Time: 2 Hours

Marks: 100

Instructions:

- (i) Each question carries ONE mark.
- (ii) Choose the correct or most appropriate answer from the given options to the following questions and darken, with Black Ball Point Pen only, the corresponding digit 1, 2, 3 or 4 in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

SECTION - A: ELECTRICAL ENGINEERING

1. The frequency response of $G(s) = \frac{1}{s(s+1)(s+2)}$ plotted in the complex $G(j\omega)$ plane (for $0 < \omega < \infty$) is

(1)

- The constant M loci plot is symmetrical with respect to
 - (1) real axis and imaginary axis buttoness and
 - (2) M = 1 straight line and the real axis
- (3) M = 1 straight line and the imaginary axis
 - (4) M = 1 straight line

EEE)

3 - C

P.T.O.

Consider the state space model of a system, as given below

 $y=[1 \ 1 \ 1] x_2$

The system is

- (1) Controllable and observable
- (2) Uncontrollable and observable
- (3) Uncontrollable and unobservable
- (4) Controllable and unobservable
- High voltage Schering bridge is used for the measurement of 4.
 - (1) Resistance and inductance of a coil
- (2) Frequency of the ac source
- (3) Loss angle of a capacitor
- (4) Q of a coil
- An ammeter of 0.1 Ω resistance is connected across the secondary of a 400/5 A current transformer (CT). The CT burden is
 - (1)0.5 VA
- (2) 2.5 VA
- (3) 5.0 VA
- 25 VA

- An aquadag is used in a CRO to collect 6.
 - (1) Primary electrons
 - (2) Secondary emission electrons
 - (3) Both primary and secondary emission electrons
 - The frequency of the signal
- A PMMC meter has an internal resistance 200 Ω and the current required for its full 7. scale deflection is 50 µA. The meter is capable of measuring, on its own, a maximum voltage of (2) $10 \,\mu\text{V}$ periodic (3) $5 \,\text{mV}$ energy (4) $10 \,\text{mV}$
 - (1) 5 μ V

- Errors which may be variable both in magnitude and nature (positive or negative) are 8. classified as
 - (1) Hysteresis error

Random errors (2)

(3) Systematic errors

- (4) Interaction errors
- The input voltage to a full wave bridge rectifier is $v(t) = 200 \sin \omega t$ volts. The peak inverse 9. voltage of the diodes is
 - (1) 200 volt

(2) $\sqrt{2} \times 200 \text{ volt}$

 $\sqrt{2} \times 100 \text{ volt}$

(A) 400 volt

(EEE)

(TII)

15.	(1) (2) (3) (4) The (1) (2) (3) (4)	Bandwidth doesn't have any relationship with natural frequency Bandwidth is inversely proportional to natural frequency Bandwidth is directly proportional to natural frequency voltage at the receiving end of the line can be controlled by installing Synchronous condenser supplying leading kVAR Synchronous condenser supplying lagging kVAR depending on excitation of condenser Synchronous condenser supplying leading kVAR depending on excitation of condenser Synchronous condenser supplying lagging kVAR
	(2) (3) (4) The	Bandwidth doesn't have any relationship with natural frequency Bandwidth is inversely proportional to natural frequency Bandwidth is directly proportional to natural frequency voltage at the receiving end of the line can be controlled by installing Synchronous condenser supplying leading kVAR Synchronous condenser supplying lagging kVAR depending on excitation of condenser
	(2) (3) (4) The	Bandwidth doesn't have any relationship with natural frequency Bandwidth is inversely proportional to natural frequency Bandwidth is directly proportional to natural frequency voltage at the receiving end of the line can be controlled by installing
	(2) (3) (4)	Bandwidth doesn't have any relationship with natural frequency Bandwidth is inversely proportional to natural frequency Bandwidth is directly proportional to natural frequency
15.	(2)	Bandwidth doesn't have any relationship with natural frequency Bandwidth is inversely proportional to natural frequency
15.		Bandwidth doesn't have any relationship with natural frequency
15.	(1)	Building
15.		Bandwidth is equal to natural frequency
4 =	relat	ionship between handwidth and natural frequency of the system?
	(3)	Stack counter (4) Both accumulator and stack counter sider a second-order linear system. Which one of the following gives the correct
OHI	(1)	Accumulator (2) Programme counter Stack counter (4) Both accumulator and stack counter
14.	Whi	ch of the following is an 8-bit register in Intel 8085 microprocessor
13.	the rathe the the (1)	ree phase full wave controlled rectifier is connected to a separately excited DC motor and machine has the following data: $T_e = 150 \text{ N-m}$; $\omega = 75 \text{ rad/sec}$ and $I_a = 50 \text{A}$; What will be back emf of the motor? 200 V (2) 225 V (3) 250 V (4) 275 V
Vi.	(1)	2000 fpiii (2) 1300 fpiii (2)
	sing	tle phase semi converter, the motor rotates at
12.	oper	rates at 1000 rpm at firing angle $\alpha = 45^\circ$. If single phase half wave converted is replaced by
	(4)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(3)	varying the frequency of triangular wave
	(2)	varying the frequency of sine wave
	(1)	increasing the amplitude of sine wave
11.	The	frequency of ac voltage in a single phase PWM converter is regulated by
	(4)	may increase or decrease depending upon the doping levels in the junction
	(3)	remains constant
	(2)	decreases
		increases
	(1)	
10.	curr	

10.		ne temperature is increased, the voltage across a semiconductor diode carrying a constant
	curr	
	(1)	increases
	(2)	decreases
	(3)	remains constant
1	(4)	may increase or decrease depending upon the doping levels in the junction
11.	The	frequency of ac voltage in a single phase PWM converter is regulated by
	(1)	increasing the amplitude of sine wave
	(2)	varying the frequency of sine wave
	(3)	varying the frequency of triangular wave
	(4)	amplitude of the triangular wave
12.	A si	ngle phase half wave converter with freewheeling diode fed separately excited DC drive
		rates at 1000 rpm at firing angle $\alpha = 45^{\circ}$. If single phase half wave converter is replaced by
di.		gle phase semi converter, the motor rotates at
	(1)	2000 rpm (2) 1500 rpm (3) 1000 rpm (4) 500 rpm
14.	(1) Whi (1) (3)	200 V (2) 225 V (3) 250 V (4) 275 V Ich of the following is an 8-bit register in Intel 8085 microprocessor Accumulator (2) Programme counter Stack counter (4) Both accumulator and stack counter
15.	Con relat (1)	sider a second-order linear system. Which one of the following gives the correct ionship between bandwidth and natural frequency of the system? Bandwidth is equal to natural frequency
	(2)	Bandwidth doesn't have any relationship with natural frequency
	(3)	Bandwidth is inversely proportional to natural frequency
	(4)	Bandwidth is directly proportional to natural frequency
16.	The	voltage at the receiving end of the line can be controlled by installing
	(1)	Synchronous condenser supplying leading kVAR
	(2)	Synchronous condenser supplying lagging kVAR depending on excitation of condenser
	(3)	Synchronous condenser supplying leading kVAR depending on excitation of condenser
	(4)	Synchronous condenser supplying lagging kVAR
(EE	E)	5 - C - D PTO

-	
- 1	TI
- 1	V
- 1	

17	the (1)	transfor	ransformer have by circulating mer for a circulation (5, 87.4/5), 43.71/(5/1.7)	current prote lating curren	ection syst nt of 5A in	em. Calculate	32), 8/.4/3) configuration n both sides of
18	BI	Formalif	7, 43.71/(5/1.)	(32)	(4)	43.7175, 67.	(0, 11, 52)	
10	. Bi	Comm	ier configurati	on which act	s as buffer	is	nd disason	
	(3)	Com	ion emitter		(2)	Common bas	se .:.c	
10	+ /		non collector		(4)	Cascode amp	plifier	
19.		xa decim	nal equivalent	value of decir	nal numbe	er 757·25 is		(1)
	(1)	/DZ·2	$^{\prime\prime}$ B (2)	2F5·40	(3)	3E4·60	(4) 42A·	8
20.	Fre	quency	of oscillation of	of Colpitt's o	scillator is	T 1 170 751	conjectly .	(8)
	(1)	f = -	$\frac{1}{\pi \sqrt{L\left(\frac{C_1 C_2}{C_1 + C_2}\right)}}$	i igaila	(2)	$f = \frac{1}{2\pi\sqrt{L(C)}}$	$\overline{C_1 + C_2}$	
			$V(C_1+C_2)$)				90
			(4)					
91			$\frac{1}{\pi\sqrt{\left(L_1+L_2\right)C}}$		(4)	$f = \frac{1}{2\pi\sqrt{(L_1)}}$	$\frac{1}{+L_2+2M)C}$	
21.		type of	feedback used	in wien brid	ge oscillat	oris	In-radi	91
	(1)	Negati No fee	ve feedback of	nly	(2)	Positive feed	back only	The state of the s
$\overline{22}$.				0.11	(4)	Both negative	e and positive fo	eedback
<i></i> .	cons	version t	ima far	8-bit successi	ive approx	imation type A	to D converter	is 2MHz The
	(1)	version ι 2μs		9 - 8 mai 5a	inpic to be	converted to	digital equivale	nt volue is
22								
23.	The	present	outputs of the	flip-flops o	f a 3 bit sy	nchronous do	(4) 16μs own converter	one 110 After
			es the outputs	0		17/1/1	the standard	are 110. And
	4(1)	110	3(2)	111	(3)	101	(4) 100	
24.	The	highest	priority interri	upt in Intel 8	085 micro	Drocessor in	(4) 100	
1	(1)	пити	.~~2)	KS1 /.5	(\mathcal{Z})	TDAD	(4) RST 6	
25.	The	figure s	shows a circu	it with an i	deal opera	ational amen'	$\frac{(4) RST 6}{\text{fier } V_{\text{in}} = 5 \text{ sin}}$	0.0
	V _{out}	is	mV		T	ampli	Her $V_{\rm in} = 5 \text{si}$	not mV. The
	(1)	5 sin ω	t		· Nonda		POSTURE COME	

(EEE)

(2) (3)

(4)

–5 sin ωt

10 sin ωt

 $2.5 \sin \omega t$

6 - C

 $V_{in} = 5 \sin \omega t$

Vout

- - (1) 0
- (2) $2\pi i$
- $-2\pi i$
- Which of the following is not an Eigen vector of the matrix 1
- $(3) \begin{bmatrix} 3 \\ 0 \\ -3 \end{bmatrix}$
- The Fourier transform of the function $f(x)=xe^{4x^2}$ is 28.
 - (1)
- (2) $\frac{\sqrt{\pi}}{2}e^{-\frac{w^2}{16}}$ (3) $-i\frac{\sqrt{\pi}}{16}we^{-\frac{w^2}{16}}$ (4) $i\frac{\sqrt{\pi}}{8}we^{-\frac{w^2}{8}}$
- Let X be a random variable that follows Binomial distribution with expectation E(X) = 7 and variance V(X) = 6. Then the probability of success p is
 - (1)
- $(3) \frac{1}{7}$
- $(4) \frac{1}{40}$
- The area of the region that lies inside the cardioid $r = 1 + \cos\theta$ and outside the circle r = 1 is 30.
 - (1)
- (2) $\frac{\pi}{4} + 1$ (3) $\frac{\pi}{4} + 2$
- (4) $\frac{\pi}{4} + 4$
- A coil with a certain number of turns has a specified time constant. If the number of turns is 31. doubled, its time constant would be
 - Remain unaffected (1)

Become doubled (2)

Become fourfold (3)

- (4)Get halved
- The instantaneous power of a balanced three-phase load is 2000 W when phase A is at its peak 32. voltage. What will be the instantaneous power 30° later?
 - 1 kW (1)
- (2) 4 kW
- (3) $\sqrt{3}$ kW
 - (4) 2 kW
- A balanced three phase delta connected load is supplied by a balanced 3-phase, 400 V supply. The phase current is 10 A at a 0.8 power factor lagging. The total reactive power absorbed by the load is
 - 7.2 kVAR (1)
- 2.4 kVAR (2)
- 3.2 kVAR (3)
- 9.6 kVAR

(EEE)

7 - C

P.T.O.

12.

- The Thevenin's equivalent of the circuit shown in figure is a voltage source of 34.
 - 6V in series with a resistance of 3Ω
 - 12V in series with a resistance of 3Ω (2)
 - 6V in series with a resistance of 6Ω
 - (4)6V in series with a resistance of 12Ω

- The combined inductance of two coils connected in series is 0.6H or 0.1H, depending upon 35. the relative directions of the currents in the coils. How much is the mutual inductance between MITML the coils?
 - (1)0.25H
- (2) 0.3H
- (3) 0.05H
- 0.125H (4)
- 4,0
- An initially relaxed RC-series network with R = 2M ohm and C = 1 micro Farad is switched on to a 10 V step input. The voltage across the capacitor after 2 seconds will be
 - Zero
- (2) 3.68 V
- (3) 6.32 V
- (4)

- The parameter Z_{11} of the below circuit is 37.
 - 50 Ω informed this not indru-
 - (2) 15Ω
 - 35Ω (3)
 - 40Ω

- The network function $f(s) = \frac{(s+2)}{((s+1)(s+3))}$, represents 38.
 - (1)
- RC impedance appeared between (2) RL impedance and the law has
 - RC impedance and RL admittance
- (4) RC admittance and RL impedance
- 39. For a series RLC circuit, the power factor at the lower half power frequency is

- 0.5 lagging (2) 0.5 leading (3) Unity (4) 0.707 leading
- An electric field is given as $E = 6y^2z\hat{x} + 12xyz\hat{y} + 6xy^2\hat{z}$ V/m. An incremental path is 40. represented by $\Delta L = -3\hat{x} + 5\hat{y} - 2\hat{z} \mu m$. How much is the work done in moving a 2μ C charge along this path if the location of the path is at (0, 2, 5)?
 - 360 pJ (1)
- (2) 720 pJ
- (3) 180 pJ
- (4) 1440 pJ

(EEE)

8 - C

- A point charge of 500 pC is located at the origin of the coordinate system. How much is the potential difference between two points A and B, which are at radial distances of 5 m and 15 m, respectively, from the charge?
 - (1) 0.9 V
- (2) 0.6 V
- (3) 0.3 V
- 1.2 V

- The unit of relative permeability is 42.
 - a Number
- $(2) \quad \frac{AT}{m^2} \qquad \qquad (3) \quad \frac{AT}{m} \qquad \qquad (4) \quad \frac{N}{wh}$
- A circular-loop conductor, having a radius of 0.1 m and a resistance of 5Ω , lies in the z = 043. plane with its center at the origin of the coordinate system. The magnetic flux density in the region is 0.2 sin 1000t \hat{z} Wb/m². How much is the current flowing in the conductor?
 - $0.4\pi \cos 1000t A$

(2) $0.02\pi \sin 1000t A$

 $-0.4\pi \cos 1000t A$ (3)

- $-0.02\pi \sin 1000t A$
- The magnetic field strength in a region is given as $H = y \cos ax \hat{x} + (y + e^x)\hat{z}$. What is the 44. value of $\nabla \times H$ at the origin?
 - (1) $\hat{x} + \hat{y} + \hat{z}$

(2) $\hat{x} + \hat{y} - \hat{z}$

 $(3) \quad -\hat{x} - \hat{y} - \hat{z}$

- 45. A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is 10V. The potential at a distance of 2 cm from the centre of the sphere is ____
 - (1)4V
- (2)10 V
- (3) $\frac{10}{3}$ V (4) Zero
- The Maxwell equation for time varying field is ______
 - (1) $\nabla \times H = J + \frac{\partial D}{\partial t}$ with the following $\nabla \cdot H = J + \frac{\partial D}{\partial t}$ which is seen by

- (3) $\nabla \times H = J \frac{\partial D}{\partial t}$ (4) $\nabla \times H = J \frac{\partial D}{\partial t}$
- How much is the energy of the discrete-time signal x[n] given by: $x[n] = (-0.5)^n u[n]$, where u[n] is the unit step sequence.
 - (1)
- (2) $\frac{1}{2}$ (3) $\frac{4}{3}$ (4) 2

48.	The Laplace transform of signal $x(t) = -e^{-2t}$	u(-t) is, where $u(t)$ is the unit step
	signal.	

- (2) $\frac{1}{s+2}$ (3) $-\frac{1}{s+2}$ (4) $-\frac{1}{s-2}$

The amplitude spectrum $|X(j\omega)|$ of a real signal x(t) is _

an even function (1)

- an odd function (2)
- an even and odd function both (3)
- neither even nor odd function (4)
- Which of the following discrete time system is not causal
 - y[n] = x[-n](1)

(2) $y[n] = \sum_{k=-\infty}^{n} x[k]$

(3) y[n] = x[n-1]

(4) y[n] = y[n-1] + x[n]

The fundamental period N of a discrete time signal $e^{j\left(\frac{3\pi}{4}\right)n}$ is

(1) N = 151.

- (1) N = 1
- (2) N = 2
- (3) N = 4

A single-phase 200/125 volt autotransformer delivers 40 kVA to a load at 0.8 power factor 52. lagging. Neglect leakage reactance and magnetizing current. For this loading condition the transformed kVA is

- (1) 15
- 40

A 3-phase induction motor runs at 3% slip and develops mechanical power equal to 10 kW. The air gap power is

- (1) 9.7 kW
- (2) $\left(\frac{10}{0.97}\right)$ kW (3) 10.30 kW (4) 10.03 kW

A three-phase, 2000-volt, Y-connected wound rotor induction motor has the following 54. no-load test data:

2000 volt, 15.3 amp and 10.1 kW

The core loss resistance r_c of the approximate equivalent circuit is nearly

- (1) 396Ω
- (2) 686Ω
- (3) 329Ω
- (4) 666Ω

A 230 V dc series motor has an armature circuit resistance of 0.2 Ω and field resistance of $0.1~\Omega$. At rated voltage, the motor draws a line current of 40 A and runs at speed of 1000 rpm. Assume that the flux at 20 A line current is 60% of flux at 40 A line current. What is the speed of motor for a line current of 20 A at 230 V.

- 1317 rpm (1)
- (2) 1713 rpm
- (3) 1137 rpm
- (4) 3117 rpm

(EEE)

56.	A three-phase Y-connected synchronous generator has synchronous reactance $X_S = 5 \Omega$ per
	phase. It delivers 12 kVA load at unity power factor. The terminal voltage is 200 volts/phase.
	The induced emf per phase of the generator is

(1) $\sqrt{5} \times 100 \text{ volts}$

(2) $\sqrt{3} \times 100 \text{ volts}$

(3) $\sqrt{2} \times 100 \text{ volts}$

(4) 200 volts

57. The emf induced per phase in the rotor winding of a 3-phase induction motor is 100 V at stand still. Under full-load condition, this emf would be normally

- (1) 100 V
- (2) 50 V
- (3) 4 \forall
- (4) 0.2 V

58. A 3-phase induction motor has a starting torque of 200 N-m when switched on-directly to supply. If an auto-transformer with 50% tapping is used for starting, the starting torque would be

- (1) 400 N-m
- (2) 200 N-m
- (3) 100 N-m
- (4) 50 N-m

59. A 3-phase synchronous generator is operating at 0.8 pf lagging with respect to the excitation voltage. The nature of armature reaction mmf produced by the armature currents is

- (1) Magnetizing
- (2) Demagnetizing
- (3) Cross-magnetizing and partly demagnetizing
- (4) Partly demagnetizing and partly cross-magnetizing

60. When speed becomes more than the synchronous speed during hunting, the damper bars develop

- (1) Synchronous motor torque
- (2) Induction motor torque

whor over reach acpending

(3) DC motor torque

(4) Induction generator torque

61. Rotor slot of the squirrel cage induction motor are skewed slightly, so as to

- (1) Increase the mechanical strength of rotor
- (2) Make the rotor construction simple
- (3) Eliminate locking tendency of the rotor and to reduce the noise when the second se
- (4) Save the amount of copper required

62. Maximum torque developed by a three-phase induction motor

- (1) increases with increase in rotor resistance
- (2) decreases with increase in rotor resistance
- (3) is independent of rotor resistance
- (4) increases with decrease in rotor resistance

(EEE)

11 - C

P.T.O.

63.	A syr Whe	nchronous machine has its field winding on the stator ar on running under steady conditions, its air gap field is	
	(1)	Stationary with respect to stator	
,	$\sqrt{2}$	Stationary with respect to rotor	
		Rotating at any 1	

(3) Rotating at synchronous speed with respect to stator
 (4) Rotating at synchronous speed in the direction of rotor rotating

64.	A long transmission line is energized at the sending end and is kept open circuited at the
	receiving end. The magnitude of receiving end line voltage is 400 kV. The magnitude of the
	sending end line voltage is

(1)<400 kV $\geq 400 \,\mathrm{kV}$ (2)(4) $=400 \, kV$ $> 400 \, kV$ (3)The string efficiency of a string of suspension insulators of a 400 kV, 3-phase transmission line is 80%. The voltage across the string is (2) $(400/\sqrt{3}) \text{ kV}$ (1)400 kV $(500/\sqrt{3}) \text{ kV}$ (3)(4) 320 kV

66. A 3-phase, 11 kV, induction motor draws 100 kVA at 0.8 pf lagging from the system. A 3-phase capacitor bank rated 60 kVAR is installed across the motor in order to increase the power factor to unity. The apparent power supplied by the system to the motor with capacitor bank is

(1) 100 kVA

(2) 40 kVA

(3) 160 kVA

(4) 80 kVA

(1) 100 kVA (2) 40 kVA (3) 160 kVA (4) 80 67. As the moisture content in the air increases, the disruptive critical voltage

(1) Decreases (2) Increases

(3) Remains constant

(4) Infinite

68. The arc resistance causes distance relay

(1) under reach

(2) over reach

(3) under reach or over reach depending on the length of the line

(4) reach unchanged

69. Figure shows the single phase equivalent circuit for analyzing circuit breaker operation. The frequency of re-striking voltage is

(1) 1000 kHz

(2) 5000 kHz

(3) 500×10^3 radians/sec

(4) 200×10^3 radians/sec

10mH CB 6000 400pF

1/C 10×10-1
1/C 10×10-1
1/09 × 109
1/09

0.25 × 109

12 - C

100

- One-line diagram of a 3-bus power system is given in figure. The line admittances are marked in per unit. The first row of the Y_{Bus}
 - [(20-j50) (-10+j20) (-10+j30)]
 - (2) [(20-j50) (10-j20) (10-j30)]
 - (3) [(10-j20) (-10+j20) (-10+j30)]
 - (4) [(20+j50) (-10+j20) (-10+j30)]

- Number of iterations required for convergence of a load flow algorithm increases significantly with increase of number of buses with
 - G-S load flow algorithm $\mathcal{L}(1)$
- (2) N-R load flow algorithm
- both G-S and N-R load flow algorithms (3)
- Fast decoupled load flow algorithm (4)
- For low head and high discharge, the hydraulic turbine used is: 72.
 - Francis turbine (I)

Kaplan turbine (2)

Pelton wheel (3)

- Impulse turbine (4)
- Corona loss can be reduced by the use of hollow conductors because, 73.
 - The current density is reduced
 - Eddy current in the conductor is eliminated (2)
 - For a given cross-section, the radius of the conductor is increased
 - Of better ventilation in the conductor
- A transmission line represented in End condenser method, the values of parameters A and D and _____ respectively.
 - (1) A = 1+ZY; D = 1+ZY

(2) A = 1 + ZY; D = 1

(3) A = 1 - ZY; D = 1 + ZY

- (4) A = 1; D = 1 + ZY
- Overreaching of distance relay due to the decaying DC component is avoided by
 - Electromechanical relay (\mathcal{X})
- Solid state relay

Digital relay

- (4) Impedance relay
- Transfer function of a system has a zero at -1, and a pole at -2 and gain factor of 2. The unit step response is (4) e^{-2t}
 - (1) $e^{-2t}-1$

- An unity negative feedback control system has open-loop transfer function $G(s) = \frac{4}{s(s+1)}$ 77.
 - The damped natural frequency ω_d in radians / sec is

W
1

- 78. For a feedback control system of type-2, the steady state error for a ramp input is
 - (1) infinite
- (2) constant
- (3) zero
- (4) indeterminate
- The overall transfer function of the system shown below is

(1)
$$\frac{G_1G_2}{1+G_1H_1+G_1G_2H_2}$$

$$\cancel{Q}) \quad \frac{G_1 G_2}{1 + G_2 H_2 + G_1 G_2 H_1}$$

(3)
$$\frac{G_1G_2}{1+G_2H_2+G_1G_2H_2}$$
 G_1

$$(4) \quad \frac{G_1G_2}{1 - G_2H_2 - G_1G_2H_1}$$

- An electric motor with high torque/inertia ratio has 80.
 - $\mathcal{L}(1)$ Lower motor time constant and faster dynamic response
 - Higher motor time constant and slow dynamic response (2)
 - (3)Lower motor time constant and slow dynamic response
 - (4)Higher motor time constant and faster dynamic response

SECTION - B: GENERAL AWARENESS AND NUMERICAL ABILITY

- (81). Conventional Rainfall occurs in
 - **Equatorial Region**

Temperate Region (2)

Tropical Region 🗸 (3)

- Polar Region
- Eden Garden stadium in Kolkata is associated with
 - Basket Ball (1)
- Foot Ball
- (3) Cricket
- (4)Hockey

- Which in the following is a stringed instrument? 83.
 - (1)Tabla
- (2) Shehnai
- Santoor
- Mridangam (4)
- the shade of a tree today because someone planted it a long time ago. Someone is sitting
 - (1) Under
- (2) On (3) Above
- (4)In
- us some advice on taking tests. The teacher 85.
 - Did (1)
- \checkmark 2) Gave
- (3) Made
- (4) Took
- If you were the Prime Minister of India, what you
 - Would, do ✓ **(1)**

(2) Would, have done

Will, do \mathscr{L}^{3}

(4)Had, done

Booklet Code:	C
bookiei Coue.	

	Sacl	hin retired fro	m his	TRAILE C	cricket care	er in 2013.		
	(1)	Illustrate	(2)	Illustrious	(3)	Illustrations	(4)	Illusive
88.	Who	o of the follow	ing has c	alled Hyder	abad as Bag	gh City?		
	(1)	Thevenot	(2)	Methold		•	(4)	Manucci
89.	Who	o was the princ	cipal deit	v of Kakativ	vas?		1111	
	(1)	Goddess Laz	xmi	j oz zaminij	(2)	Lord Vishnu		
	(D)	Swamyambh	ıu Shiva	, i	(A)	Goddess Durga		
90.		o wrote the bo		ragady of H		Goddess Darga		
	W	Mir Laiq Ali	i inc i	ragedy of H		177.	1	
	(3)	Narendra Lu		• *	(2)	Mohammed Hy	der	
91.	` /			CCD 1	(4)	John Zubrzyki		¥ 11
J1.	(1)	was the first M.A.Rashee	Martyr C	of Telangana		i i		13
	(3)				(2)	B. Narsi Reddy		
00		K. Venkatesl			(4)	Mir Laiq Ali		
92.	Whi	ch of the follo	owing is:	not a valid I	P address?	34.8		,
	\(1)	192.10.9.20	(2)	192.30.23	3.189 (3)	192.10.23.350	(4)	192.10.50.230
93.	Whi	ch of the follo	owing is	not class of	IP address	es?	(.)	1,2.10.50.250
	(1)	Class A	(2)		(3)	Class E	(N	O1 T
94.	Proc	ess of inserti				Class E	(A)	Class F
	(1)	Create	ng an eic	Duch Duch				
95.				Push	(3)	Pop	(4)	Evaluate
<i>J J</i> .		s is stands for		<u> </u>	1.00	- N. V.		70
		Domain Nar			(2)	Domain Name	Syste	m
	(3)	Dynamic Na			\mathcal{A}	Domain Netwo	ork Se	rvice
96.	Find	the missing	term in t	he followin	g series:			
	2, 5,	10, 17, 26, 3	7, ?, 65				,	
	(1)	48	50 (2)	49	(3)	50	(4)	<i>7</i> 1
97.	Com	plete the ana	logous r				(4)	51
	(1)	Door	(2)	Floor				
0.0					<u>(3)</u>	Walls	(4)	Pillars
98.	Inep	orice of a con	nmodity	increases fi	irst by 20%	and then by 10%	%. Wh	at is the net increas
	1							ar is the het mercas
,	(1)	28%	(2)	30%	(3)	32%	(4)	34%
99.	Find	the average of	of the fir	st 97 natura	` ,			J T / U
		47	(2)		(3)			
100			` /		(3)	49	(4)) 50
100.	wno	is empowere	ea to trai	asier a Judg	ge from one	High court to a	nothe	r High court
	(1)	Chief Justic	e or mar	la	(2)	President of I	India	G 20 alt
	(3)	Law Ministe	er of Indi	ia	(4)		abinet	4.8
					-111111			
				-100 ()		•		× 19.
		11×11	2 au	20130	, , , , ,		20100 1	-1) an(48)
(EEE	(<u>)</u>	11×1	2 24	10 150 14 12	15 - C		n(n+	97(48)
(EEE	(120)K(110) 12	2 24 132 XH	7 200 50 7 600	15 - C		n(n+	$\frac{1}{2}$ $\frac{97(\overline{49})}{2}$
(EEE	(120)x (1/00) 1"	2 24 132 71+	20150 7 50 50	15 - C	20 120 X 110	_ 2	97(48)