Polynomials

Key Concepts

- 1. An algebraic expression in which the variable involved has only non- negative integral powers is called a **Polynomial**.
- 2. Algebraic expressions such as $3xy, x^2 + 2x, x^3 x^2 + 4x + 3, \pi r^2, ax + b$ etc. are called **Polynomials**.
- **Note:** $x^{\frac{1}{2}} + 3$ is not a polynomial because the first term $x^{\frac{1}{2}}$ is a term with an exponent that is not a non-negative integer. (i.e. $\frac{1}{2}$).

 $2x^2 - \frac{3}{x} + 5$ is not polynomial because it can be written as $2x^2 - 3x^{-1} + 5$. Here the second term $(3x^{-1})$ has a negative exponent (i.e., -1).

- 3. A variable is denoted by a symbol that can take any real value. We use the letter x,y,z etc. To denote variables. We have algebraic expressions such as $2x,3x,-x,\frac{3}{4}x...$ all in one variable x.
- 4. Each term of the polynomial consists of the products of a constant, called the **coefficient** of the term and a finite number of variables raised to non- negative integral powers.
- 5. In the polynomial $3x^2 + 7x + 5$, each of the expressions $3x^2, 7x$ and 5 are terms. Each term of the polynomial has a coefficient, so in $3x^2 + 7x + 5$, the coefficient of x^2 is 3, the coefficient of x is 7 and 5 is the coefficient of x^0 (Remember $x^0 = 1$).
- 6. The degree of a polynomial is the highest degree of its variable term.
- 7. A polynomial in one variable x of degree n is an expression of the form

 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

Where $a_0, a_1, a_2, \dots, a_n$ are constants and $a_n \neq 0$.

In particulars, if $a_0 = a_1 = a_2 = a_3 = ... = a_n = 0$ (i.e. all the coefficients are zero), we get the **zero polynomial**, which is denoted by '0'.

8. A polynomial may be a multinomial but every multinomial need not be a polynomial.

A linear polynomial with one variable may be a monomial or a binomial.

E.g.: 3x or 2x – 5.

- 9. Zero polynomial is a constant polynomial having many zeros.
- 10. **Types of Polynomials:** (Classification on the basis of number of terms)
- i) **Monomial:** Polynomial containing one term is called monomial.

Example:
$$6x^2, \frac{-3}{2}xy, 5y, 8$$

ii) **Binomial:** Polynomial containing two terms is called binomial.

Example: $4 - 3x, 5x^2 + 4z$

iii) Trinomial: Polynomial containing three terms is called trinomial.

Example: $x^2 - 3x + 13$,

Order (**or**) Degree of monomial: Sum of the powers of variables of a monomial is known as degree of a monomial.

Example: $5x^2y^3$

Degree of monomial is 2+3=5.

- 11. Polynomial of Various Degrees:
- (i) Linear polynomial: If the degree of a polynomial is one, then that polynomial is said to be linear polynomial.

Example: 2x+5

Note: The general form of a linear polynomial in one variable 'x' is ax+b, where $a, b \in R$ and $a \neq 0$.

(ii) **Quadratic Polynomial:** If the degree of a polynomial is two, then that polynomial is said to be quadratic polynomial.

Example: $x^2 + 2x + 6$

Note: The general form of quadratic polynomial is $ax^2 + bx + c$, where $a, b, c \in R$ and $a \neq 0$

iii) **Cubic Polynomial:** If the degree of polynomial is three, then that polynomial is said to be cubic polynomial.

Example: $3x^3 - 4x^2 + 3x + 6$

Note: The general form of a cubic polynomial is $ax^3 + bx^2 + cx + d$, where a, b, c, d $\in R$ and $a \neq 0$.

Order (or) Degree of a Polynomial: The greatest degree of the terms in the polynomial is the degree of a polynomial.

Example: Degree of $6x^2 - 3x + 4$ is 1.

Note: The degree of a constant polynomial is zero.

12. Zero Polynomial : If all the coefficients of the polynomial are zeroes, then the polynomial is called zero polynomial

Note: Degree of zero polynomial is undefined.

13. Zero of a Polynomial

The number for which the value of a polynomial is zero that value of a variable is called zero of the polynomial.

Example: Zero of the polynomial 5x + 6 is $\frac{-6}{5}$.

Remainder Theorem: If f(x) is a polynomial in 'x' of degree ≥ 1 , 'a' is any real number if f(x) is divided by (x-a), then the remainder is f (a).

Division Algorithm: If f(x), g(x) are two non – zero polynomial, then there exist polynomials q(x) and r(x) uniquely such that f(x) = q(x) g(x) + r(x), where r(x) = 0 or deg r (x) < deg g (x).

- 14. The general form of a "first degree polynomial" in one variable x is ax +b where a and b are real numbers and $a \neq 0$.
- 15. A "Quadratic polynomial" in x with real coefficients is of the form $ax^2 + bx + c$ where a, b, c are real numbers with $a \neq 0$.
- 16. A real number k is said to be *a* zero of *a* polynomial p(x), if p(k) = 0.

- 17. The zero of the linear polynomial ax + b is $\frac{-b}{a}$.
- 18. A linear polynomial ax+b, $(a \neq 0)$, the graph of y = ax + b is a "straight line" which intersects the X axis at exactly one point namely $\left(\frac{-b}{a}, 0\right)$.
- 19. i) A quadratic polynomial can have at most 2 zeroes.
- 20. ii) A cubic polynomial can have at most 3 zeroes.
- 21. If α and β are the zeroes of the quadratic polynomial $ax^2 + bx + c$ then

i)
$$\alpha + \beta = \frac{-b}{a} = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$$

ii)
$$\alpha\beta = \frac{c}{a} = \frac{cons \tan t \ term}{coefficient \ of \ x^2}$$

- 22. For any quadratic polynomial $ax^2 + bx + c$, $a \neq 0$. the graph of the corresponding equation $y = ax^2 + bx + c$ either opens upwards like this \cup or open downwards like this \cap depends on whether a > 0 or a < 0. These curves are called parabolas.
- 23. A polynomial p (x) of degree n has almost 'n' zeroes.
- 24. If α , β , γ are the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d = 0$ then

i)
$$\alpha + \beta + \gamma = \frac{-b}{a}$$

ii) $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$

iii)
$$\alpha\beta\gamma = \frac{-d}{a}$$

25. Division Algorithm:

Dividend = Divisor x Quotient + Remainder.

Example -1 p(x) = x+2. Find p(1), p(2), p(-1) and p(-2). What are zeroes of the polynomial x + 2?

Solution: Let p(x) = x+2Replace x by 1 p(1) = 1 + 2 = 3Replace x by 2 p(2) = 2 + 2 = 4Replace x by -1 p(-1) = -1 + 2 = 1

Replace x by -2

p(-2) = -2 + 2 = 0

Therefore, 1, 2, -1 are not the zeroes of the polynomial x+2, but -2 is the zero of the polynomial.

Example -2. Find a zero of the polynomial p(x) = 3x+1

Solution: Finding a zero of p(x), is same as solving the equation

p(x) = 0

i.e. 3x+1 =0

3x = -1 $x = -\frac{1}{2}$

So, $-\frac{1}{3}$ is a zero of the polynomial 3x+1.

Example -3. If p(x) = ax + b, $a \neq 0$. a linear polynomial, how will you find a zero of p(x)?

Solution: As we have seen to find zero of a polynomial p(x), we need to solve the polynomial equation p(x)=0

Which means ax+b=0, $a \neq 0$.

So ax =-b

i.e.,
$$x = \frac{-b}{a}$$

So, $x = \frac{-b}{a}$ is the only zero of the polynomial p(x) = ax+b i.e., A linear polynomial in one

variable has only one zero.

Example - 4. Verify whether 2 and 1 are zeroes of the polynomial $x^2 - 3x + 2$

Solution: Let $p(x) = x^2 - 3x + 2$

$$p(2) = (2)^{2} - 3(2) + 2$$

= 4-6+2=0
$$p(1) = (1)^{2} - 3(1) + 2$$

= 1-3+2
= 0

Hence, both 2 and 1 are zeroes of the polynomial $x^2 - 3x + 2$.

Example – 5. What is the degree of the polynomial $x^2 - 3x + 2$ **? Is it a linear polynomial? Solution:** No, It is a quadratic polynomial. Hence, a quadratic polynomial has to zeroes.

Example-6. If 3 is a zero of the polynomial $x^2 + 2x - a$. Find *a*?

Solution: Let $p(x) = x^2 + 2x - a$

As the zero of this polynomial is 3, we know that p(3) = 0.

$$x^{2} + 2x - a = 0$$
Put x = 3, (3)² + 2(3) - a = 0
9 + 6 - a = 0
15 - a = 0
-a = -15
Or a = 15
Cor a = 15
Example -7. Divide the polynomial $2x^{4} - 4x^{3} - 3x - 1$
by (x-1) and verify the remainder with zero of the divisor.
Solution: Let $f(x) = 2x^{4} - 4x^{3} - 3x - 1$
First see how many times $2x^{4}$ is of x.
 $\frac{2x^{4}}{x} = 2x^{3}$
Now multiply $(x - 1)(2x^{3}) = 2x^{4} - 2x^{3}$
Then again see the first term of the remainder that
www.sakshieducation.com
 $x^{2} + 2x^{2} - 2x - 5$
 $x - 1)2x^{4} - 4x^{3} - 3x - 1$
 $-2x^{3} - 3x - 1$
 $-2x^{2} + 2x$
 $+$ -
 $-5x - 1$
 $-5x - 5$
 $+$ -

-6

is - $2x^3$. Now do the same.

Here the quotient is $2x^3 - 2x^2 - 2x - 5$ and the remainder is -6. Now, the zero of the polynomial (x-1) is 1. Put x = 1 in f(x), $f(x) = 2x^4 - 4x^3 - 3x - 1$ $f(1) = 2(1)^4 - 4(1)^3 - 3(1) - 1$ = 2(1) - 4(1) - 3(1) - 1= 2 - 4 - 3 - 1= -6

Example -8. Find the remainder when $x^3 + 1$ divided by (x+1)

Solution: Here $p(x) = x^3 + 1$

The zero of the linear polynomial x+1 is -1 [x+1=0, x = -1]

$$p(-1) = (-1)^3 + 1$$

=-1+1
=0.

So, by Remainder Theorem, we know that $(x^3 + 1)$ divided by (x+1) gives 0 as the remainder.

Example -9. Check whether (x-2) is a factor of $x^3 - 2x^2 - 5x + 4$

Solution: Let $p(x) = x^3 - 2x^2 - 5x + 4$

To check whether the linear polynomial (x-2) is a factor of the given polynomial,

Replace x, by the zero of (x-2) i.e. x-2=0 x=2.

 $p(2)=(2)^{3}-2(2)^{2}-5(2) +4$ =8-2(4)-10+4=8-8-10+4= -6.

As the remainder is not equal to zero, the polynomial (x-2) is not a factor of the given polynomial $x^3 - 2x^2 - 5x + 4$.

Example -10. Check whether the polynomial $p(y) = 4y^3 + 4y^2 - y - 1$ is a multiple of (2y+1).

Solution:

$$p\left(\frac{-1}{2}\right) = 4\left(\frac{-1}{2}\right)^3 + 4\left(\frac{-1}{2}\right)^2 - \left(\frac{-1}{2}\right) - 1$$
$$= 4\left(\frac{-1}{8}\right) + 4\left(\frac{1}{4}\right) + \frac{1}{2} - 1$$

3

$$=\frac{-1}{2}+1+\frac{1}{2}-1 = 0$$

So, (2y+1) is a factor of p(y). That is p(y) is a multiple of (2y+1).

Example - 11. If the polynomials $ax^3 + 3x^2 - 13$ and $2x^3 - 5x + a$ are divided by (x-2) leave the same remainder, find the value of *a*.

Let $p(x) = ax^3 + 3x^2 - 13$ and $q(x) = 2x^3 - 5x + a^3$ Solution:

 \therefore *p*(*x*) *and q*(*x*) When divided by x-2 leave same remainder.

$$\therefore p(2) = q(2)$$

 $a(2)^{3} + 3(2)^{2} - 13 = 2(2)^{3} - 5(2) + a$
 $8a + 12 - 13 = 16 - 10 + a$
 $8a - 1 = a + 6$
 $8a - a = 6 + 1$
 $7a = 7$
 $a = 1$
 $a = 1$

Some More Important Problems

1. Write a quadratic polynomial and a cubic polynomial in variable x in the general form.

- **Sol.** General form of a (in variable x)
 - i) Quadratic polynomial: $ax^2 + bx + c$
 - ii) Cubic polynomial: $ax^3 + bx^2 + cx + d$.
- 2. i) $p(x) = x^2 5x 6$ find the value of p(1), p(2), p(3), p(0), p(-1), p(-2), p(-3).
- Sol. $P(x) = x^2 5x 6$ $p(1) = (1)^2 - 5(1) - 6 = 1 - 5 - 6$ = 1 - 11 = -10 $p(2) = (2)^2 - 5(2) - 6 = 4 - 10 - 6$ = 4 - 16 = -12 $p(3) = (3)^2 - 5(3) - 6 = 9 - 15 - 6$ = 9 - 21 = -12 $p(0) = (0)^2 - 5(0) - 6 = 0 - 0 - 6 = -6$ $p(-1) = (-1)^2 - 5(-1) - 6 = 1 + 5 - 6$ = 6 - 6 = 0 $p(-2) = (-2)^2 - 5(-2) - 6 = 4 + 10 - 6$ = 14 - 6 = 8 $p(-3) = (-3)^2 - 5(-3) - 6 = 9 + 15 - 6$ = 24 - 6 = 18

3. p(m)=m² - 3m +1, find the value of p(1) and p(-1).

Sol. $p(m) = m^2 - 3m + 1$

$$P(1) = (1)^2 - 3 (1) + 1 = 1 - 3 + 1$$
$$= 2 - 3 = -1$$
$$P(-1) = (-1)^2 - 3 (-1) + 1 = 1 + 3 + 1 = 5$$

- 4. Let $p(x) = x^2 4x+3$. Find the value of p(0), p(1), p(2), p(3) and obtain zeroes of the polynomial p(x).
- **Sol.** $p(x) = x^2 4x + 3$

 $p(0) = (0)^{2} - 4 (0) + 3 = 0 - 0 + 3 = 3$ $p(1) = (1)^{2} - 4 (1) + 3 = 1 - 4 + 3 = 4 - 4 = 0$ $p(2) = (2)^{2} - 4 (2) + 3 = 4 - 8 + 3 = 7 - 8 = -1$ $p(3) = (3)^{2} - 4 (3) + 3 = 9 - 12 + 3 = 12 - 12 = 0$

We see that p(1) = 0 and p(3) = 0

These points x = 1 and x = 3 are called zeroes of the polynomial $p(x) = x^2 - 4x + 3$.

5. Check whether -3 and 3 are the zeroes of the polynomial x^2 -9.

Sol.
$$p(x) = x^2 - 9 \Rightarrow p(-3) = (-3)^2 - 9 = 9 - 9 = 0$$

$$p(3) = (3)^2 - 9 = 9 - 9 = 0$$

p(-3) = 0 and p(3) = 0

-3 and 3 are the zeroes of the polynomial $p(x)=x^2-9$.

6. If p(t) = t³ -1, find the values of p(1), p(-1), p(0), p(2), p(-2).

Sol: $p(t) = t^3 - 1$,

$$p(1) = (1)^{3} - 1, = 1 - 1 = 0$$

$$p(-1) = (-1)^{3} - 1, = -1 - 1 = -2$$

$$p(0) = (0)^{3} - 1, = 0 - 1 = -1$$

$$p(2) = (2)^{3} - 1, = 8 - 1 = 7$$

$$p(-2) = (-2)^{3} - 1, = -8 - 1 = -9$$

7. Check whether -2 and 2 are the zeroes of the polynomial x^4 - 16.

Sol:
$$p(x) = x^4 - 16$$
.

$$p(-2) = (-2)^4 - 16 = 16 - 16 = 0$$

$$p(2) = (2)^4 - 16 = 16 - 16 = 0$$

yes, -2 and 2 are zeroes of the polynomial x^2 - 16.

8. Check whether 3 and -2 are the zeroes of the polynomial p(x) when

 $p(x) = x^2 - x - 6.$

- **Sol:** $p(x) = x^2 x 6$.
 - $p(3) = (3)^2 3 6 = 9 3 6 = 9 9 = 0$

$$p(-2) = (-2)^2 - (-2) - 6 = 4 + 2 - 6 = 6 - 6 = 0$$

yes, 3 and – 2 are zeroes of the polynomial $p(x) = x^2 - x - 6$

- 9. Why are $\frac{1}{4}$ and -1 zeroes of the polynomials $p(x) = 4x^2 + 3x 1$?
- Sol: $p(x) = 4x^2 + 3x 1$

$$p\left(\frac{1}{4}\right) = 4\left(\frac{1}{4}\right)^2 + 3\left(\frac{1}{4}\right) - 1$$
$$= 4 \times \frac{1}{16} + \frac{3}{4} - 1$$
$$= \frac{1}{4} + \frac{3}{4} - 1 = \frac{1+3-4}{4}$$
$$= \frac{4-4}{4} = \frac{0}{4} = 0$$
$$p\left(\frac{1}{4}\right) = 0$$
$$p(-1) = 4(-1)^2 + 3(-1) - 1$$

$$= 4 \times 1 - 3 - 1$$

= 4 - 3 - 1 = 4 - 4 = 0
$$p(-1) = 0$$

$$p\left(\frac{1}{4}\right) = 0 \text{ and } p(-1) = 0$$

 $\frac{1}{4}$ and -1 are zeroes of the polynomial p(x)=4x² + 3x -1

10 Find the zeros of the quadratic polynomial $x^2 + 7x + 12$, and verify the relation between the zeros and its coefficients.

Solution:

The zeros of f(x) are given by f(x) = 0.

Now, f(x) = 0 $\Rightarrow x^{2} + 7x + 12 = 0$ $\Rightarrow (x+4) (x+3) = 0$ $\Rightarrow x+4 = 0 \text{ or, } x+3 = 0$ $\Rightarrow x = -4 \text{ or, } x = -3.$

Thus, the zeros of $f(x) = x^2 + 7x + 12$ are $\alpha = -4$ and $\beta = -3$.

Now,

Sum of the zeros =
$$\alpha + \beta = (-4) + (-3) = -7$$
 and, $-\frac{Coefficient of x}{Coefficient of x^2} = -\frac{7}{1} = -7 = -\frac{1}{2}$

Product of the zeros = $\alpha\beta = (-4) \times (-3) = 12$ and, $\frac{Constant term}{Coefficient of x^2} = \frac{12}{1} = 12 = \frac{c}{a}$

11. Find the zeros of the quadratic polynomial $f(x) = 6x^2 - 3$, and verify the relationship between the zeros and its coefficients:

Solution:

The zeros of f(x) are given by f(x)=0.

Now, f(x)=0

$$6x^{2} - 3 = 0 \Rightarrow (\sqrt{6}x)^{2} - (\sqrt{3})^{2}$$

$$\Rightarrow (\sqrt{6}x - \sqrt{3}) (\sqrt{6}x + \sqrt{3}) = 0$$

$$\Rightarrow \sqrt{6}x - \sqrt{3} = 0 \text{ or}, \sqrt{6}x + \sqrt{3} = 0$$

$$\Rightarrow x = \frac{\sqrt{3}}{\sqrt{6}} \text{ or, } x = \frac{-\sqrt{3}}{\sqrt{6}}$$
$$x = \frac{1}{\sqrt{2}} \text{ or, } x = -\frac{1}{\sqrt{2}}$$

Hence, the zeros of $f(x) = 6x^2 - 3 \text{ are }: \alpha = \frac{1}{\sqrt{2}} \text{ and } \beta = -\frac{1}{\sqrt{2}}$

Now,

Sum of the zeros =
$$\alpha + \beta = \frac{1}{\sqrt{2}} + \left(-\frac{1}{\sqrt{2}}\right) = 0$$
 and, $\frac{Coefficient of x}{Coefficient of x^2} = -\frac{0}{6} = 0$

Also,

Product of the zeros =
$$\alpha\beta = \frac{1}{\sqrt{2}} \times \frac{-1}{\sqrt{2}} = \frac{-1}{2}$$
 and, $\frac{Cons \tan t \ term}{Coefficient \ of \ x^2} = \frac{-3}{6} = \frac{-1}{2}$

12. Find the zeros of the polynomial $f(u) = 4u^2 + 8u$, and verify the relationship between the zeros and its coefficients.

Solution

$$f(u) = 4u^2 + 8u,$$

$$\Rightarrow f(u) = 4u(u+2)$$

The zeros of f(u) are given by f(u) = 0.

Now, f(u) = 0

$$\Rightarrow 4u(u+2) = 0$$

$$\Rightarrow u = 0 \text{ or, } u+2=0$$

$$\Rightarrow u = 0 \text{ or, } u = -2$$

Hence, the zeros of f(u) are : $\alpha = 0$ and $\beta = -2$

Now,

$$\alpha + \beta = 0 + (-2) = -2$$
 and $\alpha\beta = 0 \times -2 = 0$

 $\therefore \qquad \text{Sum of the zeros} = -\frac{Coefficient of u}{Coefficient of u^2} \text{ and, } \Pr oduct of the zeros} \frac{Cons \tan t \ term}{Coefficient of u^2}$

13. Find the zeros of the polynomial $f(x) = 4\sqrt{3}x^2 + 5x - 2\sqrt{3}$, and verify the relationship between the zeros and its coefficients.

Solution: We have,

$$f(x) = 4\sqrt{3}x^{2} + 5x - 2\sqrt{3},$$

$$\Rightarrow f(x) = 4\sqrt{3}x^{2} + 8x - 3x - 2\sqrt{3}$$

$$\Rightarrow f(x) = 4x(\sqrt{3}x + 2) - \sqrt{3}(\sqrt{3}x + 2)$$

$$\Rightarrow f(x) = (\sqrt{3}x + 2)(4x - \sqrt{3})$$

$$4\sqrt{3} \times -2\sqrt{3} = -24$$

$$+ 8 \times -3 = -24$$

$$+ 8 + (-3) = +5$$

$$\Rightarrow f(x) = (\sqrt{3}x + 2)(4x - \sqrt{3})$$

The zeros of f(x) are given by f(x) = 0.

Now, f(x)=0

$$\Rightarrow (\sqrt{3}x+2)(4x-\sqrt{3}) = 0$$

$$\Rightarrow \sqrt{3}x+2 = 0 \text{ or, } 4x-\sqrt{3} = 0$$

$$\Rightarrow x = -\frac{2}{\sqrt{3}} \text{ or, } x = \frac{\sqrt{3}}{4}$$

Hence, the zeros of f(x) are:
$$\alpha = -\frac{2}{\sqrt{3}}$$
 and $\beta = \frac{\sqrt{3}}{4}$

Now,

$$\alpha + \beta = -\frac{2}{\sqrt{3}} + \frac{\sqrt{3}}{4} = \frac{-8+3}{4\sqrt{3}} = -\frac{5}{4\sqrt{3}} \text{ and }, \alpha\beta = \frac{-2}{\sqrt{3}} \times \frac{\sqrt{3}}{4} = -\frac{1}{2}$$

Also,

$$-\frac{Coefficient of x}{Coefficient of x^{2}} = -\frac{5}{4\sqrt{3}} and, \ \frac{Cons \tan t \ term}{Coefficient \ of \ x^{2}} = -\frac{2\sqrt{3}}{4\sqrt{3}} = -\frac{1}{2}$$

Hence, sum of the roots = $-\frac{Coefficient \text{ of } x}{Coefficient \text{ of } x^2}$ and, Product of the roots $\frac{Cons \tan t \text{ term}}{Coefficient \text{ of } x^2}$

14. Find the zeros of the quadratic polynomial $f(x) = abx^2 + (b^2 - ac)x - bc$, and verify the relationship between the zeros and its coefficients.

Solution:

$$f(x) = abx^{2} + (b^{2} - ac)x - bc,$$

$$\Rightarrow f(x) = abx^{2} + b^{2}x - acx - bc,$$

$$\Rightarrow f(x) = bx(ax + b) - c(ax + b)$$

$$\Rightarrow f(x) = (ax + b)(bx - c)$$

The zeros of f(x) are given by f(x) = 0.

Now,
$$f(x)=0$$

$$\Rightarrow (ax+b)(bx-c) = 0$$

$$\Rightarrow ax+b = 0 \text{ or }, bx-c = 0$$

$$\Rightarrow x = -\frac{b}{c} \text{ or }, x = \frac{c}{b}$$

Thus, the zeros of f(x) are: $\alpha = -\frac{b}{a}$ and, $\beta = \frac{c}{b}$

Now,

$$\alpha + \beta = -\frac{b}{a} + \frac{c}{b} = \frac{ac - b^2}{ab}$$
 and, $\alpha\beta = -\frac{b}{a} \times \frac{c}{b} = -\frac{c}{a}$

Also,

$$\frac{Coefficient of x}{Coefficient of x^{2}} = -\left(\frac{b^{2} - ac}{ab}\right) = \frac{ac - b^{2}}{ab} and, \quad \frac{Cons \tan t \ term}{Coefficient \ of \ x^{2}} = -\frac{bc}{ab} = -\frac{c}{a}$$

Hence,

Sum of the zeros =
$$-\frac{Coefficient of x}{Coefficient of x^2}$$
 and, Product of the zeros $\frac{Cons \tan t term}{Coefficient of x^2}$

15. Find the zeros of the polynomial $x^2 + \frac{1}{6}x - 2$, and verify the relation between the coefficients and zeros of the polynomial.

Solution: Let $f(x) = x^2 + \frac{1}{6}x - 2$. Then,

$$f(x) = \frac{1}{6}(6x^2 + x - 12) = \frac{1}{6}(6x^2 + 9x - 8x - 12)$$

$$\Rightarrow f(x) = \frac{1}{6}\{(6x^2 + 9x) - (8x + 12)\} = \frac{1}{6}\{3x(2x + 3) - 4(2x + 3)\} = \frac{1}{6}(2x + 3)(3x + 12)\}$$

The zeros of f(x) are given by f(x) = 0.

Now,
$$f(x) = 0 \Rightarrow \frac{1}{6}(2x+3)(3x-4) = 0 \Rightarrow 2x+3 = 0 \text{ or}, 3x-4 = 0 \Rightarrow x = \frac{-3}{2}\text{ or}, x = \frac{4}{3}$$

Hence, $\alpha = \frac{-3}{2}$ and $\beta = \frac{4}{3}$ are the zeros of the given polynomial.

Now,

$$\alpha + \beta = \left(-\frac{3}{2}\right) + \frac{4}{3} = -\frac{1}{6} \text{ and }, \ \alpha\beta = \left(\frac{-3}{2}\right)\left(\frac{4}{3}\right) = -2$$

The given polynomial is $f(x) = x^2 + \frac{1}{6}x - 2$.

$$-\frac{Coefficient \text{ of } x}{Coefficient \text{ of } x^2} = -\left(\frac{-1/6}{1}\right) = \frac{-1}{6} \text{ and }, \ \frac{Cons \tan t \text{ term}}{Coefficient \text{ of } x^2} = \frac{-2}{1} = -2$$

Clearly,

$$\alpha + \beta = -\frac{Coefficient \ of \ x}{Coefficient \ of \ x^2} \ and, \ \alpha\beta = \frac{Cons \tan t \ term}{Coefficient \ of \ x^2}$$

Hence, the relation between the coefficients and zeros is verified.

16. If α and β are the zeros of the quadratic polynomial $f(x) = x^2 - px + q$, then find the values of (i) $\alpha^2 + \beta^2$ (ii) $\frac{1}{\alpha} + \frac{1}{\beta}$

Solution: It is given that α and β are the zero of the polynomial $f(x) = x^2 + -px + q$,

$$\therefore \quad \alpha + \beta = -\left(\frac{-p}{1}\right) = p \text{ and}, \ \alpha\beta = \frac{q}{1} = q$$
(i) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = p^2 - 2q$
(ii) $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{p}{q}$
(ii) $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{p}{q}$

17. Find a quadratic polynomial, the sum and product of whose zeroes are $\sqrt{2}$ and $-\frac{3}{2}$ respectively. Also, find its zeroes.

Solution: Let α , β be the zeros of required polynomial. It is given that $\alpha + \beta = \sqrt{2}$ and $\alpha\beta = -\frac{3}{2}$.

The quadratic polynomial is $f(x) = x^2 - (\alpha + \beta) x + \alpha \beta$ or, $f(x) = x^2 - \sqrt{2}x - \frac{3}{2}$

Now,
$$f(x) = x^2 - \sqrt{2}x - \frac{3}{2}$$

 $\Rightarrow f(x) = \frac{1}{2}(2x^2 - 2\sqrt{2}x - 3)$
 $\Rightarrow f(x) = \frac{1}{2}(2x^2 - 3\sqrt{2}x + \sqrt{2}x - 3)$
 $\Rightarrow f(x) = \frac{1}{2}\{\sqrt{2}x(\sqrt{2}x - 3) + (\sqrt{2}x - 3)\}$
 $\Rightarrow f(x) = \frac{1}{2}(\sqrt{2}x - 3)(\sqrt{2}x + 1)$

The zeroes of f(x) are given by f(x) = 0.

Now, f(x)=0

$$\Rightarrow \frac{1}{2}(\sqrt{2}x-3)(\sqrt{2}x+1) = 0 \Rightarrow \sqrt{2}x-3 = 0 \text{ or}, \sqrt{2}x+1 = 0 \Rightarrow x = \frac{3}{\sqrt{2}}\text{ or}, x = -\frac{1}{\sqrt{2}}$$

Hence, the zeroes of f(x) are $\frac{3}{\sqrt{2}}$ and $-\frac{1}{\sqrt{2}}$.

18. If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate:

(i)
$$\alpha^2 + \beta^2$$
 (ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (iii) $\alpha^3 + \beta^3$
(iv) $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ (v) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$

Solution: It is given that α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$,

$$\alpha + \beta = -\frac{b}{c} \text{ and } \alpha\beta = \frac{c}{a}$$

ac

(i) We know that

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$

$$\alpha^{2} + \beta^{2} = \left(\frac{-b}{a}\right)^{2} - \frac{2c}{a} = \frac{b^{2} - 2ac}{a^{2}}$$
(ii)
$$\frac{\alpha}{a} + \frac{\beta}{a} = \frac{\alpha^{2} + \beta^{2}}{a} = \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{a} = \frac{\left(\frac{-b}{a}\right)^{2} - 2\left(\frac{c}{a}\right)}{a} = \frac{b^{2} - 2ac}{a}$$

$$\beta \alpha \alpha \beta \alpha \alpha \beta \frac{c}{a}$$

(iii) We know that $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$

$$\therefore \alpha^{3} + \beta^{3} = \left(\frac{-b}{a}\right)^{3} - 3\frac{c}{a}\left(\frac{-b}{a}\right) = \frac{-b^{3}}{a^{3}} + \frac{3bc}{a^{2}} = \frac{-b^{3} + 3abc}{a^{3}} = \frac{3abc - b^{3}}{a^{3}}$$

(iv)
$$\frac{1}{\alpha^3} + \frac{1}{\beta^3} = \frac{\alpha^3 + \beta^3}{(\alpha\beta)^3} = \frac{\frac{3abc - b^3}{a^3}}{\left(\frac{c}{a}\right)^3} = \frac{3abc - b^3}{c^3}$$

(v)
$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta} = \frac{\left(-\frac{b}{a}\right)^3 - 3\left(\frac{c}{a}\right)\left(-\frac{b}{a}\right)}{\frac{c}{a}} = \frac{3abc - b^3}{a^2c} = \frac{b(3ac - b^2)}{a^2c}$$

19. If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate: (ii) $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2}$

i)
$$\alpha^4 + \beta^4$$
 (i

Solution It is given that α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$,

$$\therefore \quad \alpha + \beta = -\frac{b}{a} \text{ and }, \alpha \beta = \frac{c}{a}$$
(i)
$$\alpha^{4} + \beta^{4} = (\alpha^{2} + \beta^{2})^{2} - 2\alpha^{2}\beta^{2}$$

$$\Rightarrow \quad \alpha^{4} + \beta^{4} = \left\{ (\alpha + \beta)^{2} - 2\alpha\beta \right\}^{2} - 2(\alpha\beta)^{2}$$

$$\Rightarrow \quad \alpha^{4} + \beta^{4} = \left\{ \left(-\frac{b}{a} \right)^{2} - 2\frac{c}{a} \right\}^{2} - 2\left(\frac{c}{a}\right)^{2}$$

$$[\because \alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}]$$

$$\Rightarrow \quad \alpha^{4} + \beta^{4} = \left(\frac{b^{2} - 2ac}{a^{2}} \right)^{2} - \frac{2c^{2}}{a^{2}} = \frac{(b^{2} - 2ac)^{2} - 2a^{2}c^{2}}{a^{4}}$$

(ii)

$$\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{\alpha^4 + \beta^4}{\alpha^2 \beta^2} = \frac{(b^2 - 2ac)^2 - 2a^2c^2}{a^4 \times \left(\frac{c}{a}\right)^2}$$
$$= \frac{(b^2 - 2ac)^2 - 2a^2c^2}{a^2c^2}$$

20. Find a quadratic polynomial if the zeroes of it are 2 and $\frac{-1}{2}$ respectively.

Sol: Let the quadratic polynomial be $ax^2 + bx + c$, $a \neq 0$ and its zeroes be α and β Here $\alpha = 2, \beta = \frac{-1}{3}$

Sum of the zeroes = $(\alpha + \beta)$

$$= 2 + \left(\frac{-1}{3}\right) = \frac{5}{3}$$

Product of the zeroes = $(\alpha\beta)$

$$=2\left(\frac{-1}{3}\right)=\frac{-2}{3}$$

Therefore the quadratic polynomial

 $ax^2 + bx + c$ is $k [x^2 - (\alpha + \beta) x + \alpha\beta]$,

Where K is a constant = $K\left[x^2 - \frac{5}{3}x - \frac{2}{3}\right]$

We can put different values of k.

When k=3, the quadratic polynomial will be $3x^2 - 5x - 2$.

21. Find a quadratic polynomial with zeroes -2 and $\frac{1}{3}$.

Sol: Let the quadratic polynomial be

 $ax^2 + bx + c$, $a \neq 0$ and its zeroes be α and β

Here
$$\alpha = -2; \beta = \frac{1}{3}$$

Sum of the zeroes $= (\alpha + \beta) = (-2) + \frac{1}{3}$

$$=\frac{-6+1}{3}=\frac{-5}{3}$$

Product of the zeroes = $\alpha\beta = (-2)\left(\frac{1}{3}\right)$

 $=\frac{-2}{3}$

- \therefore The quadratic polynomial $ax^2 + bx + c$ is
- $K\left[x^2 (\alpha + \beta) x + \alpha\beta\right]$ Where k is a constant

$$= k \left[x^2 - \left(\frac{-5}{3}\right) x + \left(\frac{-2}{3}\right) \right]$$

We can put different values of k

When k =3 the quadratic polynomial will be $3x^2 + 5x -2$

22. What is the quadratic polynomial whose sum of zeroes is $\frac{-3}{2}$ and the product of zeroes is -1.

Sol: Sum of zeroes = $(\alpha + \beta) = \frac{-3}{2}$

Product of zeroes = $\alpha\beta$ = -1

- \therefore The quadratic polynomial $ax^2 + bx + c$ is
- $K\left[x^2 (\alpha + \beta) x + \alpha\beta\right]$ where k is a constant.

$$= k \left[x^2 - \left(\frac{-3}{2} \right) x + (-1) \right]$$

We can put different values of k

When k =2 the quadratic polynomial will be $2x^2 + 3x - 2$.

23. If α, β, γ are the zeroes of the given cubic polynomials, find the values as given in the table.

S.No.	Cubic Polynomial	$\alpha + \beta + \gamma$	$\alpha\beta + \beta\gamma + \gamma\alpha$	αβγ	
1.	$x^3 + 3x^2 - x - 2$	$\frac{-b}{a} = \frac{-3}{1} = -3$	$\frac{c}{a} = \frac{-1}{1} = -1$	$\frac{-d}{a} = \frac{-(-2)}{1} = 2$	
2.	$4x^3 + 8x^2 - 6x - 2$	$\frac{-b}{a} = \frac{-8}{4} = -2$	$\frac{c}{a} = \frac{-6}{4} = -\frac{-3}{2}$	$\frac{-d}{a} = \frac{-(-2)}{4} = \frac{1}{2}$	
3.	$x^3 + 4x^2 - 5x - 2$	$\frac{-b}{a} = \frac{-4}{1} = -4$	$\frac{c}{a} = \frac{-5}{1} = -5$	$\frac{-d}{a} = \frac{-(-2)}{1} = 2$	
4.	$x^{3} + 5x^{2} + 4$ $x^{3} + 5x^{2} + 0.x + 4$	$\frac{-b}{a} = \frac{-5}{1} = -5$	$\frac{c}{a} = \frac{0}{1} = 0$	$\frac{-d}{a} = \frac{-4}{1} = -4$	

24. Verify that 3, -1, $-\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x) = 3x^3 - 5x^2 - 11x - 3$, and then verify the relationship between the zeroes and the coefficients.

Sol: Comparing the given polynomial with

 $ax^3 + bx^2 + cx + d$, we get

a=3, b= -5, c = -11, d = -3.

Further

$$p(3) = 3 \times 3^{3} - (5 \times 3^{2}) - (11 \times 3) - 3$$

= 81 - 45 - 33 - 3 = 0,
$$p(-1) = -3 - 5 + 11 - 3 = 0,$$

$$p(-\frac{1}{3}) = -\frac{1}{9} - \frac{5}{9} + \frac{11}{3} - 3 = -\frac{2}{3} + \frac{2}{3} = 0$$

Therefore, 3, -1, and $-\frac{1}{3}$ are the zeroes of $3x^3 - 5x^2 - 11x - 3$.

So, we take $\alpha = 3$, $\beta = -1$ and $\gamma = -\frac{1}{3}$.

Now,

$$\alpha + \beta + \gamma = 3 + (-1) + \left(-\frac{1}{3}\right) = 2 - \frac{1}{3} = \frac{5}{3}$$
$$= \frac{-(-5)}{3} = \frac{-b}{a},$$
$$\alpha\beta + \beta\gamma + \gamma\alpha = 3x(-1) + (-1) \times \left(-\frac{1}{3}\right) + \left(-\frac{1}{3}\right) \times 3 = -3 + \frac{1}{3} - 1 = \frac{-11}{3} = \frac{c}{a},$$
$$\alpha\beta\gamma = 3 \times (-1) \times \left(-\frac{1}{3}\right) = -1 = \frac{-(-3)}{3} = \frac{-d}{a}$$

25. Find the quadratic polynomial in each case, with the given numbers as the sum and product of its zeroes respectively.

i)
$$\frac{1}{4}$$
, -1 ii) $\sqrt{2}$, $\frac{1}{3}$ iii) 0, $\sqrt{5}$ iv) 1, 1 v) $\frac{-1}{4}$, $\frac{1}{4}$ vi) 4, 1

Sol: i) Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be α and β

We have,
$$\alpha + \beta = \frac{1}{4} = \frac{-(-1)}{4} = \frac{-b}{a}$$

$$\alpha\beta = -1 = \frac{-4}{4} = \frac{c}{a}$$

If we take a=4; b = -1; c = -4

- :. The quadratic polynomial which fits the given conditions is $4x^2 x 4$.
- ii) Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be α and β

We have,
$$\alpha + \beta = \sqrt{2} = \frac{-(-\sqrt{2})}{1} = \frac{-b}{a}$$
$$= \frac{-(-3\sqrt{2})}{3}$$
$$\alpha\beta = \frac{1}{3} = \frac{c}{a}$$

If we take a =3, b= $-3\sqrt{2}$; c=1

:. The quadratic polynomial which fits the given conditions is $3x^2 - 3\sqrt{2}x + 1$

iii) Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be α and β

We have,
$$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$

$$\alpha\beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$

If we take a =1; b=0; $c=\sqrt{5}$

: The quadratic polynomial which fits the given conditions is

$$x^2 + 0. \ x + \sqrt{5} = x^2 + \sqrt{5}$$

iv) Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be α and β

We have,
$$\alpha + \beta = 1 = \frac{-(-1)}{1} = \frac{-b}{a}$$

 $\alpha\beta = 1 = \frac{1}{1} = \frac{c}{a}$

If we take a =1; b= -1; c = 1

- :. The quadratic polynomial which fits the given conditions is $x^2 x + 1$
- v) Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be α and β

We have,
$$\alpha + \beta = \frac{-1}{4} = \frac{-b}{a}$$

 $\alpha\beta = \frac{1}{4} = \frac{c}{a}$

If we take a =4; b= -1; c = 1

... The quadratic polynomial which fits the given conditions is $4x^2 + x + 1$ vi) Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be α and β

We have,
$$\alpha + \beta = 4 = \frac{-(-4)}{1} = \frac{-b}{a}$$

 $\alpha\beta = 1 = \frac{1}{1} = \frac{c}{a}$

If we take a =1; b= -4; c = 1

:. The quadratic polynomial which fits the given conditions is $x^2 - 4x + 1$

	www.saksiiieuucatioii.com	
26.	Divide $2x^2 + 3x + 1 by x + 2$.	$\frac{2x-1}{x+2)2x^2+3x+1}$
Sol:	$(2x-1)(x+2) + 3 = 2x^2 + 3x - 2 + 3$	$\frac{2x^2 + 4x}{2x^2 + 4x}$
	$=2x^2+3x+1$	
	i.e., $2x^2 + 3x + 1 = (x+2)(2x-1) + 3$	
	Therefore, Dividend = Divisor x Quotient + Remainder	-x-2 + +
		3
		$\frac{x-2}{x^2+x-1)-x^3+3x^2-3}$
27.	Divide $3x^2 - x^3 - 3x + 5 by x - 1 - x^2$, and verify the	
	division algorithm.	$-x^3 + x^2 - x$ $+ - +$
Sol:	Dividend = Divisor x Quotient + Remainder	
	$=(-x^{2}+x-1)(x-2)+3$	$2x^2 - 2x + 5$ $2x^2 - 2x + 2$
		2x - 2x + 2 - + -
	$= -x^3 + x^2 - x + 2x^2 - 2x + 2 + 3$	
	$= -x^3 + 3x^2 - 3x + 5$	3
G		

- 28. Find all the zeroes of $2x^4 3x^3 3x^2 + 6x 2$, if you know that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
- **Sol**: Since two of the zeroes are $\sqrt{2}$ and $-\sqrt{2}$, therefore we can divide by

$$(x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2.$$

$$\frac{2x^{2} - 3x + 1}{x^{2} - 2)2x^{4} - 3x^{3} - 3x^{2} + 6x - 2}$$

$$2x^{4} - 4x^{2}$$

$$- +$$

$$- +$$

$$- 3x^{3} + x^{2} + 6x - 2$$

$$- 3x^{3} + 6x$$

$$+ -$$

$$x^{2} - 2$$

$$x^{2} - 2$$

$$x^{2} - 2$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$- +$$

$$-$$

So, $2x^4 - 3x^3 - 3x^2 + 6x - 2 = (x^2 - 2)(2x^2 - 3x + 1)$

Now, by splitting -3x, we factorize $2x^2 - 3x + 1$ as (2x-1) (x-1). So, its zeroes are given by $x = \frac{1}{2}$ and x=1. Therefore, the zeroes of the given polynomial are $\sqrt{2}$, $-\sqrt{2}$ and 1 and $\frac{1}{2}$.

29. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$
, $g(x) = x^2 - 2$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$

Sol: i) $p(x) = x^3 - 3x^2 + 5x - 3$, $g(x) = x^2 - 2$

$$(x^3 - 3x^2 + 5x - 3) \div (x^2 - 2)$$

$$\begin{array}{r} x-3 \\
x^{2}-2 \overline{\smash{\big)}x^{3}-3x^{2}+5x-3} \\
 x^{3} -2x \\
 - + \\
 -3x^{2}+7x-3 \\
 -3x^{2} +6 \\
 + - \\
 \overline{7x-9}
 \end{array}$$

- 30. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time and the product of its zeroes as 2, -7, -14 respectively.
- **Sol**: Let α, β, γ are the zeroes of the cubic polynomial of ax^3+bx^2+cx+d

Given
$$\alpha + \beta + \gamma = 2$$

 $\alpha\beta + \beta\gamma + \gamma\alpha = -7$
 $\alpha\beta\gamma = -14$

Then the cubic polynomial is

$$x^{3} - x^{2}(\alpha + \beta + \gamma) + x(\alpha\beta + \beta\gamma + \gamma\beta) - \alpha\beta\gamma$$
$$= x^{3} - x^{2}(2) + x(-7) - (-14)$$
$$= x^{3} - 2x^{2} - 7x + 14$$

31. Draw the graph of $x^2 - 3x - y$ and find the zeroes. Justify the answers $y = x^3 - 3x - 4$

x	-2	-1	0	1	2	3	4	5
$y = x^3 - 3x - 4$	6	0	-4	-6	-6	-4	0	6
(x,y)	(-2,6)	(-1,0)	(0,4)	(1,-6)	(2,-6)	(3,-4)	(4,0)	(5,6)

- 1 and 4 are zeroes of the quadratic polynomial because (-1,0) and (4,0) are intersection points of X – anis

Justify: $x^2 - 3x - 4 = x^2 - 4x + 1x - 4$

$$= x (x-4) + 1 (x-4) = (x+1) (x-4)$$

Zeroes of
$$p(x) = (-1, 4)$$

www.sakshieducation.com

32. Draw the graph of $x^3 - 4x$

$$y = x^3 - 4x$$

x	-2	-1	0	1	2
$y = x^3 - 4x$	0	3	0	-3	0
(x,y)	(-2,0)	(-1,3)	(0,0)	(1,-3)	(2,0)

-2, 0, 2 are the zeroes of cubic polynomial

