TSNPDCL Assistant Engineer- Electrical 2015 Question Paper

1. Damper winding is provided in 3- phase synchronous motor to:
(A) Prevent hunting only
(B) Provide starting torque and prevent hunting (C)

Provide starting torque only
(D) Prevent crawling
2. 3 equal impedances $10+\mathrm{j} 10 \Omega$ are connected in delta across a 3 phase balanced supply the angle between the line current I_{R} and line voltage V_{RY} is given by:
(A) 45^{0}
(B) 75^{0}
(C) 15^{0}
(D) $\quad 0^{0}$
3. The state of charge of the battery is indicated by the electrolytes:
(A) Mass
(B) Colour
(C) Viscosity
(D) Specific gravity
4. A load has a per unit impedance of 0.6 to a base of 20 MVA and 33 kV .The P.U impedance to a base of 10 MVA and 11 kV :
(A) 0.121
(B) 2.7
(C) 0.133
(D) 0.9
5. A $3 \phi, 6$ Pole induction motor is run with a rated voltage V and rated frequency 50 Hz . The maximum torque obtained is $\mathrm{T}_{\mathrm{m} 1}$. If the motor is supplied with same voltage but a frequency of 60 Hz , the maximum torque would be approximately:
(A) $\quad 0.7 \mathrm{~T}_{\mathrm{m} 1}$
(B) $\quad 0.5 \mathrm{~T}_{\mathrm{m} 1}$
(C) $\quad 1.2 \mathrm{~T}_{\mathrm{ml}}$
(D) $\quad \mathrm{T}_{\mathrm{m} 1}$
6. In a transformer the core is laminated to reduce:
(A) Copper losses in the core
(B) Hysteresis losses only
(C) Hysteresis and eddy current losses
(D) Eddy current losses only
7. The voltage of a DC 2 wire system operating at 200 V is raised to 400 V .The percentage saving in conductor material gained if same power is transmitted over the same distance with same power loss:
(A) 50
(B) 40
(C) 75
(D) 60
8. The voltage across various discs of suspension insulators having identical discs are different due to:
(A) Surface leakage currents
(B) Series capacitance of lines
(C) Shunt capacitance to ground
(D) Series and shunt capacitances
9. The power dissipated in watts, in the resistor R is:

(A) 36 R
(B) 0
(C) 100 R
(D) 16 R
10. Consider the circuit shown in the figure. If the β of the transistor is 30 and the input voltage is +5 V , then the transistor would be operating in:

(A) Cut off region
(B) Breakdown region
(C) Active region
(D) Saturation region
11. A voltage is impressed at the end A of a long transmission line AB .This voltage travelling along $A B$ has two components $f(t-x / v)$ and $f(t+\quad x / v)$ where v is the velocity of the wave and x is the distance travelled. Which of the following statements is true for such a wave:
(A) $\mathrm{f}(\mathrm{t}-\mathrm{x} / \mathrm{v})$ is a backward
(B) $f(t+x / v)-f(t-x / v)$ is the
(C) The sum of the two is the total
(D) $\quad \mathrm{f}(\mathrm{t}+\mathrm{x} / \mathrm{v})$ is a forward
travelling component
total voltage at any time ' t '.
voltage at time't'
travelling component
12. The following op-amp circuit is:

(A) Low pass filter with cut off
(B) Low pass filter with cut off
(C) High pass filter with cut off
(D) High pass filter with cut off
frequency $1 / \mathrm{R}_{2} \mathrm{C}$
frequency $1 / R_{1} C$
frequency $1 / R_{2} \mathrm{C}$
frequency $1 / \mathrm{R}_{1} \mathrm{C}$
13. The polar plot of a feedback control system, which is open loop stable with gain $\mathrm{K}=1$ is given by:

now if K is doubled, the system will
be:
(A) Stable with less oscillations in
(B) Unstable
(C) Stable with more oscillations
(D) Step response has sustained
step response
in step response
oscillations
14. The unknown inductance L_{x} is measured using Maxwells Bridge shown in figure:

Under balanced conditions R_{x} and L_{x}
are given by
(A) $\quad R_{x}=\left(R_{4} / R_{2}\right) X R_{3}$;
$\mathrm{L}_{\mathrm{x}}=\left(\mathrm{R}_{2} / \mathrm{R}_{4}\right) X \mathrm{~L}_{3}$;
(B) $\quad \mathrm{R}_{\mathrm{x}}=\left(\mathrm{R}_{2} / \mathrm{R}_{4}\right) X \mathrm{R}_{3}$;
$\mathrm{L}_{\mathrm{x}}=\left(\mathrm{R}_{2} / \mathrm{R}_{4}\right) \mathrm{XL}_{3}$;
(C) $\quad \mathrm{R}_{\mathrm{x}}=\left(\mathrm{R}_{2} / \mathrm{R}_{4}\right) X \mathrm{R}_{3}$;
$\mathrm{L}_{\mathrm{x}}=\left(\mathrm{R}_{4} / \mathrm{R}_{2}\right) \mathrm{XL}_{3}$;
(D) $\quad \mathrm{R}_{\mathrm{x}}=\left(\mathrm{R}_{4} / \mathrm{R}_{3}\right) X \mathrm{R}_{2}$;
$\mathrm{L}_{\mathrm{x}}=\left(\mathrm{R}_{4} / \mathrm{R}_{3}\right) \mathrm{XL}_{3}$;
15. If an unsymmetrical line to ground delta/star, ungrounded transformer, then:
(A) Zero sequence currents are transformer
(B) Zero sequence currents are transformer
fault occurs at the secondary terminals of a present on both sides of the absent on both sides of the
(C) Zero sequence currents are
present on the secondary side not on the primary side
(D) Zero sequence currents are not on the secondary side
16. Peterson coil is used for:
(A) Shunt compensation of lines
(B) Reduce fault currents
(C) Grounding of system neutral
(D) Connecting interconnected systems
17. HRC fuses provide best protection
against:
(A) Lightning
(B) Short circuits
(C) Overload
(D) Over voltage
18. Consider the 8085 program below:

MVI A BB
LXI B 2060 H
STAX B
After this program is executed, the
contents of A and the flag which is set, are:
(A) OOH , carry flag
(B) BB, AC flag
(C) OOH , zero flag
(D) BB, no flag
19. From an open circuit test on a transformer, the no load power factor was determined. Out of the following choices which is the most likely value:
(A) 0.9
(B) unity
(C) 0.8
(D) 0.4
20. Principle of thermocouple is based on:
(A) Thomson effect
(B) Peltier effect
(C) Seebeck effect
(D) Kelvin effect
21. Consider the following statements:
(A) IGBT has low input impedance compared to

PMOSFET
(B) IGBT and PMOSFET are both
voltage controlled devices
(C) IGBT can be designed for PMOSFETS
(D) IGBT converters are more compared to BJT converter
higher voltages compared to
costly and bigger in size
22. In the diode rectifier circuit shown, the Permanent Magnet Moving Coil meter will read:

(A) 1 A
(B) $\quad 1.414 \mathrm{~A}$
(C) $\quad 2 \mathrm{~A}$
(D) $\quad 2.814 \mathrm{~A}$
23. A dummy strain gauge is used in a quarter bridge strain gauge circuit to:
(A) Compensate for changes in temperature and lead wire resistance
(B) Produce more output voltage from the bridge
(C) Increase the sensitivity of the bridge
(D) Compensate lead wire resistance only
24. LVDT is used to measure:
(A) Strain
(B) Pressure
(C) Flow
(D) Displacement
25. Slip test is performed to determine:
(A) Slip in an induction motor
(B) $\quad X_{d}$ and X_{q} in a salient pole
(C) Synchronous impedance in an
(D) Positive and Negative
alternator
alternator
26. A transmission line of 200 km has a
certain $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D parameters. If the length is reduced to 60 km :
(A) A increases, B decreases
(B) $\quad \mathrm{A}$ and B increases
(C) A decreases, B decreases
(D) A and B decreases
27. Load compensation in power system is a process to:
(A) Maintain better voltage profile
(B) Increase short circuit capacity of the system
(C) Generate required harmonics for loads like arc furnaces
(D) Compensate for the line reactance
28. A 5 A ammeter with 0.3Ω resistance is to be used to measure current in a circuit which draws a current up to 20 A . Then the shunt resistance to be used along with the ammeter:
(A) 0.1Ω
(B) 0.2Ω
(C) 0.3Ω

```
(D) \(1 \Omega\)
```

29. In a PMMC instrument, the damping provided is:
(A) Air damping
(B) Fluid damping
(C) Eddy current damping
(D) Magnetic damping using a magnet
30. Which of the following is true for a bus impedance matrix?:
(A) It is sparse
(B) It has diagonally dominant
(C) It is the inverse of the bus
(D) Each element of it is the corresponding element in
elements
admittance matrix
reciprocal of the
admittance matrix
31. A single phase voltage controller of $220 \mathrm{~V}, 50 \mathrm{~Hz}$ and a load of 10Ω. For 9 cycles 'on' and 7 cycles 'off', the rms output voltage and input power factor are:
(A) $170 \mathrm{~V}, 0.7$
(B) $171 \mathrm{~V}, 0.78$
(C) $165 \mathrm{~V}, 0.75$
(D) $180 \mathrm{~V}, 0.6$
32. The range of frequencies used in induction heating is:
(A) $0-25 \mathrm{~Hz}$
(B) $50-100 \mathrm{~Hz}$
(C) less than 200 Hz
(D) more than 1 kHz
33. Consider the following statements:
(1) Magnetising current in a 1 phase transformer is sinusoidal
(2) Magnetising currents in the 3 phase supply lines of a 3 phase transformer are sinusoidal
(3) Magnetising current in a 1 phase transformer is non sinusoidal but the induced voltages are sinusoidal
(A) (1) and (3)
(B) (2) only
(C) (2) and (3)
(D) (1) only
34. A generator is connected to an infinite bus through a double circuit line as shown.

The admittance matrix Y is given by:
(A) $\left[\begin{array}{ccc}\mathrm{j} 5 & 0 & -\mathrm{j} 5 \\ 0 & \mathrm{j} 5 & -\mathrm{j} 5 \\ -\mathrm{j} 5 & -\mathrm{j} 5 & \mathrm{j} 10\end{array}\right]$
(B) $\left[\begin{array}{ccc}-\mathrm{j} 5 & 0 & \mathrm{j} 5 \\ 0 & -\mathrm{j} 5 & \mathrm{j} 5 \\ \mathrm{j} 5 & \mathrm{j} 5 & -\mathrm{j} 10\end{array}\right]$
(C) $\left[\begin{array}{ccc}-\mathrm{j} 5 & 0 & -\mathrm{j} 5 \\ 0 & \mathrm{j} 5 & -\mathrm{j} 5 \\ -\mathrm{j} 5 & -\mathrm{j} 5 & \mathrm{j} 10\end{array}\right]$
(D) $\quad\left[\begin{array}{ccc}-\mathrm{j} 5 & +\mathrm{j} 10 & \mathrm{j} \\ \mathrm{j} 10 & -\mathrm{j} 5 & \mathrm{j} 5 \\ \mathrm{j} 5 & \mathrm{j} 5 & -\mathrm{j} 10\end{array}\right]$
35. The supply for arc welding is:
(A) High voltage, high current ac voltage
(B) Low voltage, low current ac voltage
(C) High voltage, high current dc voltage
(D) Low voltage, high current ac or dc voltage
36. For the simple chopper circuit shown, the average and rms value of currents for a duty cycle of 0.49 , in amps, are (neglect the drop across when ON):

(A) $\quad 9.8,14$
(B) $14,9.8$
(C) $20,28.28$
(D) $14,18.2$
37. In a $2 \mathrm{~kW}, 200 \mathrm{~V}, 1000 \mathrm{rpm}$, DC series motor the torque at full load was found to be $0.3 \mathrm{~N}-\mathrm{m}$. The torque at half full load in $\mathrm{N}-\mathrm{m}$ is:
(A) 0.2
(B) 0.15
(C) 0.075
(D) 0.1
38. If Z transform of a^{K} is $Z /(Z-a)$ then the Z transform of Ka^{K} is given by:
(A) $\quad(\mathrm{kZ}) /(\mathrm{Z}-\mathrm{a})$
(B) $\quad(\mathrm{aZ}) /(\mathrm{Z}-\mathrm{a})^{2}$
(C) $\quad(\mathrm{aZ}) /(\mathrm{Z}-\mathrm{a})$
(D) $a / Z-a)^{2}$
39. The open loop transfer function with $G(S)=1 /(S(S+2))$
The poles of the closed loop system
(A) $0,-2$
(B) $2.46,-4.46$
(C) $-1,-1$
(D) $\quad-1,-2$
unity feedback is given by,
are located at
40. For using regenerative breaking, the most suitable motor is:
(A) DC series motor
(B) Slip ring induction motor
(C) Squirrel cage induction motor
(D) Synchronous motor
41. The speed time curve for an electric train is shown in the figure. In this, the segment AB represents:

(A) Accelaration
(B) Coasting
(C) Braking
(D) Regeneration
42. Figure shows a thyristor controlling power in a load resistance R_{L}. The supply voltage is 240 V DC and the limit for di/dt for the SCR is $50 \quad \mathrm{~A} / \mu \mathrm{sec}$. The minimum value of L , used for $\mathrm{di} / \mathrm{dt}$ protection, in $\mu \mathrm{H}$ is:

(A) 2.4
(B) 120
(C) 1.2
(D) 4.8
43. A thyrite type lightening arrester:
(A) Blocks surge voltage
appearing on a line
(B) Absorbs the surge voltage
(C) Returns the surge back to
(D) Offers low resistance path to
appearing on a line
source
surge currents
44. Unit commitment is a procedure in which:
(A) Scheduling of total generation
(B) Optimal combination of units given time
(C) Most efficient machines are
(D) Most efficient machines are power loss
is done economically in a system is chosen at any
selected for financial economy
selected for minimum reactive
45. For a single phase full bridge inverter with $\mathrm{V}_{\mathrm{S}}=220 \mathrm{~V} D C, T=1 \mathrm{~ms}$ feeding a resistive load, the fundamental component of the load voltage (rms value) in volts is:
(A) Accelaration
(B) Coasting
(C) Braking
(D) Regeneration
46. The range of ' k ' for which the system with the following characteristic equation is stable, is
$S^{3}+k S^{2}+(k+2) S+3=0:$
(A) $\mathrm{k}>0$
(B) $\mathrm{k}>1$
(C) $-3<\mathrm{k}<1$
(D) $\quad 1<\mathrm{k}<3$
47. In a star- Δ connected 3ϕ transformer, supplied with 11 kV on star side, the line current is 20 A . Per phase turns ratio is 11 . The secondary line voltage and line current are:
(A) $577 \mathrm{~V}, 381 \mathrm{~A}$
(B) $550 \mathrm{~V}, 220 \mathrm{~A}$
(C) $635 \mathrm{~V}, 381 \mathrm{~A}$
(D) $1 \mathrm{kV}, 220 \mathrm{~A}$
48. A short circuit test on a $1 \phi, 4 \mathrm{kVA}, 200 / 400,50 \mathrm{~Hz}$ transformer gave following results HV side : $15 \mathrm{~V}, 10 \quad \mathrm{~A}, 80 \mathrm{~W}$.

The percentage regulation on full load unity power factor is:
(A) 2
(B) 4
(C) 1
(D) -2
49. Consider the following statements. Which of these statements are correct? :
(1) Reactance relays are preferred
(2) Impedance relays are most
transmission lines
(3) Mho relays are best suited for protection
(4) Reactance relays are widely medium
for ground fault relaying
suitable for protecting long
long transmission line
used for protection
(A) All of them
(B) (1) and (3)
(C) (2) and (4)
(D) (1), (2) and (4)
50. Consider the two colomns A and B. In the colomn A different instruments are given. In colomn B certain characteristics of the meters are given. Match items of A with B :

A	B
(1) Moving iron (2) PMMC (3) Energy meter	(i) No control springs (ii) Air damping (iii) Electro magnetic damping (iv) eddy current damping

(A) (1) - (iv), (2) - (iii), (3) - (ii)
(B) (1) - (iii), (2) - (ii), (3) - (iv)
(C) (1) - (ii), (2) - (iii), (3) - (i)
(D) (1) - (ii), (2) - (iv), (3) - (i)
51. A double cage induction motor has better starting and running characteristics because two of the following conditions are satisfied:
(A) The inner cage has high
(B) The inner cage has low
(C) The outer cage has high
(D) The outer cage has low resistance and reactance resistance and high reactance resistance and low reactance resistance and reactance

They are:
(A) (2), (4)
(B) $\quad(1),(3)$
(C) $\quad(2),(3)$
(D) $\quad(1),(4)$
52. The laplace transform of the function shown in the figure, is:

(A) $\quad 10 / \mathrm{Se}^{-\mathrm{S}}$
(B) $\quad 10 / \mathrm{S}\left(\mathrm{e}^{-\mathrm{S}}+\mathrm{e}^{-2 \mathrm{~S}}\right)$
(C) $\quad 10 / \mathrm{S}\left(\mathrm{e}^{-\mathrm{S}}-\mathrm{e}^{-2 \mathrm{~S}}\right)$
(D) $\quad 10\left(\mathrm{e}^{-\mathrm{S}}-\mathrm{e}^{-2 \mathrm{~S}}\right)$
53. A $5 \mathrm{~kW}, 220 \mathrm{~V}, 1500 \mathrm{rpm}$ DC shunt motor runs at 1550 rpm on no load with full voltage applied. If the applied voltage is reduced to 165 V , the speed at which it will run, in rpm is: (neglect armature resistance)
(A) 1162.5
(B) 775
(C) 1200
(D) 1550
54. In a synchronous generator if the excitation increased from a low value to normal value, with a fixed load:
(A) The armature current increases
(B) The armature current
decreases is lagging is leading
and the power factor decreases
decreases and the
decreases and the
decreases and the
power factor also
(C) The armature current power factor increases but
(D) The armature current power factor increases but
(D) The armature current power factor increases but
55. The circuit shown employs 2 choppers
to supply the load. This chopper drive is:

(A) One quadrant drive
(B) Two quadrant drive
(C) Three quadrant drive
(D) Four quadrant drive
56. The speed of a separately excited DC motor is controlled by a 3- ϕ, semi converter from a $3-\phi, 440 \mathrm{~V}, \quad 50 \mathrm{~Hz}$ supply. The armature resistance is 1Ω and motor torque constant of $2 \mathrm{Nm} / \mathrm{A}$. If firing angle is 45°, the back emf generated by the motor, for a torque of 50 Nm, is:
(A) 460 V
(B) 482 V
(C) 420 V
(D) 333 V
57. A separately excited DC motor is energised from a $440 \mathrm{~V}, 50 \mathrm{~Hz}, 3 \phi$ full converter. The input voltage to the motor for a firing angle of 45°, in volts, is:
(A) 420
(B) 297
(C) 390
(D) 260
58. According to IE rules 1956, the breaking strength of all conductors of over head power lines shall be:
(A) not less than 450 kg
(B) not less than 350 kg
(C) not less than 250 kg
(D) not less than 500 kg
59. In the following circuit the switch is closed at $t=0$. The total energy lost in the resistor $\mathrm{R}=10 \Omega$ is found to be 60 J . If the value of R is reduced to 5Ω, the energy lost in the resistor in joules would be:

(A) 60
(B) 30
(C) 120
(D) 15
60. In a stack, variable reluctance stepper motor with 12 rotor teeth, the angle through which the rotor moves for one pulse excitation is :
(A) 12^{0}
(B) 5^{0}
(C) $\quad 10^{0}$
(D) 30°
61. The unit of speed regulation of a governor i:
(A) Hz
(B) $\mathrm{Hz} / \mathrm{MW}$
(C) $\mathrm{Hz} / \mathrm{MVA}$
(D) $\quad \mathrm{rpm} / \mathrm{MVAR}$
62. The fundamental component of the single phase full bridge inverter output voltage is (V_{S} is the DC input voltage) (A) $\quad \mathrm{V}_{\mathrm{S}} / \pi \cdot \sin \omega \mathrm{t}$
(B) $2 \mathrm{~V}_{\mathrm{S}} / \pi \cdot \sin \omega t$
(C) $4 \mathrm{~V}_{\mathrm{S}} / 3 \pi \cdot \sin \omega \mathrm{t}$
(D) $4 \mathrm{~V}_{\mathrm{S}} / \pi \cdot \sin \omega \mathrm{t}$
63. A Pyrheliometer is an instrument to measure:
(A) Temperature of solar
(B) Intensity of direct solar
(C) Intensity of direct solar photovoltaic cell radiation at normal incidence
(D) Efficiency of a solar radiation photovoltaic cell
64. When high rate of rise of recovery voltages are expected in networks consisting of generators, transformers, reactors and lines, circuit breakers with shunt resistance are employed. T_{C} ensure exponential build up to 50 Hz recovery without overshoot, the resistance connected is, (L is the inductance of the line and capacitance from line to ground is C):
(A) $\sqrt{\mathrm{LC}}$
(B) LC
(C) $0.5 \sqrt{\frac{L}{C}}$
(D) $\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$
65. If a phase lead compensator has the following transfer function:

$$
G(S)=\frac{K\left(1+\frac{s}{z}\right)}{\left(1+\frac{s}{p}\right)} p, z>0
$$

Then,
(A) $\mathrm{z}<\mathrm{p}$
(B) $\mathrm{z}>\mathrm{p}$
(C) $\mathrm{z}>\mathrm{Kp}$
(D) $\mathrm{z}>\mathrm{K} / \mathrm{p}$
66. The armature current on symmetrical 3 phase short circuit of a synchronous machine (salient pole):
(A) has q - axis current only
(B) has d-axis current only
(C) both d and q axis currents
(D) cannot be divided between q and d axis currents
67. In the circuit shown the power in resistor R is 8 W , when $\mathrm{V}_{\mathrm{S} 1}=12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{S} 2}=0 \mathrm{~V}$. Find the power in the same resistor R when $\mathrm{V}_{\mathrm{S} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 2}=24 \quad \mathrm{~V}$, in watts:

(A) 16
(B) 24
(C) 0
(D) 32
68. A 500 W bulb fitted with a reflector illuminates an area of 2 mX 2 m with an average illumination of 500 lux. The efficiency is of the reflector is 50%. The efficiency of the bulb in lumens/watts is:
(A) 8
(B) 10
(C) 6
(D) 12
69. The specified variables at any PV bus for a load flow study are:
(A) Real and reactive power
(B) Real power and load angle
(C) Real power and voltage
(D) voltage magnitude and load
magnitude
angle
70.

	00	01	11	10
00	1	1	0	1
01	0	0	0	0
11	0	0	1	1
10	1	0	1	1

(A) $\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{AC}+\overline{\mathrm{B}} \mathrm{CD}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{D}}$
(B) $\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{AC}+\overline{\mathrm{A}} \mathrm{BC}$
(C) $\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{AC}+\overline{\mathrm{B}} \overline{\mathrm{D}}$
(D) $\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{AC}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{D}}$
71. The electrode rod used for welding
(1) To give a vapour to serve as a weld area from
(2) To protect the arc
(3) To provide slag to protect the
(4) To provide better contact with

Which of these statements are
uses a coaching on it:
shielding gas to protect the atmospheric contamination
welded area
the base material
correct?
(A) (1) and (2)
(B) (2) and (3)
(C) (1) and (3)
(D) (3) only
72. A hall with an area of 10 mx 10 m is to be illuminated with 240 lux using 30 W CFL bulbs. The lamp maintenance factor is 0.7 and utilisation factor is 0.72 . CFL bulb gives 80 lumens / watt. The number of CFL bulbs required are:
(A) 5
(B) 8
(C) 20
(D) 30
73. In a DC generator the winding of inter poles are connected:
(A) In series with the main field same polarity as the main pole
(B) In series with the main field opposite polarity as the
rotation
(C) In series with the armature same polarity as the main pole
(D) In series with the armature opposite polarity as the main rotation.
74. Consider the following statements:
(1) Step up cycloconverters
(2) Step down cycloconverters
(3) Step up or step down
commutated for any type of
The correct statements are:
(A) (1) only
(B) $\quad(1),(3)$
(C) $\quad(1),(2)$
(D) (3) only
require forced commutation operate on line commutation cycloconverters can be load
75. A six pole, 3 phase 50 Hz induction motor has a maximum torque of 10 Nm at 875 rpm. The torque at 5% slip is:
(A) $\quad 7.4 \mathrm{Nm}$
(B) $\quad 5.2 \mathrm{Nm}$
(C) $\quad 7.2 \mathrm{Nm}$
(D) $\quad 6.9 \mathrm{Nm}$
76. A function $F(s)$ could be a driving RL network:

$$
\mathrm{F}(\mathrm{~s})=\frac{(\mathrm{S}+1)(\mathrm{S}+3)}{(\mathrm{S}+2)(\mathrm{S}+4)^{\prime}}
$$

This function can be realised as:
(A) \quad RL network if $\mathrm{F}(\mathrm{s})=\mathrm{Z}(\mathrm{s})$
(B) $\quad \mathrm{RC}$ network if $\mathrm{F}(\mathrm{s})=\mathrm{Z}(\mathrm{s})$
(C) \quad RL network if $\mathrm{F}(\mathrm{s})=\mathrm{Y}(\mathrm{s})$
(D) It cannot be realised either by RL or RC network
77. The h - parameter matrix of the network shown is:

(A) $\left[\begin{array}{cc}1.5 & 0.5 \\ -0.5 & 0.5\end{array}\right]$
(B) $\quad\left[\begin{array}{cc}0.5 & -0.5 \\ 0.5 & 1.5\end{array}\right]$
(C) $\left[\begin{array}{cc}2 & 1 \\ -1 & 0.5\end{array}\right]$
(D) $\left[\begin{array}{cc}2 & 0 \\ -1 & 0.5\end{array}\right]$
78. Which of the following is a cold cathode lamp?:
(A) Mercury vapour lamp
(B) Sodium vapour lamp
(C) Incandescent lamp
(D) Neon lamp
79. The arc voltage in a circuit breaker is:
(A) In phase with the arc current
(B) Lagging by 90° with an arc current
(C) Leading by 90° with arc current
(D) Lagging by 45^{0} with an arc current
80. A second order system with zero initial conditions, has an impulse response C $(t)=10 e^{-5 t} \sin 10 t$ for $t \geq 0 \quad$ when excited by a unit step input, the steady state value of the response is
(A) 0
(B) 1.0
(C) 0.5
(D) 0.8
81. A wireless technology built in electronic gadgets used for exchanging data over short distances is:
(A) Wi - Max
(B) Bluetooth
(C) Modem
(D) USB
82. Who among the following personalities received Bharat Ratna for the year 2015:
(A) Shri Sachin Tendulkar
(B) Shri Bhimesh Joshi
(C) Shri C.N.R Rao
(D) Shri Atal Bihari Vajpayee
83. Identify the part of the sentence that has an error:
(A) Television viewers claim that /
(B) The number of scents depicting /
(C) Alcohol consumption have increased dramatically /
(D) over the last decade.
84. Identify the correct spelling from the option given:
(A) quintessence
(B quintassence
(C) quintesance
(D) quinitessence
85. The difference between people with access to computers and the internet and those without this access is known as the:
(A) Digital divide
(B Internet divide
(C) Web divide
(D) Cyber divide
86. What is the name of the India's first satellite? :
(A) Bhaskara I
(B Bhaskara II
(C) Aryabhatta
(D) Rohini
87. When was Telangana merged with
(A) 1956
(B 1958
(C) 1955
(D) 1952
88. Which of the following is the official
(A) Peacock
(B Pegion
(C) Sparrow
(D) Indian roller
89. Which of the following dynasties
ruled Telangana? :
(A) Pala
(B Sena
(C) Kakatiya
(D) Chera
90. What will be the decimal equivalent
(A) 48.625
(B) 59.487
(C) 48.487
(D) 59.625
91. Bonalu is mainly celebrated in the
(A) January and February
(B July and August
(C) September and October
(D) April and May
92. What is the form of SAARC? :
(A) The South Atlantic

Corporation
(B The South Asian
Cooperation
(C) The South Asian

Corporation
(D) The Southern Asia

Cooperation

Andhra, historically? :
state bird of Telangana :
(B Rs 49,200
(C) \quad Rs 47,020
(D) \quad Rs 48,010
94. Who is the present Chairman / CEO of Google:
(A) Mr.Sundar Pichai
(B Mr.Satya Nadella
(C) Mr.Cyrus P.Mistry
(D) Ms. Indra Nooyi
95. The sum of $\frac{1}{(32)^{\frac{-1}{5}}}+\frac{1}{(216)^{\frac{-2}{3}}}+\frac{1}{(256)^{\frac{-3}{4}}}$
(A) 1
(B) 110
(C) 101
(D) 102
96. In the following question, pick up the choice which is most opposite in
meaning of the underlined word in the sentence.

This author has perspicuity in his
style.
(A) Frankness
(B Bluntness
(C) Vivacity
(D) Sincerity
97. What is the sum of two consecutive even numbers, the difference between of whose squares is 164:
(A) 82
(B 41
(C) 42
(D) 24
98. Choose the appropriate synonym for the word given below:

STERNUTATION
(A) Sneezing
(B Trepidation
(C) Hardening
(D) Reversal
99. The age of Rajesh differ by 20 year with Raghu. If 5 years ago, the age of Rajesh be 5 times as old as the Raghu, then their present ages in the years as
(A) 20,4
(B $\quad 25,5$
(C) 30,10
(D) 35,15
100. A host computer that wants to communicate with another host computer on an internet requires the following to identify itself:
(A) MAC address
(B IP address
(C) Port
(D) Socket

