0166' TS

Total No. of Questions - 24

Total No. of Printed Pages - 4

Regd.	 T .		-			
regu.						
No.						

Part – III MATHEMATICS, Paper – I(A) (English Version)

Time: 3 Hours

[Max. Marks: 75

Note: This question paper consists of three Sections - A, B and C.

SECTION - A

 $10 \times 2 = 20$

- Very Short Answer Type questions.
 - (i) Answer all questions.
 - (ii) Each question carries two marks.
 - 1. If $A = \left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ and $f : A \to B$ is a surjection defined by $f(x) = \cos x$ then find B.
 - 2. If f(x) = 2, $g(x) = x^2$, h(x) = 2x for all $x \in \mathbb{R}$, then find (fo(goh)) (x).

3. If
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 2 & -2 & 0 \\ 1 & 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -3 & -1 & 0 \\ 2 & 1 & 3 \\ 4 & -1 & 2 \end{bmatrix}$

and X = A + B then find X.

- 4. If $A = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$ then find AA'.
- 5. a = 2i + 5j + k and b = 4i + mj + nk are collinear vectors then find m and n.
- Find the vector equation of the line passing through the point 2i + 3j + k and parallel to the vector 4i - 2j + 3k.

- 7. Find the angle between the vectors i + 2j + 3k and 3i j + 2k.
- 8. If $\sin \theta = \frac{4}{5}$ and θ is not in the first quadrant, find the value of $\cos \theta$.
- 9. Prove that $\cos 48^\circ \cdot \cos 12^\circ = \frac{3 + \sqrt{5}}{8}$.
- 10. If $\cosh x = \frac{5}{2}$, find the values of (i) $\cosh (2x)$ and (ii) $\sinh (2x)$.

$$5 \times 4 = 20$$

- Short Answer Type questions.
 - (i) Attempt any five questions.
 - (ii) Each question carries four marks.

11. Show that
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a - b) (b - c) (c - a).$$

- 12. If a, b, c are non-coplanar find the point of intersection of the line passing through the points 2a + 3b c, 3a + 4b 2c with the line joining the points a 2b + 3c, a 6b + 6c
- 13. If a = 2i + j k, b = -i + 2j 4k and c = i + j + k then find $(a \times b) \cdot (b \times c)$.
- 14. (i) Find the range of 13 $\cos x + 3\sqrt{3} \sin x 4$.
 - (ii) Evaluate $\sin^2 82\frac{1}{2}^\circ \sin^2 22\frac{1}{2}^\circ$

15. Solve
$$1 + \sin^2\theta = 3 \sin \theta \cdot \cos \theta$$
.

16. Show that
$$\cot\left(\sin^{-1}\sqrt{\frac{13}{17}}\right) = \sin\left(\tan^{-1}\frac{2}{3}\right)$$
.

$$\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$$
, show that $C = 60^\circ$.

SECTION - C

$$5 \times 7 = 35$$

III. Long Answer Type questions:

- (i) Attempt any five questions.
- (ii) Each question carries seven marks.
- (i) If f: Q → Q is defined by f(x) = 5x + 4, ∀ x ∈ Q, show that f is a bijection and find f⁻¹.
 - (ii) If $f = \{(4, 5), (5, 6), (6, -4)\}$ and $g = \{(4, -4), (6, 5), (8, 5)\}$ then find f + g and fg.
- 19. Using mathematical induction, prove $1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + \dots$ upto n terms = $\frac{n(n+1)(n+2)(n+3)}{4}$, $\forall n \in \mathbb{N}$.
- 20. Solve the following system of equations by using Cramer's rule:

$$2x - y + 3z = 9$$

$$x + y + z = 6$$

$$x - y + z = 2$$

21. (i) Show that $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ is non-singular and find A^{-1} .

(ii) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 then show that $A^2 - 4A - 5I = 0$

22. Find the shortest distance between the skew lines:

$$r = (6i + 2j + 2k) + t(i - 2j + 2k)$$

and $r = (-4i - k) + s(3i - 2j - 2k)$.

23. If
$$A + B + C = 2S$$
, then prove that

$$\cos (S - A) + \cos (S - B) + \cos C = -1 + 4 \cos \frac{S - A}{2} \cos \frac{S - B}{2} \cos \frac{C}{2}$$

24. Show that in a
$$\triangle$$
 ABC, $\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\Delta^2}$.