XL-R: Q. 1-Q. 10 carry one mark each & Q. 11-Q. 20 carry two marks each.

Q.1	Which of the following genera produces dimorphic seeds that help to broaden the time of germination in a variable habitat?							
	(A) Xanthium	(B) Pisum	(C) Mangifera	(D) Linum				
Q.2	The genes for mic	croRNA (miRNA) in	plants are usually transc	cribed by				
	(A) RNA polymer (C) RNA polymer		(B) RNA polymer (D) RNA polymer					
Q.3	Which of the state	ements is TRUE for	transposable elements A	c and Ds ?				
	(B) Both Ac and L (C) Only Ac is aut	Os are non-autonomo tonomous because it	ecause they encode their ous because they do not e encodes its own transpo encodes its own transpo	encode their own transposase sase				
Q.4	Identify the COR	Identify the CORRECT statement.						
	 (A) Receptor-like kinases play role in gametophytic self-incompatibility in Brassicaceae (B) Receptor-like kinases play role in sporophytic self-incompatibility in Solanaceae (C) Ribonucleases play role in sporophytic self-incompatibility in Brassicaceae (D) Ribonucleases play role in gametophytic self-incompatibility in Solanaceae 							
Q.5	Which of the following statements is TRUE for an ecotone?							
	 (A) An ecotone is the synonym of an ecosystem (B) An ecotone is an interface zone of two or more ecosystems (C) An ecotone is a special feature of land biomes (D) An ecotone is exclusively characterized by decreased biodiversity 							
Q.6	Acid rain with a pH of 4.0 is more acidic than the rain with a pH of 6.0 by							
	(A) 2 times	(B) 10 times	(C) 100 times	(D) 1000 times				
Q.7	Which of the follo	owing plants produce	es Ylang-ylang oil?					
	(A) Cananga odo (C) Pandanus odo		(B) Carcum coption (D) Pimenta racer					
Q.8	Identify the INCORRECT statement in connection with polar transport of auxin.							
	(B) Polar auxin tra (C) Naphthylphth	ansport in root tends alamic acid (NPA) is	is a cytosolic protein to be both acropetal and an inhibitor of polar au ted in the opposite ends	-				

XL-R 1/4

Q.9	Which of the following	Which of the following stains is used to visualize callose under the microscope?							
	(A) Alcian blue	(B) Aniline blue	(C) Toluidine blue	(D) Thymol blue					
Q.10	The coding sequence of a gene <i>XLR18</i> has the single ORF of 783 bp. The approximate molecular weight of the XLR18 protein in kDa is								
Q.11	Statements given be combination.	elow are either TRU	JE (T) or FALSE (F). Select the CORRECT					
	Q. Mitosis occurs bo R. Meiosis occurs ex	clusively in diploid moth in diploid and haplaclusively in diploid noth in diploid and haplach in diploid and haplach	oid mother cells nother cell						
	(A) P-T, Q-F, R-T, S (C) P-T, Q-F, R-F, S		(B) P-F, Q-T, R-F, S (D) P-F, Q-T, R-T, S						
Q.12	ression of a gene encoding lect the CORRECT set of								
	(B) Ubiquitin1 prom(C) rbcS promoter —	oter → TP18 coding : TP18 coding sequer	nence → Actin1 transcription sequence → Ubiquitin nce → rbcS transcription nce → rbcL transcription	1 transcription terminator on terminator					
Q.13	Select the CORREC	CT combination of the	e following statements.						
	 P. The cyclic electron transport chain involving PSI results in net production of both ATP and NADPH Q. The cyclic electron transport chain involving PSI results in net production of ATP R. Rubisco enzyme usually converts RuBP and CO₂ into 2-phosphoglycolate and 3-phosphoglycerate S. Rubisco enzyme usually converts RuBP and O₂ into 2-phosphoglycolate and 3-phosphoglycerate 								
	(A) P, Q	(B) R, S	(C) Q, S	(D) P, R					

XL-R 2/4

Q.14 Match the fruit characters with their families and representative plant species.

Fruit character	Family	Plant species
P. Syconus	1. Moraceae	i. Canavalia ensiformis
Q. Capsule, opening by apical pores or valves	2. Fabaceae	ii. Artabotrys odoratissimus
R. Legume	3. Papaveraceae	iii. Ficus religiosa
S. An etaerio of drupe	4. Annonaceae	iv. Papaver somniferum
		v. Pistacia vera
		vi. Citrus aurantium
(A) P-2-iv, Q-3-ii, R-1-vi, S	-4-v (B) P-1-iii, Q	2-3-iv, R-2-i, S-4-ii
(C) P-3-i, Q-2-iii, R-4-ii, S-	1-vi (D) P-4-v, Q-	-1-ii, R-2-v, S-3-i

Q.15 Select the **CORRECT** combination by matching the disease, affected plant and the causal organism.

Disease	Affected plant	Causal organism
P. Black rot	1. Corn	i. Fusarium oxysporum f.sp. cubense
Q. Loose smut	2. Banana	ii. Acidovorax avenae subsp. citrulli
R. Panama wilt	3. Watermelon	iii. Botryosphaeria obtusa
S. Bacterial fruit blotch	4. Apple	iv. Ustilago maydis
		v. Plasmopara viticola
		vi. Venturia inaequalis
(A) P-2-v, Q-1-iv, R-3-iii, (C) P-4-iii, Q-1-iv, R-2-i, S		(B) P-2-ii, Q-1-i, R-4-iii, S-3-i (D) P-4-vi, Q-1-iii, R-3-ii, S-2-v

Q.16 Select the **CORRECT** combination by matching **Group-I** with **Group-II**.

Group-I	Group-II
P. Photorespiration	1. Glutamate \rightarrow 2-Oxglutarate
Q. Respiration	2. Acetyl-CoA → Malonyl-CoA
R. Amino acid degradation	3. 2-Oxglutarate → Succinyl-CoA
S. Fatty acid synthesis	4. Glycine → Serine
(A) P-1, Q-2, R-3, S-4	(B) P-2, Q-1, R-4, S-1
(C) P-3, Q-4, R-2, S-3	(D) P-4, Q-3, R-1, S-2

XL-R 3/4

Q.17 Match the plant alkaloids with their uses and source species.

Alkaloid	Use	Source species
P. Codeine	1. Stimulant	i. Hyoscyamus niger
Q. Caffeine	2. Analgesic	ii. Catharanthus roseus
R. Scopolamine	3. Antineoplastic	iii. Cola nitida
S. Vinblastine	4. Anticholinergic	iv. Papaver somniferum
		v. Coptis japonica
		vi. Senecio jacobaea
(A) P-2-iv, Q-1-iii, R-4	1-i, S-3-ii	(B) P-4-iii, Q-2-v, R-1-vi, S-3-i
(C) P-2-v, Q-1-vi, R-3-	-iv, S-4-ii	(D) P-3-ii, Q-4-iii, R-1-iv, S-2-i

- Q.18 Identify the **CORRECT** combination of statements with respect to chemical defense in plants.
 - P. Pisatin, a phytoalexin produced by *Ricinus communis* is a constitutive defense compound
 - Q. Phaseolus vulgaris produces Phaseolus agglutinin I, which is toxic to the cowpea weevil
 - R. A single step non-enzymatic hydrolysis of cyanogenic glycoside releases the toxic hydrocyanic acid (HCN) to protect plant against herbivores and pathogens
 - S. Avenacin, a triterpenoid saponin from oat prevents infection by *Gaeumannomyces* graminis, a major pathogen of cereal roots
 - (A) P, Q (B) Q, S (C) R, S (D) P, S
- Q.19 In garden pea, dwarf plants with terminal flowers are recessive to tall plants with axial flowers. A true-breeding tall plant with axial flowers was crossed with a true-breeding dwarf plant with terminal flowers. The resulting F₁ plants were testcrossed, and the following progeny were obtained:

Tall plants with axial flowers = 320 Dwarf plants with terminal flowers = 318 Tall plants with terminal flowers = 79 Dwarf plants with axial flowers = 83

The map distance between the genes for plant height and flower position is _____cM.

Q.20 Two true-breeding snapdragon (*Antirrhinum majus*) plants, one with red flowers and another with white flowers were crossed. The F₁ plants were all with pink flowers. When the F₁ plants were selfed, they produced three kinds of F₂ plants with red, pink and white flowers in a 1:2:1 ratio. The probability that out of the five plants picked up randomly, two would be with pink flowers, two with white flowers and one with red flowers is _____%.

END OF THE QUESTION PAPER

XL-R 4/4

Q.No.	Туре	Section	Key/Range	Marks
1	MCQ	GA	А	1
2	MCQ	GA	С	1
3	MCQ	GA	В	1
4	MCQ	GA	В	1
5	MCQ	GA	В	1
6	MCQ	GA	А	2
7	MCQ	GA	D	2
8	MCQ	GA	D	2
9	MCQ	GA	В	2
10	MCQ	GA	С	2
1	MCQ	XL-P	А	1
2	MCQ	XL-P	D	1
3	MCQ	XL-P	D	1
4	NAT	XL-P	11 to 11	1
5	NAT	XL-P	4 to 4	1
6	MCQ	XL-P	D	2
7	MCQ	XL-P	D	2
8	MCQ	XL-P	Α	2
9	MCQ	XL-P	D	2
10	MCQ	XL-P	А	2
11	MCQ	XL-P	С	2
12	MCQ	XL-P	В	2
13	NAT	XL-P	1.39 to 1.43	2

Q.No.	Туре	Section	Key/Range	Marks
14	NAT	XL-P	7.39 to 7.54	2
15	NAT	XL-P	-13.40 to -13.36	2
1	MCQ	XL-Q	В	1
2	MCQ	XL-Q	А	1
3	MCQ	XL-Q	С	1
4	MCQ	XL-Q	С	1
5	MCQ	XL-Q	D	1
6	MCQ	XL-Q	С	1
7	MCQ	XL-Q	D	1
8	MCQ	XL-Q	В	1
9	NAT	XL-Q	12 to 12	1
10	NAT	XL-Q	50 to 50	1
11	MCQ	XL-Q	А	2
12	MCQ	XL-Q	А	2
13	MCQ	XL-Q	D	2
14	MCQ	XL-Q	В	2
15	MCQ	XL-Q	В	2
16	NAT	XL-Q	512 to 512	2
17	NAT	XL-Q	20 to 20	2
18	NAT	XL-Q	0.8 to 0.8	2
19	NAT	XL-Q	77 to 77	2
20	NAT	XL-Q	-8862 to -8862	2
1	MCQ	XL-R	А	1

Q.No.	Туре	Section	Key/Range	Marks
2	MCQ	XL-R	В	1
3	MCQ	XL-R	С	1
4	MCQ	XL-R	D	1
5	MCQ	XL-R	В	1
6	MCQ	XL-R	С	1
7	MCQ	XL-R	А	1
8	MCQ	XL-R	А	1
9	MCQ	XL-R	В	1
10	NAT	XL-R	28.00 to 31.00	1
11	MCQ	XL-R	D	2
12	MCQ	XL-R	D	2
13	MCQ	XL-R	С	2
14	MCQ	XL-R	В	2
15	MCQ	XL-R	С	2
16	MCQ	XL-R	D	2
17	MCQ	XL-R	А	2
18	MCQ	XL-R	В	2
19	NAT	XL-R	20.25 to 20.25	2
20	NAT	XL-R	11.00 to 12.00	2
1	MCQ	XL-S	В	1
2	MCQ	XL-S	Α	1
3	MCQ	XL-S	Α	1
4	MCQ	XL-S	D	1

Q.No.	Туре	Section	Key/Range	Marks
5	MCQ	XL-S	D	1
6	MCQ	XL-S	С	1
7	MCQ	XL-S	D	1
8	MCQ	XL-S	В	1
9	MCQ	XL-S	Α	1
10	NAT	XL-S	1.38 to1.42	1
11	MCQ	XL-S	С	2
12	MCQ	XL-S	С	2
13	MCQ	XL-S	Α	2
14	MCQ	XL-S	D	2
15	MCQ	XL-S	В	2
16	MCQ	XL-S	Α	2
17	NAT	XL-S	2.60 to 2.80	2
18	NAT	XL-S	0.5 to 0.5	2
19	NAT	XL-S	45.50 to 46.50	2
20	NAT	XL-S	30.5 to 31.5	2
1	MCQ	XL-T	С	1
2	MCQ	XL-T	В	1
3	MCQ	XL-T	Α	1
4	MCQ	XL-T	D	1
5	MCQ	XL-T	С	1
6	MCQ	XL-T	D	1
7	MCQ	XL-T	В	1

Q.No.	Туре	Section	Key/Range	Marks
8	MCQ	XL-T	А	1
9	MCQ	XL-T	А	1
10	MCQ	XL-T	С	1
11	MCQ	XL-T	В	2
12	MCQ	XL-T	D	2
13	MCQ	XL-T	С	2
14	MCQ	XL-T	С	2
15	MCQ	XL-T	В	2
16	MCQ	XL-T	D	2
17	MCQ	XL-T	С	2
18	MCQ	XL-T	Α	2
19	NAT	XL-T	5270 to 5310	2
20	NAT	XL-T	0.056 to 0.062	2
1	MCQ	XL-U	В	1
2	MCQ	XL-U	Α	1
3	MCQ	XL-U	С	1
4	MCQ	XL-U	Α	1
5	MCQ	XL-U	D	1
6	MCQ	XL-U	D	1
7	NAT	XL-U	1.55 to 1.65	1
8	NAT	XL-U	103.0 to 103.2	1
9	NAT	XL-U	54 to 56	1
10	NAT	XL-U	0 to 0	1

Q.No.	Туре	Section	Key/Range	Marks
11	MCQ	XL-U	В	2
12	MCQ	XL-U	С	2
13	MCQ	XL-U	С	2
14	MCQ	XL-U	А	2
15	MCQ	XL-U	D	2
16	MCQ	XL-U	А	2
17	MCQ	XL-U	В	2
18	NAT	XL-U	9.8 to 10.2	2
19	NAT	XL-U	1.1 to 1.8	2
20	NAT	XL-U	10 to 10	2