## TS NPDCI Key-2015:

1. B
2. B
3. D
4. B
5. A
$\mathrm{T}_{\mathrm{m}}=\mathrm{s} \times \frac{\mathrm{r}_{2}}{\mathrm{x}_{2}}$
$\mathrm{T}_{\mathrm{m}} \alpha \frac{1}{\mathrm{f}}$
$\mathrm{T}_{\mathrm{m}}$ at $60 \mathrm{~Hz}=0.7 \mathrm{~T}_{\mathrm{m} 1}$.
6. D
7. C
8. C
9. B

$\frac{\mathrm{V} 1-\mathrm{V} 2}{\mathrm{R}}+\frac{\mathrm{V} 1}{10}=6$
$10 \mathrm{~V}_{1}-10 \mathrm{~V}_{2}+\mathrm{RV}_{1}=60 \mathrm{R} \rightarrow(\mathrm{i})$
$\frac{\mathrm{V} 2-\mathrm{V} 1}{\mathrm{R}}+\frac{\mathrm{V} 2}{6}=10$
$6 \mathrm{~V}_{2}-6 \mathrm{~V}_{1}+\mathrm{RV}_{2}=60 \mathrm{R} \rightarrow$ (ii)
By solving eq. (i) and (ii), we get
$V_{1}=60 \mathrm{~V} \& \mathrm{~V}_{2}=60 \mathrm{~V}$
No current flows through R.
10. C
11. C
12. C
13. C
14. B

Under balanced conditions,
$\left(R_{x}+j \omega L_{x}\right) R_{4}=\left(R_{3}+j \omega L_{3}\right) R_{2}$
Equating real and imaginary forms
separately,
$\mathrm{R}_{\mathrm{x}}=\frac{\mathrm{R} 2 \mathrm{R} 3}{\mathrm{R} 4}$ and $\mathrm{L}_{\mathrm{x}}=\frac{\mathrm{R} 2 \mathrm{~L} 3}{\mathrm{R} 4}$
15. B
16. C
17. B
18. D
19. D
20. C
21. B
22. C
23. A
24. D
25. B
26. A

If 1 is reduced $\mathrm{A} \& \mathrm{D}$ increases whereas $\mathrm{B} \& \mathrm{C}$ decreases.
27. A
28. A
$\mathrm{R}_{\text {sh }}=\frac{0.3}{\frac{20}{5}-1}=0.1 \Omega$
29. C
30. C
31. $\mathbf{C}$

$$
\begin{aligned}
& \text { RMS input voltage }=220 \mathrm{~V} \\
& \text { RMS output voltage }=\sqrt{\frac{9}{16}} \times 120 \\
& =165 \mathrm{~V} \text {. } \\
& \text { Input power factor }=\sqrt{\alpha}=\sqrt{9 / 16} \\
& =0.75 \text {. }
\end{aligned}
$$

32. B
33. C
34. B

$X_{d}=\mathrm{j} 0.2 \mathrm{pu} \Rightarrow \frac{1}{\mathrm{x}_{\mathrm{d}}^{\prime}}=\mathrm{j} 5 \mathrm{pu}$
$[\mathrm{Y}]=\begin{array}{ccc}-\mathrm{j} 5 & 0 & \mathrm{j} 5 \\ 0 & -\mathrm{j} 5 & \mathrm{j} 5 \\ \mathrm{j} 5 & \mathrm{j} 5 & -\mathrm{j} 10\end{array}$
35. D
36. A

$$
\begin{aligned}
& \alpha=0.49 \\
& \mathrm{~V}_{\mathrm{av}}=\alpha \mathrm{V}_{\mathrm{s}}=0.49 \times 200=98 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{av}}=\frac{98}{100}=0.98 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{rms}}=\sqrt{\alpha} \mathrm{V}_{\mathrm{s}}=0.7 \times 200=140 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{rms}}=140 / 10=14 \mathrm{~A}
\end{aligned}
$$

37. $\mathbf{C}$
38. C

Z-transform of $\mathrm{a}^{\mathrm{k}}=\frac{\mathrm{z}}{\mathrm{z}-\mathrm{a}}$
Z - transform of k. $\mathrm{a}^{\mathrm{k}}=\mathrm{az} /(\mathrm{z}-\mathrm{a})^{2}$.
39. C
$\mathrm{G}(\mathrm{s})=\frac{1}{\mathrm{~s}(\mathrm{~s}+2)}$
CLTF $=\frac{G(s)}{1+G(s)}=\frac{1 / \mathrm{s}(\mathrm{s}+2)}{1+1 / \mathrm{s}(\mathrm{s}+2)}$
$=\frac{1}{s(s+2)+1}=\frac{1}{s^{2}+2 s+1}=\frac{1}{(s+1)(s+1)}$
Poles are -1 and -1 .
40. B
41. B

During coasting no electrical energy.
42. D
$\mathrm{V}_{\mathrm{s}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
$\mathrm{L}=\frac{\mathrm{Vs}}{\mathrm{di} / \mathrm{dt}}=\frac{240}{50}=4.8 \mathrm{mH}$.
43. D
44. $B$
45. D

Fundamental component of $1 \phi$ full bridge inverter is given by
$\mathrm{V}_{\text {rms }}=\frac{4 \mathrm{~V}_{\mathrm{s}}}{\pi} \sin \omega \mathrm{t}=140 \sqrt{2} \mathrm{~V}$.
46. B

Using R-H criterion

| $s^{3}$ | 1 | $K+2$ |
| :---: | :---: | :---: |
| $s^{2}$ | $K$ | 3 |
| $s^{1}$ | $\frac{K(K+2)-3}{K}$ | 0 |
| $s^{0}$ | 3 |  |

for stability, $K>0$ and

$$
\frac{\mathrm{K}(\mathrm{~K}+2)-3}{\mathrm{~K}}>0
$$

$\therefore \mathrm{K}>0$ and $\mathrm{K}>1$
47. No answer

Y - $\Delta$
$\mathrm{N}_{1}: \mathrm{N}_{2}=11: 1$
$\mathrm{V}_{\mathrm{L} \Delta}=\frac{\mathrm{V}_{\mathrm{LY}}}{\sqrt{3} \mathrm{~K}}=577.35 \mathrm{~V}$.
48. $\quad \mathrm{A}$
49. B

Reactance relays are used for earth faults and in short transmission lines. Impedance relays are used in medium length transmission lines.

MHO relays are used for long transmission lines only.
50. D

## 51. C

For double cage Induction motor, the inner cage has low resistance and reactance. The outer cage has highest resistance and low reactance.
52. C
53. D

N is constant in shunt motor.
54. D
55. B
56. B
$\mathrm{T}_{\mathrm{m}} \propto \mathrm{I}_{\mathrm{a}} \mathrm{T}_{\mathrm{m}}=\mathrm{K}_{\mathrm{t}} \mathrm{I}_{\mathrm{a}}$
$\mathrm{I}_{\mathrm{a}}=\frac{\mathrm{T}_{\mathrm{m}}}{\mathrm{K}_{\mathrm{t}}}=\frac{150 \mathrm{Nm}}{2 \mathrm{Nm} / \mathrm{A}}=25 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=25 \times 1=25 \mathrm{~V}$
In a $3 \phi$ semi converter
$\frac{3 \sqrt{2} V_{\text {rms }}}{2 \pi}(1+\cos \alpha)=\mathrm{E}_{\mathrm{b}}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}$
$\mathrm{E}=\frac{3 \sqrt{2} \times 440}{2 \pi}\left(1+\frac{1}{\sqrt{2}}\right)-25$
$=482 \mathrm{~V}$.
57. A

For $3 \phi$ full converter,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{av}}=\frac{3 \mathrm{~V}_{\mathrm{ml}}}{\pi} \cos \alpha \\
& =\frac{3 \times 440 \sqrt{2}}{\pi} \times \frac{1}{\sqrt{2}}=420 \mathrm{~V} .
\end{aligned}
$$

58. B
59. A
60. C

$$
\text { Step angle }=\frac{360}{3 \times 12}=10^{\circ} .
$$

61. B
62. D
63. B
64. C

$$
\mathrm{R}_{\mathrm{damp}}=\frac{1}{2} \sqrt{\mathrm{~L} / \mathrm{C}} .
$$

65. A

$$
\mathrm{G}(\mathrm{~s})=\frac{\mathrm{k}(1+\mathrm{s} / \mathrm{z})}{(1+\mathrm{s} / \mathrm{p})}, \mathrm{z}>0
$$

For lead compensator, $\alpha<1$
$\mathrm{T}=\frac{1}{\mathrm{z}}, \alpha . \mathrm{T}=\frac{1}{\mathrm{p}} \quad \therefore \alpha=\frac{z}{p}$
If $\alpha<1$ then $\frac{\mathrm{z}}{\mathrm{p}}<1 \Rightarrow \mathrm{z}<\mathrm{P}$
66. B
67. D
68. $A$

$$
\eta=\frac{500 \times 4}{500 \times 0.5}=8
$$

69. C
70. C
71. C
72. $\mathbf{C}$

Area to be illuminated $\mathrm{A}=10 \times 10=100 \mathrm{~m}^{2}$
Total flux at floor $=240 \times 100=24 \mathrm{~K}$ lumen
Flux radiated by lamps
$=\frac{\text { Total flux at floor }}{\text { utilization factor }} \times$ depreciation factor
Depreciation factor $=$
$1 /$ (maintenance factor)
Flux radiated $=\frac{24000}{0.72} \times \frac{1}{0.7}=47619.04$
Total voltage required $=\frac{47619.04}{80}=$
No.of 30W CFL bulbs required $=$
No.of 30 W CFL bulbs required $=\quad 595.23 / 30=19.84 \sim 20$ bulbs.
73. C
74. C
75. D
$\mathrm{N}_{\mathrm{s}}=\frac{120 \times 50}{6}=100 \mathrm{rpm}$
S at $\mathrm{T}_{\text {max }}=\frac{1000-875}{1000}=0.125$
Torque at $\mathrm{s} \% \mathrm{slip}=\frac{2 \mathrm{Sm} \mathrm{Sfl}}{A=S m^{2}+S l^{2}}$
$\mathrm{T}=\frac{2(0.125+0.05)}{(0.125)^{2}+(0.05)^{2}}$
$\mathrm{T}=6.9 \mathrm{~N}-\mathrm{m}$.
76. A
77. A

$\begin{array}{ll}\mathrm{h}_{11}=\left.\frac{\mathrm{V} 1}{\mathrm{I} 1}\right|_{\mathrm{V} 2=0} & \mathrm{~h}_{11}=1.5 \Omega \\ \mathrm{~h}_{12}=\left.\frac{\mathrm{V} 2}{\mathrm{I} 2}\right|_{\mathrm{V} 1=0} & \end{array}$

$\mathrm{h}_{21}=\left.\frac{\mathrm{I} 2}{\mathrm{I} 1}\right|_{\mathrm{V} 2=0}$
$\mathrm{I}_{2}=-\mathrm{I}_{1} \times \frac{1}{1+1} \quad \frac{\mathrm{I} 2}{\mathrm{I} 1}=\mathrm{h}_{21}=-0.5$
$\mathrm{h}_{22}=\left.\frac{\mathrm{I} 2}{\mathrm{~V} 2}\right|_{\mathrm{II}=0}$
$\mathrm{I}_{2}=\frac{\mathrm{V} 2}{1+1} \quad \frac{\mathrm{I} 2}{\mathrm{~V} 2}=\mathrm{h}_{22}=0.5$
$\left[\begin{array}{ll}h 11 & \mathrm{~h} 12 \\ \mathrm{~h} 21 & \mathrm{~h} 22\end{array}\right]=\left[\begin{array}{cc}1.5 & 0.5 \\ -0.5 & 0.5\end{array}\right]$.
78. D
79. A
80. D
81. B
82. D
83. C
84. A
85. A
86. C
87. A
88. D
89. C
90. D
$1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$ and $1 \times 2^{-1}+0 \times 2^{-2}+2^{-3} \times 1$ 59 and 0.625 .
91. B
92. B
93. $C$
94. $A$
95. D

$$
\begin{aligned}
& \quad \frac{1}{(32)^{-1 / 5}}+\frac{1}{(216)^{-2 / 3}}+\frac{1}{(256)^{-3 / 4}} \\
& =(32)^{1 / 5}+(216)^{2 / 3}+(256)^{3 / 4} \\
& =\left(2^{5}\right)^{1 / 5}+\left(6^{3}\right)^{2 / 3}+\left(2^{8}\right)^{3 / 4} \\
& =2+36+64=102
\end{aligned}
$$

96. B
97. A

Let two consecutive even numbers be $x$ and ( $x+2$ )
Difference of their squares is $(x+2)^{2}-x^{2}=164$

$$
\begin{aligned}
& x^{2}+4 x+4-x^{2}=164 \\
& 4 x=160 \Rightarrow x=40 \\
& x+(x+2)=40+42=82
\end{aligned}
$$

98. A
99. C

Let Rajesh age be A and Raghu age be B
$\mathrm{A}-\mathrm{B}=20 \rightarrow$ (i)

And $(\mathrm{A}-5)=(\mathrm{B}-5) 5 \Rightarrow-\mathrm{A}+5 \mathrm{~B}=20 \rightarrow$ (ii)
Solving (i) and (ii), $\mathrm{A}=30 \& \mathrm{~B}=10$.
100. B

