p(x)=0$

Which means $\mathrm{ax}+\mathrm{b}=0, \quad a \neq 0$.

$$
\begin{aligned}
& \text { So } \mathrm{ax}=-b \\
& \text { i.e., } x=\frac{-b}{a}
\end{aligned}
$$

So, $x=\frac{-b}{a}$ is the only zero of the polynomial $\mathrm{p}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$ i.e., A linear polynomial in one variable has only one zero.

Example -4. Verify whether 2 and 1 are zeroes of the polynomial $x^{2}-3 x+2$
Solution: \quad Let $\mathrm{p}(\mathrm{x})=x^{2}-3 x+2$

$$
\begin{aligned}
& \mathrm{p}(2)=(2)^{2}-3(2)+2 \\
& =4-6+2=0 \\
& \mathrm{p}(1)=(1)^{2}-3(1)+2 \\
& =1-3+2 \\
& =0
\end{aligned}
$$

Hence, both 2 and 1 are zeroes of the polynomial $x^{2}-3 x+2$.
Example -5 . What is the degree of the polynomial $x^{2}-3 x+2$? Is it a linear polynomial?
Solution: No, It is a quadratic polynomial. Hence, a quadratic polynomial has to zeroes.
Example-6. If 3 is a zero of the polynomial $x^{2}+2 x-a$. Find a ?
Solution: Let $\mathrm{p}(\mathrm{x})=x^{2}+2 x-a$
As the zero of this polynomial is 3 , we know that $\mathrm{p}(3)=0$.

$$
x^{2}+2 x-a=0
$$

Put $\mathrm{x}=3,(3)^{2}+2(3)-a=0$

$$
\begin{aligned}
9+6-a & =0 \\
15-a & =0 \\
-a & =-15 \\
\text { Or } \quad a & =15
\end{aligned}
$$

$$
\begin{aligned}
& x - 1 \longdiv { 2 x ^ { 3 } - 2 x ^ { 2 } - 2 x - 5 } \\
& \quad-2 x^{4}-2 x^{3}
\end{aligned}
$$

Example-7. Divide the polynomial $2 x^{4}-4 x^{3}-3 x-1$
by ($x-1$) and verify the remainder with zero of the divisor.

$$
\begin{aligned}
& -2 x^{3}-3 x-1 \\
& -2 x^{3}+2 x^{2}
\end{aligned}
$$

Solution: Let $f(x)=2 x^{4}-4 x^{3}-3 x-1$
First see how many times $2 x^{4}$ is of x .

$$
\frac{2 x^{4}}{x}=2 x^{3}
$$

www.sakshieducation.com

$$
\begin{aligned}
& \hline-2 x^{2}-3 x-1 \\
& -2 x^{2}+2 x \\
& +\quad- \\
& \hline \begin{array}{c}
-5 x-1 \\
-5 x+5 \\
+\quad
\end{array} \\
& \hline
\end{aligned}
$$

is $-2 x^{3}$. Now do the same.
Here the quotient is $2 x^{3}-2 x^{2}-2 x-5$ and the remainder is -6 .
Now, the zero of the polynomial ($\mathrm{x}-1$) is 1 .
Put $x=1$ in $f(x), f(x)=2 x^{4}-4 x^{3}-3 x-1$

$$
\begin{aligned}
& f(1)=2(1)^{4}-4(1)^{3}-3(1)-1 \\
& =2(1)-4(1)-3(1)-1 \\
& =2-4-3-1 \\
& =-6
\end{aligned}
$$

Example -8. Find the remainder when $x^{3}+1$ divided by $(x+1)$
Solution: Here $p(x)=x^{3}+1$
The zero of the linear polynomial $\mathrm{x}+1$ is $-1 \quad[\mathrm{x}+1=0, \mathrm{x}=-1]$

$$
\begin{aligned}
& p(-1)=(-1)^{3}+1 \\
& =-1+1 \\
& =0 .
\end{aligned}
$$

So, by Remainder Theorem, we know that $\left(x^{3}+1\right)$ divided by $(x+1)$ gives 0 as the remainder.

Example -9. Check whether $(\mathrm{x}-2)$ is a factor of $x^{3}-2 x^{2}-5 x+4$
Solution: Let $\mathrm{p}(\mathrm{x})=x^{3}-2 x^{2}-5 x+4$
To check whether the linear polynomial $(x-2)$ is a factor of the given polynomial,

$$
\text { Replace } x \text {, by the zero of }(x-2) \text { i.e. } x-2=0 \quad x=2 \text {. }
$$

$p(2)=(2)^{3}-2(2)^{2}-5(2)+4$

$$
\begin{aligned}
& =8-2(4)-10+4 \\
& =8-8-10+4 \\
& =-6 .
\end{aligned}
$$

As the remainder is not equal to zero, the polynomial ($\mathrm{x}-2$) is not a factor of the given polynomial $x^{3}-2 x^{2}-5 x+4$.

Example -10. Check whether the polynomial $p(y)=4 y^{3}+4 y^{2}-y-1$ is a multiple of $(2 y+1)$.
Solution: $\quad p\left(\frac{-1}{2}\right)=4\left(\frac{-1}{2}\right)^{3}+4\left(\frac{-1}{2}\right)^{2}-\left(\frac{-1}{2}\right)-1$

$$
\begin{aligned}
= & 4\left(\frac{-1}{8}\right)+4\left(\frac{1}{4}\right)+\frac{1}{2}-1 \\
& =\frac{-1}{2}+1+\frac{1}{2}-1 \quad=0
\end{aligned}
$$

So, $(2 y+1)$ is a factor of $p(y)$. That is $p(y)$ is a multiple of $(2 y+1)$.

Example - 11. If the polynomials $a x^{3}+3 x^{2}-13$ and $2 x^{3}-5 x+a$ are divided by ($\mathrm{x}-2$) leave the same remainder, find the value of a.

Solution: Let $\mathrm{p}(\mathrm{x})=a x^{3}+3 x^{2}-13$ and $q(x)=2 x^{3}-5 x+a$
$\because p(x)$ and $q(x)$ When divided by $\mathrm{x}-2$ leave same remainder.
$\therefore p(2)=q(2)$

$$
\begin{gathered}
a(2)^{3}+3(2)^{2}-13=2(2)^{3}-5(2)+a \\
8 a+12-13=16-10+a \\
8 a-1=a+6 \\
8 a-a=6+1 \\
7 a=7 \\
a=1
\end{gathered}
$$

Some More Important Problems

1. Write a quadratic polynomial and a cubic polynomial in variable x in the general form.

Sol. General form of a (in variable x)
i) Quadratic polynomial: $a x^{2}+b x+c$
ii) Cubic polynomial: $a x^{3}+b x^{2}+c x+d$.
2. i) $\mathrm{p}(\mathrm{x})=x^{2}-5 x-6$ find the value of $\mathrm{p}(1), \mathrm{p}(2), \mathrm{p}(3), \mathrm{p}(0), \mathrm{p}(-1), \mathrm{p}(-2), \mathrm{p}(-3)$.

Sol. $\quad P(x)=x^{2}-5 x-6$

$$
\begin{aligned}
p(1)=(1)^{2}-5(1)-6 & =1-5-6 \\
& =1-11=-10 \\
p(2)=(2)^{2}-5(2)-6 & =4-10-6 \\
& =4-16=-12
\end{aligned}
$$

$$
p(3)=(3)^{2}-5(3)-6=9-15-6
$$

$$
=9-21=-12
$$

$$
p(0)=(0)^{2}-5(0)-6=0-0-6=-6
$$

$$
p(-1)=(-1)^{2}-5(-1)-6=1+5-6
$$

$$
=6-6=0
$$

$$
p(-2)=(-2)^{2}-5(-2)-6=4+10-6
$$

$$
=14-6=8
$$

$$
p(-3)=(-3)^{2}-5(-3)-6=9+15-6
$$

$$
=24-6=18
$$

3. $p(m)=m^{2}-3 m+1$, find the value of $p(1)$ and $p(-1)$.

Sol. $p(m)=m^{2}-3 m+1$

$$
\begin{aligned}
P(1)=(1)^{2}-3(1)+1 & =1-3+1 \\
& =2-3=-1
\end{aligned}
$$

$P(-1)=(-1)^{2}-3(-1)+1=1+3+1=5$
4. Let $p(x)=x^{2}-4 x+3$. Find the value of $p(0), p(1), p(2), p(3)$ and obtain zeroes of the polynomial $\mathrm{p}(\mathrm{x})$.

Sol. $p(x)=x^{2}-4 x+3$
$p(0)=(0)^{2}-4(0)+3=0-0+3=3$
$p(1)=(1)^{2}-4(1)+3=1-4+3=4-4=0$
$p(2)=(2)^{2}-4(2)+3=4-8+3=7-8=-1$
$p(3)=(3)^{2}-4(3)+3=9-12+3=12-12=0$
We see that $p(1)=0$ and $p(3)=0$
These points $x=1$ and $x=3$ are called zeroes of the polynomial $p(x)=x^{2}-4 x+3$.
5. Check whether -3 and 3 are the zeroes of the polynomial $x^{2}-9$.

Sol. $p(x)=x^{2}-9 \Rightarrow p(-3)=(-3)^{2}-9=9-9=0$

$$
\begin{aligned}
& p(3)=(3)^{2}-9=9-9=0 \\
& \quad p(-3)=0 \text { and } p(3)=0
\end{aligned}
$$

-3 and 3 are the zeroes of the polynomial $p(x)=x^{2}-9$.
6. If $p(t)=t^{3}-1$, find the values of $p(1), p(-1), p(0), p(2), p(-2)$.

Sol: $p(t)=t^{3}-1$,
$p(1)=(1)^{3}-1,=1-1=0$
$p(-1)=(-1)^{3}-1,=-1-1=-2$
$p(0)=(0)^{3}-1,=0-1=-1$
$\mathrm{p}(2)=(2)^{3}-1,=8-1=7$
$p(-2)=(-2)^{3}-1,=-8-1=-9$
7. Check whether -2 and 2 are the zeroes of the polynomial $x^{4}-16$.

Sol: $p(x)=x^{4}-16$.
$p(-2)=(-2)^{4}-16=16-16=0$
$p(2)=(2)^{4}-16=16-16=0$
yes, -2 and 2 are zeroes of the polynomial $x^{2}-16$.
8. Check whether 3 and -2 are the zeroes of the polynomial $p(x)$ when $p(x)=x^{2}-x-6$.

Sol: $p(x)=x^{2}-x-6$.
$p(3)=(3)^{2}-3-6=9-3-6=9-9=0$
$p(-2)=(-2)^{2}-(-2)-6=4+2-6=6-6=0$
yes, 3 and - 2 are zeroes of the polynomial $p(x)=x^{2}-x-6$
9. Why are $\frac{1}{4}$ and -1 zeroes of the polynomials $p(x)=4 x^{2}+3 x-1$?

Sol: $\quad p(x)=4 x^{2}+3 x-1$

$$
\begin{aligned}
& p\left(\frac{1}{4}\right)= 4\left(\frac{1}{4}\right)^{2}+3\left(\frac{1}{4}\right)-1 \\
&=4 \times \frac{1}{16}+\frac{3}{4}-1 \\
&=\frac{1}{4}+\frac{3}{4}-1=\frac{1+3-4}{4} \\
&=\frac{4-4}{4}=\frac{0}{4}=0 \\
& p\left(\frac{1}{4}\right)=0 \\
& p(-1)=4(-1)^{2}+3(-1)-1 \\
&=4 \times 1-3-1 \\
&=4-3-1=4-4=0 \\
& p(-1)=0 \\
& p\left(\frac{1}{4}\right)=0 \text { and } p(-1)=0 \\
& \frac{1}{4} \text { and }-1 \text { are zeroes of the polynomial } \mathrm{p}(\mathrm{x})=4 \mathrm{x}^{2}+3 \mathrm{x}-1
\end{aligned}
$$

10 Find the zeros of the quadratic polynomial $x^{2}+7 x+12$, and verify the relation between the zeros and its coefficients.

Solution:

The zeros of $f(x)$ are given by $f(x)=0$.
Now, $f(x)=0$

$$
\begin{aligned}
& \Rightarrow x^{2}+7 x+12=0 \\
& \Rightarrow \quad(x+4)(x+3)=0 \\
& \Rightarrow x+4=0 \text { or }, x+3=0 \\
& \Rightarrow x=-4 \text { or }, x=-3 .
\end{aligned}
$$

Thus, the zeros of $f(x)=x^{2}+7 x+12$ are $\alpha=-4$ and $\beta=-3$.
Now,

$$
\begin{aligned}
& \text { Sum of the zeros }=\alpha+\beta=(-4)+(-3)=-7 \text { and, }-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=-\frac{7}{1}=-7=-\frac{b}{a} \\
& \text { Product of the zeros }=\alpha \beta=(-4) \times(-3)=12 \text { and, } \frac{\text { Constant term }}{\text { Coefficient of } x^{2}}=\frac{12}{1}=12=\frac{c}{a}
\end{aligned}
$$

11. Find the zeros of the quadratic polynomial $f(x)=6 x^{2}-3$, and verify the relationship between the zeros and its coefficients:

Solution:

The zeros of $f(x)$ are given by $f(x)=0$.
Now, $f(x)=0$

$$
\begin{aligned}
& 6 x^{2}-3=0 \Rightarrow(\sqrt{6} x)^{2}-(\sqrt{3})^{2} \\
& \Rightarrow(\sqrt{6} x-\sqrt{3})(\sqrt{6} x+\sqrt{3})=0 \\
& \Rightarrow \sqrt{6} x-\sqrt{3}=0 \text { or, } \sqrt{6} x+\sqrt{3}=0
\end{aligned}
$$

$$
\Rightarrow x=\frac{\sqrt{3}}{\sqrt{6}} \text { or, } x=\frac{-\sqrt{3}}{\sqrt{6}}
$$

$$
x=\frac{1}{\sqrt{2}} \text { or, } x=-\frac{1}{\sqrt{2}}
$$

Hence, the zeros of $f(x)=6 x^{2}-3$ are : $\alpha=\frac{1}{\sqrt{2}}$ and $\beta=-\frac{1}{\sqrt{2}}$
Now,

$$
\text { Sum of the zeros }=\alpha+\beta=\frac{1}{\sqrt{2}}+\left(-\frac{1}{\sqrt{2}}\right)=0 \text { and, } \frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=-\frac{0}{6}=0
$$

Also,

$$
\text { Product of the zeros }=\alpha \beta=\frac{1}{\sqrt{2}} \times \frac{-1}{\sqrt{2}}=\frac{-1}{2} \text { and, } \frac{\text { Cons } \tan t \text { term }}{\text { Coefficient of } x^{2}}=\frac{-3}{6}=\frac{-1}{2}
$$

12. Find the zeros of the polynomial $f(u)=4 u^{2}+8 u$, and verify the relationship between the zeros and its coefficients.

Solution

$$
\begin{aligned}
& f(u)=4 u^{2}+8 u, \\
& \Rightarrow \quad f(u)=4 u(u+2)
\end{aligned}
$$

The zeros of $f(u)$ are given by $f(u)=0$.
Now, $f(u)=0$

$$
\begin{aligned}
& \Rightarrow 4 u(u+2)=0 \\
& \Rightarrow u=0 \text { or }, u+2=0 \\
& \Rightarrow u=0 \text { or, } u=-2
\end{aligned}
$$

Hence, the zeros of $\mathrm{f}(\mathrm{u})$ are : $\alpha=0$ and $\beta=-2$
Now,

$$
\alpha+\beta=0+(-2)=-2 \text { and } \alpha \beta=0 \times-2=0
$$

$\therefore \quad$ Sum of the zeros $=-\frac{\text { Coefficient of } u}{\text { Coefficient of } u^{2}}$ and, Pr oduct of the zeros $\frac{\text { Cons } \tan t \text { term }}{\text { Coefficient of } u^{2}}$
13. Find the zeros of the polynomial $f(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$, and verify the relationship between the zeros and its coefficients.

Solution: We have,

$$
\begin{array}{ll}
f(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}, & 4 \sqrt{3} \times-2 \sqrt{3}=-24 \\
\Rightarrow f(x)=4 \sqrt{3} x^{2}+8 x-3 x-2 \sqrt{3} & +8 \times-3=-24 \\
\Rightarrow f(x)=4 x(\sqrt{3} x+2)-\sqrt{3}(\sqrt{3} x+2) & +8+(-3)=+5 \\
\Rightarrow f(x)=(\sqrt{3} x+2)(4 x-\sqrt{3}) &
\end{array}
$$

The zeros of $f(x)$ are given by $f(x)=0$.
Now, $f(x)=0$

$$
\begin{aligned}
& \Rightarrow(\sqrt{3} x+2)(4 x-\sqrt{3})=0 \\
& \Rightarrow \sqrt{3} x+2=0 \text { or, } 4 x-\sqrt{3}=0 \\
& \Rightarrow x=-\frac{2}{\sqrt{3}} \text { or, } x=\frac{\sqrt{3}}{4}
\end{aligned}
$$

Hence, the zeros of $\mathrm{f}(\mathrm{x})$ are: $\alpha=-\frac{2}{\sqrt{3}}$ and $\beta=\frac{\sqrt{3}}{4}$
Now,

$$
\alpha+\beta=-\frac{2}{\sqrt{3}}+\frac{\sqrt{3}}{4}=\frac{-8+3}{4 \sqrt{3}}=-\frac{5}{4 \sqrt{3}} \text { and, } \alpha \beta=\frac{-2}{\sqrt{3}} \times \frac{\sqrt{3}}{4}=-\frac{1}{2}
$$

Also,

$$
-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=-\frac{5}{4 \sqrt{3}} \text { and, } \frac{\text { Cons } \tan t \text { term }}{\text { Coefficient of } x^{2}}=\frac{-2 \sqrt{3}}{4 \sqrt{3}}=-\frac{1}{2}
$$

Hence, sum of the roots $=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$ and, Pr oduct of the roots $\frac{\text { Cons } \tan t \text { term }}{\text { Coefficient of } x^{2}}$
14. Find the zeros of the quadratic polynomial $f(x)=a b x^{2}+\left(b^{2}-a c\right) x-b c$, and verify the relationship between the zeros and its coefficients.

Solution:

$$
\begin{aligned}
& f(x)=a b x^{2}+\left(b^{2}-a c\right) x-b c, \\
& \Rightarrow f(x)=a b x^{2}+b^{2} x-a c x-b c, \\
& \Rightarrow f(x)=b x(a x+b)-c(a x+b) \\
& \Rightarrow f(x)=(a x+b)(b x-c)
\end{aligned}
$$

The zeros of $f(x)$ are given by $f(x)=0$.
Now, $\quad f(x)=0$

$$
\begin{aligned}
& \Rightarrow(a x+b)(b x-c)=0 \\
& \Rightarrow a x+b=0 \text { or, } b x-c=0 \\
& \Rightarrow x=-\frac{b}{c} \text { or, } x=\frac{c}{b}
\end{aligned}
$$

Thus, the zeros of $\mathrm{f}(\mathrm{x})$ are: $\alpha=-\frac{b}{a}$ and, $\beta=\frac{c}{b}$
Now,

$$
\alpha+\beta=-\frac{b}{a}+\frac{c}{b}=\frac{a c-b^{2}}{a b} \text { and }, \alpha \beta=-\frac{b}{a} \times \frac{c}{b}=-\frac{c}{a}
$$

Also,

$$
-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=-\left(\frac{b^{2}-a c}{a b}\right)=\frac{a c-b^{2}}{a b} \text { and, } \frac{\text { Constan term }}{\text { Coefficient of } x^{2}}=-\frac{b c}{a b}=-\frac{c}{a}
$$

Hence,

$$
\text { Sum of the zeros }=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}} \text { and, } \operatorname{Pr} \text { oduct of the zeros } \frac{\text { Cons } \tan t \text { term }}{\text { Coefficient of } x^{2}}
$$

15. Find the zeros of the polynomial $x^{2}+\frac{1}{6} x-2$, and verify the relation between the coefficients and zeros of the polynomial.

Solution: Let $f(x)=x^{2}+\frac{1}{6} x-2$. Then,
$f(x)=\frac{1}{6}\left(6 x^{2}+x-12\right)=\frac{1}{6}\left(6 x^{2}+9 x-8 x-12\right)$
$\Rightarrow f(x)=\frac{1}{6}\left\{\left(6 x^{2}+9 x\right)-(8 x+12)\right\}=\frac{1}{6}\{3 x(2 x+3)-4(2 x+3)\}=\frac{1}{6}(2 x+3)(3 x-4)$
The zeros of $f(x)$ are given by $f(x)=0$.
Now, $f(x)=0 \Rightarrow \frac{1}{6}(2 x+3)(3 x-4)=0 \Rightarrow 2 x+3=0$ or, $3 x-4=0 \Rightarrow x=\frac{-3}{2}$ or, $x=\frac{4}{3}$
Hence, $\alpha=\frac{-3}{2}$ and $\beta=\frac{4}{3}$ are the zeros of the given polynomial.
Now,

$$
\alpha+\beta=\left(-\frac{3}{2}\right)+\frac{4}{3}=-\frac{1}{6} \text { and, } \alpha \beta=\left(\frac{-3}{2}\right)\left(\frac{4}{3}\right)=-2
$$

The given polynomial is $f(x)=x^{2}+\frac{1}{6} x-2$.

$$
-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=-\left(\frac{-1 / 6}{1}\right)=\frac{-1}{6} \text { and, } \frac{\text { Cons } \tan t \text { term }}{\text { Coefficient of } x^{2}}=\frac{-2}{1}=-2
$$

Clearly,

$$
\alpha+\beta=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}} \text { and, } \alpha \beta=\frac{\text { Cons } \tan t \text { term }}{\text { Coefficient of } x^{2}}
$$

Hence, the relation between the coefficients and zeros is verified.
16. If α and β are the zeros of the quadratic polynomial $f(x)=x^{2}-p x+q$, then find the values of (i) $\alpha^{2}+\beta^{2}$ (ii) $\frac{1}{\alpha}+\frac{1}{\beta}$

Solution: It is given that α and β are the zero of the polynomial $f(x)=x^{2}+-p x+q$,
$\therefore \quad \alpha+\beta=-\left(\frac{-p}{1}\right)=p$ and, $\alpha \beta=\frac{q}{1}=q$
(i) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=p^{2}-2 q$

$$
[\because \alpha+\beta=p \text { and } \alpha \beta=q]
$$

(ii) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{p}{q}$
17. Find a quadratic polynomial, the sum and product of whose zeroes are $\sqrt{2}$ and $-\frac{3}{2}$ respectively. Also, find its zeroes.
Solution: Let α, β be the zeros of required polynomial. It is given that $\alpha+\beta=\sqrt{2}$ and $\alpha \beta=-\frac{3}{2}$. The quadratic polynomial is $f(x)=x^{2}-(\alpha+\beta) x+\alpha \beta$ or, $f(x)=x^{2}-\sqrt{2} x-\frac{3}{2}$

Now, $f(x)=x^{2}-\sqrt{2} x-\frac{3}{2}$

$$
\begin{aligned}
& \Rightarrow f(x)=\frac{1}{2}\left(2 x^{2}-2 \sqrt{2} x-3\right) \\
& \Rightarrow f(x)=\frac{1}{2}\left(2 x^{2}-3 \sqrt{2} x+\sqrt{2} x-3\right) \\
& \Rightarrow f(x)=\frac{1}{2}\{\sqrt{2} x(\sqrt{2} x-3)+(\sqrt{2} x-3)\} \\
& \Rightarrow f(x)=\frac{1}{2}(\sqrt{2} x-3)(\sqrt{2} x+1)
\end{aligned}
$$

The zeroes of $f(x)$ are given by $f(x)=0$.
Now, $f(x)=0$
$\Rightarrow \frac{1}{2}(\sqrt{2} x-3)(\sqrt{2} x+1)=0 \Rightarrow \sqrt{2} x-3=0$ or, $\sqrt{2} x+1=0 \Rightarrow x=\frac{3}{\sqrt{2}}$ or, $x=-\frac{1}{\sqrt{2}}$
Hence, the zeroes of $\mathrm{f}(\mathrm{x})$ are $\frac{3}{\sqrt{2}}$ and $-\frac{1}{\sqrt{2}}$.
18. If α and β are the zeros of the quadratic polynomial $f(x)=a x^{2}+b x+c$, then evaluate:
(i) $\alpha^{2}+\beta^{2}$
(ii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
(iii) $\alpha^{3}+\beta^{3}$
(iv) $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}$
(v) $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$

Solution: It is given that α and β are the zeros of the quadratic polynomial $f(x)=a x^{2}+b x+c$,

$$
\alpha+\beta=-\frac{b}{c} \text { and } \alpha \beta=\frac{c}{a}
$$

(i) We know that

$$
\begin{aligned}
& \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\
& \alpha^{2}+\beta^{2}=\left(\frac{-b}{a}\right)^{2}-\frac{2 c}{a}=\frac{b^{2}-2 a c}{a^{2}}
\end{aligned}
$$

(ii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{\left(\frac{-b}{a}\right)^{2}-2\left(\frac{c}{a}\right)}{\frac{c}{a}}=\frac{b^{2}-2 a c}{a c}$
(iii) We know that $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$
$\therefore \alpha^{3}+\beta^{3}=\left(\frac{-b}{a}\right)^{3}-3 \frac{c}{a}\left(\frac{-b}{a}\right)=\frac{-b^{3}}{a^{3}}+\frac{3 b c}{a^{2}}=\frac{-b^{3}+3 a b c}{a^{3}}=\frac{3 a b c-b^{3}}{a^{3}}$
(iv) $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{\alpha^{3}+\beta^{3}}{(\alpha \beta)^{3}}=\frac{\frac{3 a b c-b^{3}}{a^{3}}}{\left(\frac{c}{a}\right)^{3}}=\frac{3 a b c-b^{3}}{c^{3}}$
(v) $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{\alpha \beta}=\frac{\left(-\frac{b}{a}\right)^{3}-3\left(\frac{c}{a}\right)\left(-\frac{b}{a}\right)}{\frac{c}{a}}=\frac{3 a b c-b^{3}}{a^{2} c}=\frac{b\left(3 a c-b^{2}\right)}{a^{2} c}$
19. If α and β are the zeros of the quadratic polynomial $f(x)=a x^{2}+b x+c$, then evaluate:
i) $\alpha^{4}+\beta^{4}$
(ii) $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}$

Solution It is given that α and β are the zeros of the quadratic polynomial $f(x)=a x^{2}+b x+c$,
$\therefore \quad \alpha+\beta=-\frac{b}{a}$ and, $\alpha \beta=\frac{c}{a}$
(i) $\alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}$
$\Rightarrow \quad \alpha^{4}+\beta^{4}=\left\{(\alpha+\beta)^{2}-2 \alpha \beta\right\}^{2}-2(\alpha \beta)^{2}$
$\Rightarrow \alpha^{4}+\beta^{4}=\left\{\left(-\frac{b}{a}\right)^{2}-2 \frac{c}{a}\right\}^{2}-2\left(\frac{c}{a}\right)^{2} \quad\left[\because \alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}\right]$
$\Rightarrow \alpha^{4}+\beta^{4}=\left(\frac{b^{2}-2 a c}{a^{2}}\right)^{2}-\frac{2 c^{2}}{a^{2}}=\frac{\left(b^{2}-2 a c\right)^{2}-2 a^{2} c^{2}}{a^{4}}$
(ii)

$$
\begin{aligned}
\frac{\alpha^{2}}{\beta^{2}} & +\frac{\beta^{2}}{\alpha^{2}}=\frac{\alpha^{4}+\beta^{4}}{\alpha^{2} \beta^{2}}=\frac{\left(b^{2}-2 a c\right)^{2}-2 a^{2} c^{2}}{a^{4} \times\left(\frac{c}{a}\right)^{2}} \\
& =\frac{\left(b^{2}-2 a c\right)^{2}-2 a^{2} c^{2}}{a^{2} c^{2}}
\end{aligned}
$$

20. Find a quadratic polynomial if the zeroes of it are 2 and $\frac{-1}{3}$ respectively.

Sol: Let the quadratic polynomial be $a x^{2}+b x+c, a \neq 0$ and its zeroes be α and β Here $\alpha=2, \beta=\frac{-1}{3}$

Sum of the zeroes $=(\alpha+\beta)$

$$
=2+\left(\frac{-1}{3}\right)=\frac{5}{3}
$$

Product of the zeroes $=(\alpha \beta)$

$$
=2\left(\frac{-1}{3}\right)=\frac{-2}{3}
$$

Therefore the quadratic polynomial $a x^{2}+b x+c$ is $k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$,

Where K is a constant $=K\left[x^{2}-\frac{5}{3} x-\frac{2}{3}\right]$
We can put different values of k.
When $\mathrm{k}=3$, the quadratic polynomial will be $3 \mathrm{x}^{2}-5 \mathrm{x}-2$.
21. Find a quadratic polynomial with zeroes -2 and $\frac{1}{3}$.

Sol: Let the quadratic polynomial be
$a x^{2}+b x+c, a \neq 0$ and its zeroes be α and β
Here $\alpha=-2 ; \beta=\frac{1}{3}$
Sum of the zeroes $=(\alpha+\beta)=(-2)+\frac{1}{3}$

$$
=\frac{-6+1}{3}=\frac{-5}{3}
$$

Product of the zeroes $=\alpha \beta=(-2)\left(\frac{1}{3}\right)$

$$
=\frac{-2}{3}
$$

\therefore The quadratic polynomial $a x^{2}+b x+c$ is
$K\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$ Where k is a constant
$=k\left[x^{2}-\left(\frac{-5}{3}\right) x+\left(\frac{-2}{3}\right)\right]$
We can put different values of k
When $\mathrm{k}=3$ the quadratic polynomial will be $3 x^{2}+5 x-2$
22. What is the quadratic polynomial whose sum of zeroes is $\frac{-3}{2}$ and the product of zeroes is $\mathbf{- 1}$.

Sol : Sum of zeroes $=(\alpha+\beta)=\frac{-3}{2}$
Product of zeroes $=\alpha \beta=-1$
\therefore The quadratic polynomial $a x^{2}+b x+c$ is
$K\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$ where k is a constant.
$=k\left[x^{2}-\left(\frac{-3}{2}\right) x+(-1)\right]$
We can put different values of k
When $\mathrm{k}=2$ the quadratic polynomial will be $2 x^{2}+3 x-2$.
23. If α, β, γ are the zeroes of the given cubic polynomials, find the values as given in the table.

S.No.	Cubic Polynomial	$\alpha+\beta+\gamma$	$\alpha \beta+\beta \gamma+\gamma \alpha$	$\alpha \beta \gamma$
1.	$x^{3}+3 x^{2}-x-2$	$\frac{-b}{a}=\frac{-3}{1}=-3$	$\frac{c}{a}=\frac{-1}{1}=-1$	$\frac{-d}{a}=\frac{-(-2)}{1}=2$
2.	$4 x^{3}+8 x^{2}-6 x-2$	$\frac{-b}{a}=\frac{-8}{4}=-2$	$\frac{c}{a}=\frac{-6}{4}=-\frac{-3}{2}$	$\frac{-d}{a}=\frac{-(-2)}{4}=\frac{1}{2}$
3.	$x^{3}+4 x^{2}-5 x-2$	$\frac{-b}{a}=\frac{-4}{1}=-4$	$\frac{c}{a}=\frac{-5}{1}=-5$	$\frac{-d}{a}=\frac{-(-2)}{1}=2$
4.	$x^{3}+5 x^{2}+4$			
$x^{3}+5 x^{2}+0 . x+4$	$\frac{-b}{a}=\frac{-5}{1}=-5$	$\frac{c}{a}=\frac{0}{1}=0$	$\frac{-d}{a}=\frac{-4}{1}=-4$	

24. Verify that $3,-1,-\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x)=3 x^{3}-5 x^{2}-11 x-3$, and then verify the relationship between the zeroes and the coefficients.

Sol : Comparing the given polynomial with
$a x^{3}+b x^{2}+c x+d$, we get
$a=3, b=-5, c=-11, d=-3$.
Further

$$
\begin{aligned}
& p(3)=3 \times 3^{3}-\left(5 \times 3^{2}\right)-(11 \times 3)-3 \\
& \quad=81-45-33-3=0 \\
& p(-1)=-3-5+11-3=0 \\
& p\left(-\frac{1}{3}\right)=-\frac{1}{9}-\frac{5}{9}+\frac{11}{3}-3=-\frac{2}{3}+\frac{2}{3}=0
\end{aligned}
$$

Therefore, $3,-1$, and $-\frac{1}{3}$ are the zeroes of $3 x^{3}-5 x^{2}-11 x-3$.
So, we take $\alpha=3, \beta=-1$ and $\gamma=-\frac{1}{3}$.
Now,

$$
\begin{aligned}
& \alpha+\beta+\gamma=3+(-1)+\left(-\frac{1}{3}\right)=2-\frac{1}{3}=\frac{5}{3} \\
& \quad=\frac{-(-5)}{3}=\frac{-b}{a}, \\
& \alpha \beta+\beta \gamma+\gamma \alpha=3 x(-1)+(-1) \times\left(-\frac{1}{3}\right)+ \\
& \left(-\frac{1}{3}\right) \times 3=-3+\frac{1}{3}-1=\frac{-11}{3}=\frac{c}{a}, \\
& \alpha \beta \gamma=3 \times(-1) \times\left(-\frac{1}{3}\right)=-1=\frac{-(-3)}{3}=\frac{-d}{a}
\end{aligned}
$$

25. Find the quadratic polynomial in each case, with the given numbers as the sum and product of its zeroes respectively.
i) $\frac{1}{4},-1$
ii) $\sqrt{2}, \frac{1}{3}$
iii) $0, \sqrt{5}$
iv) 1,1
v) $\frac{-1}{4}, \frac{1}{4}$
vi) 4,1

Sol : i) Let the quadratic polynomial be $a x^{2}+b x+c$, and its zeroes be α and β
We have, $\alpha+\beta=\frac{1}{4}=\frac{-(-1)}{4}=\frac{-b}{a}$

$$
\alpha \beta=-1=\frac{-4}{4}=\frac{c}{a}
$$

If we take $a=4 ; b=-1 ; c=-4$
\therefore The quadratic polynomial which fits the given conditions is $4 x^{2}-x-4$.
ii) Let the quadratic polynomial be $a x^{2}+b x+c$, and its zeroes be α and β

We have, $\alpha+\beta=\sqrt{2}=\frac{-(-\sqrt{2})}{1}=\frac{-b}{a}$

$$
\begin{aligned}
& =\frac{-(-3 \sqrt{2})}{3} \\
& \alpha \beta=\frac{1}{3}=\frac{c}{a}
\end{aligned}
$$

If we take $a=3, b=-3 \sqrt{2} ; c=1$
\therefore The quadratic polynomial which fits the given conditions is $3 x^{2}-3 \sqrt{2} x+1$
iii) Let the quadratic polynomial be $a x^{2}+b x+c$, and its zeroes be α and β

We have, $\alpha+\beta=0=\frac{0}{1}=\frac{-b}{a}$

$$
\alpha \beta=\sqrt{5}=\frac{\sqrt{5}}{1}=\frac{c}{a}
$$

If we take $a=1 ; b=0 ; c=\sqrt{5}$
\therefore The quadratic polynomial which fits the given conditions is

$$
x^{2}+0 . x+\sqrt{5}=x^{2}+\sqrt{5}
$$

iv) Let the quadratic polynomial be $a x^{2}+b x+c$, and its zeroes be α and β

We have, $\alpha+\beta=1=\frac{-(-1)}{1}=\frac{-b}{a}$

$$
\alpha \beta=1=\frac{1}{1}=\frac{c}{a}
$$

If we take $a=1 ; b=-1 ; c=1$
\therefore The quadratic polynomial which fits the given conditions is $\mathrm{x}^{2}-\mathrm{x}+1$
v) Let the quadratic polynomial be $a x^{2}+b x+c$, and its zeroes be α and β

We have, $\alpha+\beta=\frac{-1}{4}=\frac{-b}{a}$

$$
\alpha \beta=\frac{1}{4}=\frac{c}{a}
$$

If we take $a=4 ; b=-1 ; c=1$
\therefore The quadratic polynomial which fits the given conditions is $4 \mathrm{x}^{2}+\mathrm{x}+1$
vi) Let the quadratic polynomial be $a x^{2}+b x+c$, and its zeroes be α and β

We have, $\alpha+\beta=4=\frac{-(-4)}{1}=\frac{-b}{a}$

$$
\alpha \beta=1=\frac{1}{1}=\frac{c}{a}
$$

If we take $a=1 ; b=-4 ; c=1$
\therefore The quadratic polynomial which fits the given conditions is $\mathrm{x}^{2}-4 \mathrm{x}+1$
26. Divide $2 x^{2}+3 x+1$ by $x+2$.

Sol : $(2 x-1)(x+2)+3=2 x^{2}+3 x-2+3$

$$
=2 x^{2}+3 x+1
$$

i.e., $2 x^{2}+3 x+1=(x+2)(2 x-1)+3$

$$
\square
$$

Therefore, Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{gathered}
x + 2 \longdiv { 2 x - 1 } \\
2 x^{2}+3 x+1 \\
2 x^{2}+4 x
\end{gathered}
$$

$$
-x+1
$$

$$
-x-2
$$

$$
+\quad+
$$

27. Divide $3 x^{2}-x^{3}-3 x+5$ by $x-1-x^{2}$, and verify the

$$
- x ^ { 2 } + x - 1 \longdiv { - x ^ { 3 } + 3 x ^ { 2 } - 3 }
$$ division algorithm.

$$
\begin{gathered}
-x^{3}+x^{2}-x \\
+\quad-+
\end{gathered}
$$

Sol : \quad Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
& =\left(-x^{2}+x-1\right)(x-2)+3 \\
& =-x^{3}+x^{2}-x+2 x^{2}-2 x+2+3 \\
& =-x^{3}+3 x^{2}-3 x+5
\end{aligned}
$$

28. Find all the zeroes of $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, if you know that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

Sol : Since two of the zeroes are $\sqrt{2}$ and $-\sqrt{2}$, therefore we can divide by

$$
(x-\sqrt{2})(x+\sqrt{2})=x^{2}-2 .
$$

$x ^ { 2 } - 2 \longdiv { 2 x ^ { 2 } - 3 x + 1 } \frac { 2 x ^ { 3 } - 3 x ^ { 2 } + 6 x - 2 } { }$

$2 x^{4}$	$-4 x^{2}$
-	+
$-3 x^{3}+x^{2}+6 x-2$	
$-3 x^{3}$	$+6 x$
+	-
	$x^{2}-2$

$x^{2}-2$
Third term of quotient is $\frac{x^{2}}{x^{2}}$

- +

0

So, $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2=\left(x^{2}-2\right)\left(2 x^{2} _3 x+1\right)$

Now, by splitting -3 x , we factorize $2 x^{2}-3 x+1$ as $(2 \mathrm{x}-1)(\mathrm{x}-1)$. So, its zeroes are given by $x=\frac{1}{2}$ and $x=1$. Therefore, the zeroes of the given polynomial are $\sqrt{2},-\sqrt{2}$ and 1 and $\frac{1}{2}$.
29. Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
(i) $\mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$

Sol: i) $\mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$

$$
\left(x^{3}-3 x^{2}+5 x-3\right) \div\left(x^{2}-2\right)
$$

$$
\begin{array}{r}
x-3 \\
x ^ { 2 } - 2 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 } \\
\begin{array}{cc}
x^{3} & -2 x \\
- & + \\
\hline & \begin{array}{cc}
-3 x^{2}+7 x-3 \\
-3 x^{2} & +6 \\
+ & - \\
\hline
\end{array}
\end{array} \begin{array}{l}
7 x-9
\end{array}
\end{array}
$$

Quotient $=x-3$; Remainder $=7 x-9$
ii) $\quad p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$

$$
\begin{gathered}
g(x)=x^{2}-x+1 \\
\left(x^{4}+0 x^{3}-3 x^{2}+4 x+5\right) \div\left(x^{2}-x+1\right)
\end{gathered}
$$

$$
x ^ { 2 } - x + 1 \longdiv { x ^ { 2 } + x - 3 } \underset { x ^ { 4 } + 0 x ^ { 3 } - 3 x ^ { 2 } + 4 x + 5 } { \text { a } }
$$

$$
x^{4}-x^{3}+x^{2}
$$

$$
-\quad+\quad-
$$

$$
x^{3}-4 x^{2}+4 x
$$

$$
x^{3}-x^{2}+x
$$

$$
-\quad+-
$$

$$
\begin{gathered}
-3 x^{2}+3 x+5 \\
-3 x^{2}+3 x-3 \\
+\quad-+
\end{gathered}
$$

Quotient $=x^{2}+x-3$; Remainder $=8$
30. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time and the product of its zeroes as $2,-7,-14$ respectively.

Sol: Let α, β, γ are the zeroes of the cubic polynomial of $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$

Given $\alpha+\beta+\gamma=2$

$$
\begin{gathered}
\alpha \beta+\beta \gamma+\gamma \alpha=-7 \\
\alpha \beta \gamma=-14
\end{gathered}
$$

Then the cubic polynomial is

$$
\begin{aligned}
& x^{3}-x^{2}(\alpha+\beta+\gamma)+x(\alpha \beta+\beta \gamma+\gamma \beta)-\alpha \beta \gamma \\
= & x^{3}-x^{2}(2)+x(-7)-(-14) \\
= & x^{3}-2 x^{2}-7 x+14
\end{aligned}
$$

31. Draw the graph of $x^{2}-3 x-y$ and find the zeroes. Justify the answers $y=x^{3}-3 x-4$

x	-2	-1	0	1	2	3	4	5
$y=x^{3}-3 x-4$	6	0	-4	-6	-6	-4	0	6
(x, y)	$(-2,6)$	$(-1,0)$	$(0,4)$	$(1,-6)$	$(2,-6)$	$(3,-4)$	$(4,0)$	$(5,6)$

- 1 and 4 are zeroes of the quadratic polynomial because $(-1,0)$ and $(4,0)$ are intersection points of X - anis

Justify : $x^{2}-3 x-4=x^{2}-4 x+1 x-4$

$$
=x(x-4)+1(x-4)=(x+1)(x-4)
$$

Zeroes of $\mathrm{p}(\mathrm{x})=(-1,4)$

32. Draw the graph of $x^{3}-4 x$

$$
y=x^{3}-4 x
$$

x	-2	-1	0	1	2
$y=x^{3}-4 x$	0	3	0	-3	0
(x, y)	$(-2,0)$	$(-1,3)$	$(0,0)$	$(1,-3)$	$(2,0)$

$-2,0,2$ are the zeroes of cubic polynomial

