${f B}$

Total No. of Questions - 24 Total No. of Printed Pages - 4 Regd. No.

Part - III MATHEMATICS, Paper - II (A) (Algebra and Probability) (English Version)

Time: 3 Hours

Max. Marks: 75

Note: This question paper consists of three Sections A, B and C.

SECTION A

 $10 \times 2 = 20$

- Very Short Answer Type Questions.
 - Answer all questions.
 - ii)
 - Each question carries two marks. If z=2 = 258 with a show that, $z^2-4z+13=0$. 1.
 - If $z_1 = -1$ and $z_2 = i$, then find $Arg\left(\frac{z_1}{z_2}\right)$. 2.
 - If $x = Cis\theta$, then find the value of
 - Form a quadratic equation whose roots are $7 \pm 2\sqrt{5}$.

 If -1, 2 and α are the roots of $2x^{10} + x^2 7x 6$
 - 7x 6 = 0, then 5. find α .

- Find the number of ways of arranging the letters of the word MATHEMATICS.
- If ${}^nC_5 = {}^nC_6$, then find ${}^{13}C_n$. 7.
- Prove that $C_0 + 2 \cdot C_1 + 4 \cdot C_2 + 8 \cdot C_3 + \dots + 2^n \cdot C_n = 3^n$. 8.
- Find the mean deviation about the median for the following data: 4, 6, 9, 3, 10, 13, 2.
- 10. A Poisson variable satisfies P(X=1) = P(X=2). Find P(X=5).

SECTION B

 $5 \times 4 = 20$

- Short Answer Type Questions.
 - Attempt any five questions.
 - Each question carries four marks.
 - 11. Show that the points in the Argand diagram represented by the complex numbers 2+2i, -2-2i, $-2\sqrt{3}+2\sqrt{3}i$ are the vertices of an equilateral triangle.
 - Thomas on com Prove that $\frac{1}{3x+1} + \frac{1}{x+1} - \frac{1}{(3x+1)(x+1)}$ between 1 and 4, if x is real.
 - Find the sum of all 4 digit numbers that can be formed using the digits 1, 3, 5, 7, 9.

- Find the number of ways of selecting a cricket team of 11 players from 7 batsmen and 6 bowlers, such that there will be atleast 5 bowlers in the team.
- 15. Resolve the fraction $\frac{2x^2+3x+4}{(x-1)(x^2+2)}$ into partial fraction.
- 16. Suppose A and B_{ij} are in independent events with P(A) = 0.6, P(B) = 0.7. Then compute:

 i) $P(A \cap B)$ ii) $P(A \cup B)$
- ii) $P(A \cup B)$
- iii) P(B/A) iv) $P(A^c \cap B^c)$
- A, B, C are three horses in a race. The probability of A to win the race is twice that of B and probability of B is twice that of C. What are the probabilities of A, B and C to win the race?

SECTION C

III. Long Answer Type Questions.

- Attempt any five questions.
- Each question carries seven marks. ii)
- If $\cos\alpha + \cos\beta + \cos\gamma = 0 = \sin\alpha + \sin\beta + \sin\gamma$, then prove that $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = \frac{3}{2} = \sin^2\alpha + \sin^2\beta + \sin^2\gamma$
- Solve the equation $x^4 10x^3 + 26x^2 10x + 1 = 0$.

20. If the coefficients of r^{th} , $(r+1)^{\text{th}}$ and $(r+2)^{\text{nd}}$ terms in the expansion of $(1+x)^n$ are in A.P. Then show that $n^2-(4r+1)n+4r^2-2=0$

21. If
$$x = \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \frac{1.3.5.7}{3.6.9.12} + \dots$$
, then prove that $9x^2 + 24x = 11$.

22. Find the mean deviation about the mean for the following data:

Marks obtained	0–10	10,000	20–30	30–40	40–50
No. of students	S. S	8	15	16	6

- 23. State and prove the addition theorem on probability.
- 24. A random variable X has the following probability distribution.

X = x	0 ,	1	2	3	4	5	6.	7
P(X=x)	0	k	2 <i>k</i>	2k	3 <i>k</i>	k ²	$2k^2$	7k2+k

Find:

i) k

Mean Mean

iii) P(0 < X < 5)