TET cum TRT - 2018

TGT - MATHEMATICS

1. National song was first sung at the Calcutta session of the Indian National Congress on
2. December 29, 1911
3. December 27, 1911
4. December 11, 1910
5. December 15, 1905
6. The college of Military Engineering is located in
7. Pune
8. Dehradun
9. Shimla
10. Darjeeling
11. India's longest highway Tunnel is
12. Bolan Tunnel
13. Kyber Tunnel
14. Chennai -Nashri Tunnel
15. Jojila Tunnel
16. This country was withdrawn from U.N in 1965
17. India
18. Pakistan
19. Brazil
20. Indonesia
21. European flag has a circle of
22. 100 silver stars
23. $\quad 12$ gold stars
24. 50 diamond stars
25. $\quad 75$ gold stars
26. We get Vitamin A from the following
27. Beetroot
28. Lemon
29. Yellow fruit
30. Pulses
31. This melted rock becomes Lava
32. Magma
33. Iron
34. Lithium
35. Nickel
36. Expanded form of UNESCO
37. United Nations Educational Scientific and Curricular Organisation
38. United National Entertainment Scientific and CulturalOrganisation
39. United Nations Educational Scientific and Cultural Organisation
40. United Nations Enjoyment and Scientific and Cultural Organisation
41. Eden Gardens stadium is located at
42. Karnataka
43. Kolkatta
44. Chennai
45. Hyderabad
46. In this year iPhone was first released
47. 2010
48. 2006
49. 2014
50. 2007
51. This tree's bark is used to produce aspirin
52. Palm
53. Neem
54. White Willow tree
55. Olive
56. Bengal's sorrow
57. Dhamodhar River
58. Sone River
59. Padma River
60. Ganga River
61. Who is considered as father of Psychoanalysis
62. Sigmund Freud
63. Froebel
64. Armstrong
65. Rousseau
66. 'Padma' awards are given by
67. The Vice President of India
68. The Prime Minister of India
69. The Chief Justice of Supreme Court of India
70. The President of India
71. Grand old man of India
72. LalaLajpat Rai
73. Rabindranath Tagore
74. Dadabhai Naoroji
75. Bal GangadarTilak
76. The Headquarters of a Hindi News Paper 'Navbharat Times' is at
77. Mumbai
78. Allahabad
79. Chennai
80. Kolkata
81. NCERT signed a pact with this company for internet safety training in schools
82. Face book
83. Whats App
84. Google
85. Apple
86. The winner of the 2017 French open Men's singles title is
87. Leander Paes
88. Rafael Nadal
89. Bopanna
90. Mahesh Bhupathi
91. Elephant Falls is situated at
92. Simla
93. Shillong
94. Cherrapunji
95. Patna
96. The minimum age for IAS entranceis
97. 18 years
98. 22years
99. 17years
100. 21years
101. During Vedic Education, the students who were keen to pursue the quest of truth and supreme knowledge, enriched their mind in this institution. Name the institution.
102. Sammelan
103. Parishad
104. Gurukula
105. Upanishads
106. Which of the following program was introduced by Ishwarbhai Patel Committee 1977?
107. Basic Education
108. Project Based Home work
109. Socially Useful and Productive Work
110. Bridge Courses
111. Which of these is correctly matched?
112. General Records- Art works record
113. Account Books -Remittance Book
114. Correspondence Record-Public Examination Register
115. Equipment Record- Bill Register
116. Which one is a function of NCERT with respect to Teacher Education?
117. Developing Primary and Secondary Education Curricula
118. Encouraging parents and society members to take up research in the area of teacher education
119. Managing University departments

4. Disseminating information and new trends in the field

25. Which one is a protagonist's claim on Private Educational Institutions?
26. Private and minority- oriented Educational Institutions have led to separatism and act as a barrier to bringing the minority population into the mainstream of national life in India.
27. Private Educational Institutions are known for student discipline, personality development, good teaching, promotion of extracurricular and sports activities etc.
28. Private Educational Institutions cater only to the upper income groups and urban middle class and widened the rich-poor gap and urban rural disparities.
29. Working and management of Private Educational Institutions have become increasingly politicized.
30. Which of these were established for patrons to donate their books as a part of free distribution of Books scheme launched in 2015?
31. Book Shelves
32. Book Almirahs
33. Book Hundies
34. Book Gruha
35. Which one is true about Central Information Commission?
36. Central Information Commission to be constituted by the President in consultation with Supreme Court.
37. Commission includes one Chief Information Commissioner, one Assistant Information Commissioner and three judges appointed by the Prime Minister of India.
38. Oath of Office will be administered by the President of India according to the form set out in the First Schedule.
39. Commission will exercise its powers on the direction of the Chief Justice of India.
40. What is the minimum number of working hours per week for the teacher as per RTE Act 2009?
41. 40 teaching including preparation hours
42. $\mathbf{4 5}$ teaching including preparation hours
43. 35 teaching including preparation hours
44. 50 teaching including preparation hours
45. According to NCF 2005, which of the following is NOT a component of comprehensive school health programme included in school curriculum?
46. vaccination programme
47. hygienic school environment
48. school lunch
49. health and physical education
50. According to NCF 2005, which one is incorrect about peace education?
51. It inculcates the values, attitudes and skills required for living in harmony with oneself and with others, including nature.
52. It embodies the joy of living and personality development with the qualities of love, hope and courage.
53. It encompasses violation of human rights, justice, tolerance, cooperation, social responsibility, and respect for cultural diversity.
54. It encompasses to a firm commitment to democracy and non-violent conflict resolution.
55. To become an engineer, painter, surgeon and the like the type of intelligence required more is
56. Intra personal intelligence
57. Bodily kinesthetic intelligence
58. Linguistic intelligence
59. Spacial intelligence
60. The first stage in the creative process is
61. Illumination
62. Preparation
63. Verification
64. Incubation
65. Teaching the usefulness of environment in the class can help in forming
66. Attitude
67. Personality
68. Motivation
69. Aptitude
70. The attribute that predicts success in a particular field
71. Intelligence
72. Introversion
73. Attitude
74. Aptitude
75. Use of demonstration by the teacher in the class, aids in
76. trial and error learning
77. Conditioning
78. Observational Learning
79. Motivation
80. Locating information, bringing in to awareness and using is
81. Encoding
82. Chunking
83. Retrieval
84. Storage
85. The Psychologist who devised non sense syllables is
86. Thorndike
87. Ebbinghaus
88. Pavlov
89. Piaget
90. Records kept of the student's performance in nearly everything he does
91. Terminal examination
92. Peer evaluation
93. Subjective assessment
94. Continuous assessment
95. A teacher exhibiting supportive behavior irrespective of what a student says or does is
96. Unconditional positive regard
97. Conditions of worth
98. Self actualization
99. Incongruence
100. Knowing what we are feeling in the moment, and using those preferences to guide our decision making is
101. Empathy
102. Self awareness
103. Motivation
104. Social skill

Content

41. For doing some work ' A ' takes 6 hours less than ' B ', buttogether they can complete the work in 13 hours20minutes. Then the time taken by ' B ' alone to complete the work is (in hours)
42. 20
43. 30
44. 35
45. 40
46. A machine depreciates every year at the rate of 20% of its value at the beginning of the year. The machine was purchased for $₹ 2,50,000$ and when sold was ₹ $1,28,000$, then the no. of years that machine used is
47. $2 \frac{1}{2}$
48. 3
49. 4
50. $4 \frac{1}{2}$
51. A motor boat speed is $9 \mathrm{~km} / \mathrm{h}$ in still water, goes 12 km down stream and comes back in the time of 3 hours, then the speed of the stream is
52. $3 \mathrm{~km} / \mathrm{h}$
53. $4 \mathrm{~km} / \mathrm{h}$
54. $6 \mathrm{~km} / \mathrm{h}$
55. $12 \mathrm{~km} / \mathrm{h}$
56. If $(a-b):(a+b)=1: 11$ then the ratio of
$(5 a+4 b+15) \div(5 a-4 b+3)$ is
57. $6: 1$
58. $6: 5$
59. $1: 5$
60. $5: 1$
61. If $\mathrm{x}=\frac{5-\sqrt{21}}{2}$ then the value of $\mathrm{x}+\frac{1}{x}$ is
62. 2
63. 5
64. 10
65. $\sqrt{21}$
66. The smallest 5 -digit number that exactly divisible by 42,56 and 70 leaves the remainder 3 is
67. 10000
68. 10077
69. 10080
70. 10083
71. A card is drawn randomly from well shuffled pack of 52 cards then the probability of getting black face card is
72. $\frac{1}{26}$
73. $\frac{3}{26}$
74. $\frac{1}{52}$
75. $\frac{3}{52}$
76. Two dice are thrown simultaneously then the probability of getting a same number on the top of the faces is
77. $\frac{5}{36}$
78. $\frac{1}{12}$
79. $\frac{1}{9}$
80. $\frac{\mathbf{1}}{6}$
81. If $x=7-4 \sqrt{3}$ then the value of $\sqrt{x}+\frac{1}{\sqrt{x}}$ is
82. 1
83. 4
84. 14
85. 48
86. If $\frac{x+y}{x y}=2$ and $\frac{x-y}{x y}=6$ then the value of ' y ' is
87. $\frac{-1}{4}$
88. $\frac{-1}{2}$
89. $\frac{1}{3}$
90. $\frac{1}{4}$
91. The remainder when the polynomial $5 x^{3}-x^{2}+6 x-2$ is divided by
$1-5 x$ is
92. 5
93. $\frac{1}{5}$
94. $\frac{-4}{5}$
95. $\frac{-1}{5}$
96. The distance between the points $(\mathrm{a} \cos \theta+\mathrm{b} \sin \theta, 0)$ and
$(0, \mathrm{a} \sin \theta-\mathrm{b} \cos \theta)$ is
97. $\mathrm{a}^{2}+\mathrm{b}^{2}$
98. $a^{2}-b^{2}$
99. $\sqrt{a^{2}+b^{2}}$
100. $a+b$
101. If the midpoint of the line segment joining $A\left(\frac{x}{2}, \frac{y+1}{2}\right)$ and $B(x+1, y-3)$ is $\mathrm{C}(5,-2)$ then the values of x and y are
102. $x=-6, y=1$
103. $x=1, y=-6$
104. $x=6, y=-1$
105. $x=-1, y=6$
106.

Class	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$
f	25	30	27	35	21

From the above data the sum of the upper limit of the median class and lower limit of the model class is

1. 45
2. 50
3. 55
4. 62
5. If the mean of the following distribution is 6 then the value of P is

x	2	4	6	10	$\mathrm{P}+5$
f	3	2	3	1	2

1. 4
2. 5
3. 6
4. 7
5. The adjacent figure OABC is a square inscribed in quadrant of OPBQ. If $\mathrm{OA}=20 \mathrm{~cm}$ then the area of shaded region is (Take $\pi=3.14$)
6. $228 \mathrm{~cm}^{2}$

7. $400 \mathrm{~cm}^{2}$
8. $428 \mathrm{~cm}^{2}$
9. $628 \mathrm{~cm}^{2}$
10. In the figure $\mathrm{DE} \| \mathrm{AF}$ and $\mathrm{DF} \| \mathrm{AC}$ if $\mathrm{BD}=6 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm}, \mathrm{EF}=10 \mathrm{~cm}$, then the length of AD and CF are
11. $\mathrm{x}=3, \mathrm{y}=2$

12. $x=6, y=15$
13. $\mathrm{x}=12, \mathrm{y}=30$
14. $x=30, y=12$
15. The diameter of a circle is 10 cm . If the length of a chord is 8 cm then the distance of a chord from the centre is
16. 5 cm
17. 4 cm
18. $\mathbf{3} \mathbf{~ c m}$
19. 2 cm
20. If an interior angle of a regular polygon measures 156° then the number of sides of polygon is
21. 18
22. 15
23. 12
24. 9
25. In the figure, $\mathrm{DE} \| \mathrm{BC}$. If $\mathrm{DE}: \mathrm{BC}=3: 5$ then the ratio of $\operatorname{ar}(\triangle \mathrm{ADE}): \operatorname{ar}(\operatorname{trap} \mathrm{BCED})$ is

26. $25: 9$
27. $16: 9$
28. $9: 25$
29. $9: 16$
30. Eight solid spheres of the same size are made by melting a solid metallic cylinder of base diameter 6 cm and height 32 cm then the diameter of each sphere is
31. 12 cm
32. 8 cm
33. 6 cm
34. 3 cm
35. From the top of the tower, the angle of depression of two points at distance 4 m and 9 m from the base of the tower are complementary each other. The height of the tower is
36. 12 m
37. 8 m
38. 6 m
39. 3 m
40. The value of $2\left(\frac{\sin 77^{\circ}}{\cos 13^{\circ}}\right)^{2}+3\left(\frac{\cos 77^{\circ}}{\sin 13^{\circ}}\right)^{2}-2 \sec ^{2} 45$ is
41. 4
42. 3
43. 1
44. 0
45. Sum of first ' n ' terms of the series $\sqrt{2}+\sqrt{8}+\sqrt{18} \ldots$ is
46. $\frac{n(n+1)}{2}$
47. $\frac{n(n+1)}{\sqrt{2}}$
48. $\sqrt{2} n$
49. 1
50. The length, breadth and height of a room are $8 \mathrm{~m} 25 \mathrm{~cm}, 6 \mathrm{~m} 75 \mathrm{~cm}$ and 4 m 50 cm respectively then the length of the longest rod that can measure the three dimensions of the room exactly is
51. 65 cm
52. 70 cm
53. 75 cm
54. 85 cm
55. If $\mathrm{A}=\{\mathrm{x} / \mathrm{x}=2 \mathrm{a}, 3<\mathrm{a}<8, \mathrm{a} \in \mathrm{N}\}$
$B=\{x / x=3 b, b<5, b \in N\}$ and $C=\{x / x=C+1,5<C<10\}$
then $n(\mathrm{~A}-(\mathrm{B} \cup \mathrm{C}))$ is
56. 1
57. 3
58. 4
59. 8
60. $\log _{2} x+\log _{4} x+\log _{8} x=\frac{22}{6}$ then the value of ' x ' is
61. 0
62. 1
63. 2
64. 4
65. The solution of $3 e^{x} \cos ^{2} y d x+\left(1-e^{x}\right) \cot y d y=0$ is
66. \quad Tan $y=c\left(\mathrm{e}^{x}-1\right)^{3}$
67. \quad Tan $y=\mathrm{c}\left(\mathrm{e}^{x}+1\right)^{3}$
68. $\operatorname{Tan} y=\mathrm{c}\left(\mathrm{e}^{x}-1\right)^{2}$
69. $\quad \operatorname{Cos} y=c\left(e^{x}-1\right)^{3}$
70. The solution of $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=1$ is
71. $y\left(x^{2}-1\right)=x+c$
72. $y\left(x^{2}-1\right)=x^{2}+\mathrm{c}$
73. $y\left(x^{2}+1\right)=x^{2}+\mathrm{c}$
74. $y^{2}\left(x^{2}-1\right)=x^{2}+\mathrm{c}$
75. The variance of $35,40,42,36,27$ is
76. 26
77. 26.8
78. 25.8
79. 26.2
80. A distribution consists of three components with frequencies 45,40 and 15 having their means $2,2.5$ and 2 respectively. The mean of the combined distribution is
81. 2.1
82. 2.2
83. 2.3
84. 2.4
85. The arithmetic mean and standard deviation of a set of 9 items are 43 and 5 respectively. If an item of value 63 is added to the set, the new mean of 10 items is
86. 45
87. 41
88. 43
89. 44
90. Five digit numbers can be formed from the digits $1,2,3,4,5$. If one number is selected at random, the probability that it is an even number is
91. $\frac{4}{7}$
92. $\frac{2}{5}$
93. $\frac{7}{16}$
94. $\frac{1}{16}$
95. Three squares of normal chess board are chosen. Then the probability of getting 2 squares of one colour and the other are different colour is
96. $\frac{16}{21}$
97. $\frac{8}{21}$
98. $\frac{8}{61}$
99. $\frac{16}{61}$
100. X is a poisson variate and $2 \mathrm{P}(\mathrm{x}=1)=\mathrm{P}(\mathrm{x}=2)$. Then $\mathrm{P}(x=2)=$
101. 1
102. $\frac{2}{e^{2}}$
103. $\frac{1}{e}$
104. $\frac{8}{e^{4}}$
105. If $f: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ is defined by $f(x)=3 x-2, g(x)=x^{2}+1$ then $(f \circ g)\left(x^{2}+1\right)=$
106. $3 x^{4}+6 x^{2}+4$
107. $9 x^{2}-1$
108. $3 x^{2}+1$
109. $3 x^{2}-1$
110. The domain of $\frac{\sqrt{a+x}+\sqrt{a-x}}{x},(a>0)$ is
111. $[-a, a]$
112. $[-a, 0] \cup(0, a)$
113. $[-a, 0) \cup(0, a]$
114. R
115. $\left|\begin{array}{ccc}a & b & a x+b y \\ b & c & b x+c y \\ a x+b y & b x+c y & 0\end{array}\right|=$
116. $b^{2}-a c$
117. $\left(b^{2}-a c\right)\left(a x^{2}+2 b x y+c y^{2}\right)$
118. $a c-b^{2}$
119. $\left(a c-b^{2}\right)\left(a x^{2}+2 b x y+c y^{2}\right)$
120. The inverse of $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$ is
121. $\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$
122. $\left[\begin{array}{ccc}7 & 3 & -3 \\ 1 & 1 & 0 \\ -1 & 0 & -1\end{array}\right]$
123. $\left[\begin{array}{ccc}-7 & 3 & -3 \\ -1 & -1 & 0 \\ -1 & 0 & -1\end{array}\right]$
124. $\left[\begin{array}{ccc}7 & -3 & -3 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
125. $(a+b)^{3}+\left(a w+b w^{2}\right)^{3}+\left(a w^{2}+b w\right)^{3}=$
126. $a^{3}+b^{3}$
127. $\quad 3\left(a^{3}+b^{3}\right)$
128. $a^{3}-b^{3}$
129. $a^{3}+b^{3}+3 a b$
130. $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=$
131. $2^{n+1} \cos ^{n} \frac{\theta}{2} \cos \frac{n \theta}{2}$
132. $2^{n} \cos ^{n} \frac{\theta}{2} \sin n \frac{\theta}{2}$
133. $2^{n+1} \sin ^{n}\left(\frac{\theta}{2}\right) \cos ^{n} \frac{\theta}{2}$
134. $\quad 2^{n} \sin ^{n} \frac{\theta}{2} \cos n \frac{\theta}{2}$
135. If $\sqrt{\frac{x}{1-x}}+\sqrt{\frac{1-x}{x}}=2 \frac{1}{6}$ then $x=$
136. $\frac{4}{11}$ or $\frac{7}{11}$
137. $\frac{3}{11}$ or $\frac{5}{11}$
138. $\frac{4}{13}$ or $\frac{9}{13}$
139. $\frac{3}{13}$ or $\frac{5}{13}$
140. The maximum value of $\frac{x}{x^{2}-5 x+9}$ is
141. $\frac{-1}{11}$
142. -1
143. $\frac{1}{11}$
144. 1
145. If $\alpha, \beta, \mathrm{r}$ are the roots of the equation $p x^{3}+q x^{2}+r x+\mathrm{s}=0$ then $\Sigma \alpha^{2} \beta^{2}=$
146. $\frac{r^{2}+2 q s}{p^{2}}$
147. $\frac{r^{2}-2 q s}{p^{2}}$
148. $\frac{p s+r^{2}}{p^{2}}$
149. $\frac{p s-r^{2}}{p^{2}}$
150. Find the number of ways of arranging 4 boys and 3 girls around a circle so that all the girls sit together
151. 144
152. 128
153. 6 !
154. 120
155. The number of ways of arranging the letters of the word MATHEMATICS
156. 11 !
157. $\frac{11!}{(2!) 3}$
158. $\frac{10!}{(2!)^{2}}$
159. $\frac{11!}{2!}$
160. The sum of $C_{0} C_{3}+C_{1} C_{4}+C_{2} C_{5}+\ldots .+C_{n-3} C_{n}$
161. $2 n C_{n+1}$
162. $2 n C_{n-1}$
163. $2 n C_{n+3}$
164. $2 n C_{n}$
165. The approximate value of $\frac{1}{\sqrt[3]{999}}=$
166. 0.2003
167. 0.201
168. 0.1159
169. 0.10003
170. If $\mathrm{O}(0,0), \mathrm{A}(3,4), \mathrm{B}(4,3)$ are the vertices of a triangle then the length of the altitude from O is
171. $4 \sqrt{2}$
172. $7 \sqrt{2}$
173. $\frac{7}{\sqrt{2}}$
174. $\frac{7}{2 \sqrt{2}}$
175. The area of the triangle formed by the line passing through the points $(5,-3)(2,6)$ with the coordinate axes is
176. 24 sq.units
177. $\frac{49}{8}$ sq.units
178. $\quad \frac{1}{2}$ sq.units
179. $\frac{49}{12}$ sq.units
180. If the lines $3 x+y+2=0,2 x-y+3=0,2 x+a y-6=0$ are concurrent then $a=$
181. 2
182. 4
183. 6
184. 8
185. If the pair of lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-4 x y-y^{2}=0$ be such that each pair bisects the angle between the other pair, then $p=$
186. $\frac{-1}{2}$
187. $\frac{1}{2}$
188. $\frac{1}{3}$
189. $\frac{-1}{3}$
190. If $x y+x+y+1=0, x+a y-3=0$ are concurrent, then $a=$
191. 3
192. 4
193. $-\mathbf{4}$
194. -3
195. The equation of the circle with centre $(2,3)$ and touching the line $3 x-4 y+1=0$ is
196. $x^{2}+y^{2}-4 x-6 y=0$
197. $x^{2}+y^{2}-4 x-6 y+12=0$
198. $x^{2}+y^{2}+4 x+6 y+12=0$
199. $x^{2}+y^{2}+4 x+6 y-12=0$
200. If $(4, k)$ and $(2,3)$ are conjugate points with respect to the circle $x^{2}+y^{2}=17$ then $k=$
201. 2
202. 4
203. 5
204. 3
205. The angle between the circles $x^{2}+y^{2}=a^{2}, x^{2}+y^{2}-a x-a y=0$ is
206. $\frac{\pi}{2}$
207. $\frac{\pi}{3}$
208. $\frac{3 \pi}{4}$
209. $\frac{2 \pi}{3}$
210. The focus of the Parabola $x^{2}=-4 y$ is
211. $(4,0)$
212. $(0,-1)$
213. $(0,1)$
214. $(0,2)$
215. The condition for the line $l x+m y+n=0$ to be a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
216. $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$
217. $\frac{a}{l}+\frac{b}{m}=a^{2}-b^{2}$
218. $a^{2} l^{2}+b^{2} m^{2}=n^{2}$
219. $\frac{a}{m}+\frac{b}{l}=a^{2}+b^{2}$
220. If $\mathrm{A}(2,-1,4), \mathrm{B}(0,1,5), \mathrm{C}(4,3,5), \mathrm{D}(6,4,3)$ then the length of the projection of $\overrightarrow{\mathrm{AB}}$ on $\overrightarrow{\mathrm{CD}}$ is
221. $+\frac{4}{3}$
222. $\frac{3}{4}$
223. $+\frac{2}{3}$
224. $\frac{2}{5}$
225. The area of the triangle formed by $\frac{x}{4}+\frac{y}{3}-\frac{z}{2}=1$ with x -axis and y axis is
226. 2
227. 3
228. 6
229. 12
230. If $\sec \theta=a+\frac{1}{4 a}$ then $\sec \theta+\operatorname{Tan} \theta=$
231. a
232. $2 a$
233. 3 a
234. $4 a$
235. $\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=$
236. 1
237. 2
238. 3
239. 4
240. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$ then $\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=$
241. $1+4 \sin A / 2 \sin B / 2 \sin c / 2$
242. $1+4 \cos \mathrm{~A} / 2 \cos \mathrm{~B} / 2 \cos \mathrm{c} / 2$
243. $1+4 \cos \mathrm{~A} / 2 \cos \mathrm{~B} / 2 \sin \mathrm{c} / 2$
244. $1+4 \cos \mathrm{~A} / 2 \sin \mathrm{~B} / 2 \cos \mathrm{c} / 2$
245. If $\operatorname{Tan}^{-1}\left(\frac{x-1}{x-2}\right)+\cot ^{-1}\left(\frac{x+2}{x+1}\right)=\frac{\pi}{4}$ then $x=$
246. $\frac{1}{\sqrt{5}}$
247. $\pm \frac{1}{\sqrt{2}}$
248. $\pm \frac{1}{\sqrt{3}}$
249. $\frac{1}{\sqrt{7}}$
250. If the angles of a triangle are in the ratio $1: 2: 3$, the corresponding sides are in the ratio
251. $2: 3: 1$
252. $\sqrt{3}: 2: 1$
253. $2: \sqrt{3}: 1$
254. $1: \sqrt{3}: 2$
255. In a $\Delta \mathrm{ABC},\left(\frac{1}{r}-\frac{1}{r_{1}}\right)\left(\frac{1}{r}-\frac{1}{r_{2}}\right)\left(\frac{1}{r}-\frac{1}{r_{3}}\right)=$
256. $\frac{a b c}{\Delta^{3}}$
257. 0
258. $4 \mathrm{R}^{2}$
259. $\frac{1}{r}$
260. Let $\mathrm{A}(4,7,8), \mathrm{B}(2,3,4)$ and $\mathrm{C}(2,5,7)$ be the position vectors of the vertices of a triangle ABC then the length of the internal bisector of the angle at A is
261. $\frac{3 \sqrt{34}}{2}$
262. $\frac{2 \sqrt{34}}{3}$
263. $\frac{\sqrt{34}}{2}$
264. $\frac{\sqrt{34}}{3}$
265. The angle between the diagonals of the parallelogram with the vectors $2 \hat{i}+\hat{j}$ and $\hat{k}-2 \hat{j}$ as adjacent sides is
266. $\frac{\pi}{2}$
267. $\frac{\pi}{6}$
268. $\frac{\pi}{3}$
269. $\frac{\pi}{4}$
270. If $\bar{r} \times \bar{b}=\bar{c} \times \bar{b}, \bar{r} \cdot \bar{a}=0, \bar{a}=2 \bar{i}+3 \bar{j}-\bar{k}, \bar{b}=3 \bar{i}-\bar{j}+\bar{k}, \bar{c}=\bar{i}+\bar{j}+3 \hat{k}$
then $\bar{r}=$
271. $\frac{1}{2}(\hat{i}+\hat{j}+\hat{k})$
272. $2(\hat{i}+\hat{j}+\hat{k})$
273. $2(-\hat{i}+\hat{j}+\hat{k})$
274. $\frac{1}{2}(\bar{i}-\hat{j}+\hat{k})$
275. $\left[\begin{array}{llll}\bar{b} \times \bar{c} & \bar{c} \times \bar{a} & \bar{a} \times \bar{b}\end{array}\right]=$
276. $[\bar{a} \bar{b} \bar{c}]$
277. $2[\bar{a} \bar{b} \bar{c}]$
278. $[\bar{a} \bar{b} \bar{c}]^{2}$
279. $\overline{0}$
280. $\underset{n \rightarrow \infty}{L t}\left(\frac{1^{2}+1}{n^{3}}+\frac{2^{2}+2}{n^{3}}+\frac{3^{2}+3}{n^{3}}+\ldots+\frac{n^{2}+n}{n^{3}}\right)=$
281. $\frac{1}{6}$
282. $\frac{1}{4}$
283. $\frac{1}{3}$
284. $\frac{1}{2}$
285. If $x \sqrt{1+y}+y \sqrt{1+x}=0, x \neq y$ then $\frac{d y}{d x}=$
286. $\frac{1}{(1+x)^{2}}$
287. $\frac{-1}{(1+x)^{2}}$
288. $\frac{1}{1+x^{2}}$
289. $\frac{1}{1-x^{2}}$
290. If $y=\sqrt{\sin x+y}$ then $\frac{d y}{d x}=$
291. $\frac{\cos x}{y-1}$
292. $\frac{\cos y}{x-1}$
293. $\frac{\cos x}{2 y-1}$
294. $\frac{\cos y}{2 x-1}$
295. If there is an error 0.01 cm . in the measurement of the radius 10 cm of a cylinder of fixed height 20 cm . then error in the volume is
296. 4π cubic cm
297. 2.5π cubic cm
298. 0.06 cubic cm
299. 0.6 cubic cm
300. If θ is the angle between the curves $y=x^{2}, x=y^{2}$ at $(1,1)$ then $\operatorname{Tan} \theta=$
301. 3
302. $\frac{3}{4}$
303. $\frac{3}{5}$
304. $\frac{5}{14}$
305. If the product of two positive numbers is 400 then the minimum value of their sum is
306. 8
307. 12
308. 32
309. 40
310. $\int \frac{x^{24}}{x^{10}+1} d x=$
311. $\frac{1}{5}\left[\frac{x^{15}}{3}-x^{5}-\operatorname{Tan}^{-1}\left(x^{5}\right)\right]$
312. $\frac{1}{5}\left[\frac{x^{15}}{3}-x^{5}+\operatorname{Tan}^{-1}\left(x^{5}\right)\right]+c$
313. $\frac{1}{5}\left[\frac{x^{15}}{3}-x^{5}+\operatorname{Sin}^{-1}\left(x^{5}\right)\right]+c$
314. $\frac{1}{5}\left[\frac{x^{15}}{3}+x^{5}+\cos ^{-1}\left(x^{5}\right)\right]+c$
315. $\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x=$
316. $\mathrm{e}^{\mathrm{x}} \operatorname{Tan} \mathrm{x} / 2+\mathrm{c}$
317. $e^{x} \sec x / 2+c$
318. $2 e^{x} \operatorname{Tan} x / 2+c$
319. $2 e^{x} \operatorname{Sec} x / 2+c$
320. $\int_{0}^{\pi / 2} \frac{1}{1+\cot x} d x=$
321. $\frac{\pi}{8}$
322. $\frac{\pi}{4}$
323. $\pi \log _{2}$
324. $\frac{\pi}{2}$
325. The area bounded by the curve $y=x^{2}$ and the lines $y=x+2, x=-1$, $x=2$ is
326. $\frac{9}{2}$
327. $\frac{8}{3}$
328. $\frac{1}{2}$
329. $\frac{1}{3}$

Methodology

121. The 'Mathematical statement' whose truth hood is self evident is known as
122. Intuition
123. Postulate
124. Induction
125. Deduction
126. The Numerals $0,1,2,3, \ldots 9$ are base for this number system
127. Indo-American system
128. Hindu-Arabic system
129. Hindu-Islamic system
130. Hindu-Roman system
131. Pythagoras, the ancient Greek Mathematician, is reported to have constructed a polygon, equivalent to a given
132. Circle
133. Ellipse
134. Polygon
135. Triangle
136. One of the following Ancient Indian Mathematician is reported to have stated the Pythagoras theorem thus.
'The square of bhuja plus square of koti is the square of Karna'.
137. Brahma Gupta
138. Mahaveer
139. Sreedhara
140. Aryabhatta
141. The Evaluation that will be taken up so as forecast future performances in the specified learning area is known as
142. Performance Evaluation
143. Futuristic Evaluation
144. Proficiency Evaluation
145. Prognostic Evaluation
146. It is correct to say that mathematics is the mirror of civilization. This means that, the mathematics subject has
147. Vocational value
148. Cultural value
149. Professional value
150. Utilitarian value
151. An instructional objective has to be stated in such a way that it invariably contains
152. behaviour part only
153. content part only
154. behaviour part or content part
155. both behaviour part and content part in terms of student behaviour modification
156. In the cognitive domain of educational objectives, the knowledge objective is at the lower level and forms the basis for all higher level objectives. The second objective from top to bottom of cognitive domain is
157. Comprehension
158. Application
159. Synthesis
160. Analysis
161. While teaching the mathematics, whole of the external world may be brought into the classroom by using
162. Slide projector
163. Educational television
164. Visual symbols
165. Still pictures
166. Talented children in mathematics may be identified by
167. Gathering opinion of present and former teacher
168. Taking interview of parents or guardian
169. Consulting siblings and other family members
170. Correcting view of friends and peer groups
171. In this step of Herbart, the actual teaching takes place and gradually builds the new concepts
172. Recapitulation stage
173. Preparation stage
174. Presentation stage
175. Motivation stage
176. Besides curricular activities, the annual plan gives the details of
177. Co-educational activities
178. Co-teacher's activities
179. Co-curricular activities
180. Extra-student activities
181. The International Mathematic Olympiad is a
182. Individual competition
183. Continental competition
184. Intra continental competition
185. International competition
186. The method which proceeds from particular cases to general cases is known as
187. Heuristic method
188. Analytic method
189. Inductive method
190. Synthetic method
191. The line of reasoning that can be found in synthetic method may be stated thus
192. If \mathbf{A} is true, then B is true
193. If A is true, then B is not true
194. If A is not true, then B is true
195. If A is true, B is true, C is not true
196. In Heuristic method the pupil will be kept in the place of
197. a discoverer
198. a teacher
199. a doctor
200. an engineer
201. 'A project is a problematic act, carried to completion in its most natural setting' - defined by
202. Dr. Kil Patrick
203. J.A. Stevenson
204. J.A. Johnson
205. Ballord
206. In defining the curriculum, 'Cunningham' compared the role of the teacher to that of
207. an artist
208. an artisan
209. a dancer
210. a painter
211. The English word 'Curriculum' was derived from the Latin word 'Currere' which means that 'the curriculum' is comparable to
212. Course to travel
213. Path to study
214. Track to run
215. Course to run
216. One of the following ancient civilizations are believed to have used the sexagesimal numeral system
217. Sumerians
218. Babylonians
219. Mongolians
220. Egyptians
221. In his book, 'Aryabhateeyam', Aryabhatta, the famous Indian, ancient mathematician, is reported to have given the formula to find the sum of
222. First ' n ' natural numbers
223. First ' n ' even natural numbers
224. First ' n ' odd natural numbers
225. Squares of first ' n ' natural numbers
226. 'A smallest number which can be expressed as a sum of cubes of two natural numbers in two different ways' is known as
227. RangaRajan number
228. Ranganadhan number
229. Ramanujan number
230. Srinivasan number
231. The main purpose of Formative Evaluation is to provide feedback to
232. Parents and the teachers
233. Teachers and the Government
234. Students and the teacher
235. Government and the parents
236. In a multiple choice test item, the stem can be in the form of a
237. a question or incomplete statement
238. a complex or complicated statement
239. a distracter or a false indirect statement
240. Ambiguous and complete statement
241. There are many interesting puzzles, riddles and designs which serve not only as source of knowledge, but also sources of pleasure and happiness. They indicate that mathematics has
242. Aesthetic value
243. Intellectual value
244. Symmetrical value
245. Disciplinary value
246. While stating an instructional objective, care should be taken that it should contain only one
247. Action verb
248. Auxiliary verb
249. Finite verb
250. Transitive verb
251. In educational taxonomy, proposed by Bloom and his associates, there is an hierarchy in difficulty and sophistication. Each objective of a particular level, consists of every objective of
252. Lower level
253. Upper level
254. Dorsal level
255. Front level
256. Identify the specification of instructional objective from the following
257. The pupil develops the understanding of mathematical formula
258. The pupil applies the knowledge of mathematics in new and unfamiliar situation
259. The pupil recalls the definition of co-prime
260. The pupil develops interest in study of mathematics
261. In the cone of learning experiences, as we move from the bottom to top the following quality of experiences increases
262. Concreteness
263. Abstractness
264. Exactness
265. Vagueness
266. The annual plan depicts the year long activities that are likely to be taken up by the mathematics teacher on
267. Permanent basis
268. Textbook basis
269. Yearly basis
270. Syllabus basis
271. According to the steps recommended by Herbart, great educationist, for daily lesson plan, the 'preparation' steps is meant to test the
272. Knowledge of previous lessons
273. Knowledge of previous classes
274. Previous relevant knowledge of pupils
275. Readiness of the pupil
276. Through mathematics club activities, such as debates, discussions etc, the special needs of the following types of pupils may be met
277. Medicates
278. Imbeciles
279. Gifted children
280. Morons
281. In teaching mathematics 'accuracy' in stating the results may be ensured by
282. Providing time frame to every problem
283. Providing insufficient practice
284. Use of short cut methods
285. Copying all figures correctly
286. The formula derived, the principle constructed by inductive method, will be extended to new situations by
287. Heuristic method
288. Project method
289. Deductive method
290. Analytic method
291. Which of the following methods is 'complementary' to Analysis
292. Heuristic method
293. Synthetic method
294. Deductive method
295. Inductive method
296. Which of the following methods of teaching is considered as experimental part of Inductive method
297. Analytic method
298. Project method
299. Laboratory method
300. Problem solving method
301. The last step of project method of teaching is
302. Sensing the problem
303. Recording
304. Providing a problem situation
305. Sensing the temporary solution
306. If a topic, selected for study is useful either to 'succeed in life' or to 'prepare for higher studies' then the topic is said to have
307. Cultural value
308. Professional value
309. Preparatory value
310. Vocational value
311. "The sets, the relations and functions are arranged in a sequential order because knowledge of fundamental concepts of set theory is necessary for learning the next topics." - this type of arrangement of topics is known as
312. Concentric approach
313. Psychological approach
314. Logical approach
315. Topical approach
316. The percentages, simple interest, compound interest were selected and placed in the school syllabus, in the same class. This was done so as to meet the principle of
317. Disciplinary value
318. Utilitarian value
319. Cultural value
320. Vocational value
