Metallurgical Engineering_Set2

Topic:- Mathematics_Set2

If
$$A+B=\begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix}$$
 and $A-B=\begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$, then $AB=\begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix}$

[Question ID = 13593]

$$\begin{bmatrix} -2 & 2 \\ 0 & -6 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -2 \\ 2 & -4 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -2 \\ 0 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Correct Answer:-

$$\begin{bmatrix} -2 & -2 \\ 0 & -6 \end{bmatrix}$$

2) If
$$A = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 4 & 0 & -1 \end{bmatrix}$, then $A^T B A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 4 & 0 & -1 \end{bmatrix}$

[Question ID = 13594]

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 6 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 4 & 0 & -1 \end{bmatrix}$$

[5]

3)
$$\begin{vmatrix} x-y & p-q & a-b \\ y-z & q-r & b-c \\ z-x & r-p & c-a \end{vmatrix} =$$

[Question ID = **13595**]

- 1. 1
- 2. 2
- 3. xyz- pqr+ abc
- 4. 0

Correct Answer:-

• (

The solution of the equation
$$\begin{vmatrix} 5-x & 4 & 3 \\ 1-3x & 7 & 6 \\ 1-x & 6 & 5 \end{vmatrix} = 0 \text{ is}$$

[Question ID = 13596]

$$x = 1$$

$$x = 2$$

3.
$$x = 0$$

$$x = 5$$

$$x=1$$

The inverse of the matrix $A = \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$,

if
$$a^2 + b^2 + c^2 + d^2 = 1$$
 is

[Question ID = 13597]

$$\begin{bmatrix} a-ib & c-id \\ c+id & a+ib \end{bmatrix}$$

$$\begin{bmatrix} a-ib & -c-id \\ c-id & a+ib \end{bmatrix}$$

$$\begin{bmatrix} c - id & a - ib \\ a + ib & c + id \end{bmatrix}$$

$$\begin{bmatrix} a-ib & c-id \\ -c-id & a+ib \end{bmatrix}$$

Correct Answer:-

$$\begin{bmatrix} a-ib & -c-id \\ c-id & a+ib \end{bmatrix}$$

$$\frac{x^2}{x^2 - 3x + 2} =$$

[Question ID = 13598]

$$\frac{1}{x-1} + \frac{2}{x-2}$$

$$1 - \frac{1}{1 - x} + \frac{3}{x - 2}$$

$$1 + \frac{1}{1-x} + \frac{4}{x-2}$$

$$1 - \frac{1}{x - 1} + \frac{2}{x - 2}$$

$$1 + \frac{1}{1-x} + \frac{4}{x-2}$$

7) If
$$Sin\theta + Cosec\theta = 2$$
, then the value of $Sin^3\theta + Cosec^3\theta =$

[Question ID = 13599]

- 1.0
- 2. 1
- 3. 2
- 4.8

Correct Answer:-

- 2
- The value of $Sin^2 \left(\frac{\pi}{8} + \frac{\theta}{2} \right) Sin^2 \left(\frac{\pi}{8} \frac{\theta}{2} \right) =$

[Question ID = 13600]

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{2}\sin\theta$$

$$\frac{1}{\sqrt{2}}\sin\theta$$

$$\sin(\frac{\theta}{2})$$

$$\frac{1}{\sqrt{2}}\sin\theta$$

If x, y are in first quadrant, $\tan(x-y) = \frac{7}{24}$ and $\tan(x) = \frac{4}{3}$, then x+y=

[Question ID = 13601]

$$\frac{\pi}{2}$$

$$\frac{\pi}{4}$$

Correct Answer:-

$$\frac{\pi}{2}$$

10) If $A - B = \frac{3\pi}{4}$, then $(1 - \tan A)(1 + \tan B) =$

[Question ID = 13602]

Correct Answer:-

• 2

11)
$$\sec^2(\tan^{-1} 3) + \cos ec^2(\cot^{-1} 3) =$$

[Question ID = **13603**]

- 1. 1
- 2.10
- 3. 20
- 4. 30

Correct Answer:-

• 20

12)
$$3Co\sec x = 4Sinx \Rightarrow x =$$

[Question ID = **13604**]

$$n\pi \pm \frac{\pi}{2}; n \in \mathbb{Z}$$

$$n\pi \pm \frac{\pi}{3}; n \in \mathbb{Z}$$

$$2n\pi\pm\frac{\pi}{2}; n\in z$$

$$n\pi \mp \frac{\pi}{4}$$
; $n \in \mathbb{Z}$

Correct Answer:-

$$n\pi \pm \frac{\pi}{3}; n \in \mathbb{Z}$$

13) If
$$x = \log_{e} \left(5 + \sqrt{26} \right)$$
, then Sinhx =

[Question ID = 13605]

- 1. 5
- 2. ¹
- 2

5

14)

If a, b and c are the lengths of the sides opposite to the angles A,B and C of a triangle ABC, then

$$(b-c)^2 Cos^2 \frac{A}{2} + (b+c)^2 Sin^2 \frac{A}{2} =$$

[Question ID = **13606**]

1. a

2. b

3. b^2

4. a^2

Correct Answer:-

a

15) If
$$z = 2 - i\sqrt{7}$$
, then $2z^2 - 8z + 22 =$

[Question ID = **13607**]

1.0

2. 1

3. 2

4. 4

Correct Answer:-

• (

The least positive integer n, satisfying $\left(\frac{1+i}{1-i}\right)^n = 1$ is

[Question ID = **13608**]

1. 2

- 2. 1
- 3. 4
- 4.8

- 4
- The distance between the parallel straight lines 3x + 4y 3 = 0 and 6x + 8y 1 = 0 is

[Question ID = 13609]

- $\frac{1}{2}$
- 2. 4
- 3
- $\sqrt{2}$

Correct Answer:-

- $\frac{1}{2}$
- **18)** Angle between the lines 3x 5y 9 = 0; 4x y + 7 = 0 is

[Question ID = 13610]

- $\theta = 30^{\circ}$
- $\theta = 45^{\circ}$
- 3. $\theta = 60^{\circ}$
- 4. $\theta = 15^{\circ}$

$$\theta = 45^{\circ}$$

19)

Equation of the circle passing through (3,-4) and concentric with $x^2 + y^2 + 4x - 2y + 1 = 0$ is

[Question ID = **13611**]

$$x^2 + y^2 + 4x - 2y - 15 = 0$$

$$x^2 + y^2 + 4x - 2y - 30 = 0$$

$$x^2 + y^2 + x - 2y - 45 = 0$$

$$x^2 + y^2 + 4x - 2y - 45 = 0$$

Correct Answer:-

$$x^2 + y^2 + 4x - 2y - 45 = 0$$

20) The eccentricity of Ellipse $9x^2 + 16y^2 = 144$ is

[Question ID = 13612]

$$\frac{7}{4}$$

$$\frac{\sqrt{7}}{4}$$

$$\frac{5}{4}$$

$$\frac{\sqrt{7}}{4}$$

$$\lim_{x \to 0} \frac{8^x - 2^x}{x} =$$

[Question ID = 13613]

- 1. log 2
- 2. 0
- 3. log 4
- 4. 1

Correct Answer:-

- log 4
- 22) If $y = \cos^{-1}(4x^3 3x)$, then $\frac{dy}{dx} =$

[Question ID = 13614]

$$\frac{-3}{\sqrt{1-x^2}}$$

$$\frac{4}{\sqrt{1-x^2}}$$

$$\frac{1}{\sqrt{1+x^2}}$$

$$\frac{-4}{3\sqrt{1-x^2}}$$

$$\frac{-3}{\sqrt{1-x^2}}$$

If
$$y = (\sin x)^{\log x}$$
, then $\frac{dy}{dx} =$

[Question ID = 13615]

$$(\sin x)^{\log x} \left\{ \tan x \cdot \log x + \log(\sin x) \right\}$$

$$\log x \left\{ \cot x \cdot \sin x + \frac{1}{x} \log(\sin x) \right\}$$

$$(\sin x)^{\log x} \left\{ \cot x \cdot \log x + \frac{1}{x} \log(\sin x) \right\}$$

$$\left(\cos x\right)^{\log x} \left\{ \tan x \cdot \log x + \frac{1}{x} \log(\cos x) \right\}$$

Correct Answer:-

$$\left(\sin x\right)^{\log x} \left\{\cot x \cdot \log x + \frac{1}{x} \log(\sin x)\right\}$$

24) If
$$y = \log(x + \sqrt{1 + x^2})$$
, then $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} =$

[Question ID = 13616]

- 1.
- 2. 0
- 3 X

$$\int_{4}^{1} \frac{1}{\sqrt{1+x^2}}$$

Correct Answer:-

0

At $\theta = \frac{\pi}{4}$, the slope of the normal to the curve $x = a \cos^3 \theta$; $y = a \sin^3 \theta$ is

[Question ID = **13617**]

1. -1

2. -2

3. 2

4. 1

Correct Answer:-

•

If $x^y = e^{x-y}$, then $\frac{dy}{dx} =$

[Question ID = **13618**]

$$\int_{1}^{\log x} \frac{\log x}{(1+\log x)^2}$$

$$\frac{1}{(1+\log x)^2}$$

$$\int_{3.}^{\log x} \frac{\log x}{1 + \log x}$$

$$\frac{(\log x)^2}{(1+\log x)^2}$$

Correct Answer:-

$$\frac{\log x}{(1+\log x)^2}$$

Equation of the tangent to the curve $y = 5x^4$ at the point (1,5) is

[Question ID = 13619]

$$y = 15(x-1)$$

$$y = 20x - 15$$

$$x = 15y - 20$$

$$y = 20(x-1)$$

$$y = 20x - 15$$

If
$$u = \sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$$
, then $x \frac{\partial u}{\partial y} + y \frac{\partial u}{\partial y} =$

[Question ID = 13620]

- 1. cot u
- 2. tan u
- 3. 1
- 4. sin u

Correct Answer:-

• tan u

$$\int \frac{a}{h+ce^x} dx =$$

[Question ID = 13621]

$$\int_{1}^{a} \log \left(\frac{e^{x}}{b + ce^{x}} \right) + C$$

$$\int_{2}^{\infty} \log \left(\frac{e^{-x}}{b + e^{-x}} \right) + C$$

$$\frac{a}{b}\log\left(\frac{1}{be^x + ce^{-x}}\right) + C$$

$$\frac{b}{a}e^{(b+ce^{x})} + C$$

$$\frac{a}{b}\log\left(\frac{e^x}{b+ce^x}\right) + C$$

$$\int \frac{1}{(1+x^2)\tan^{-1}x} dx =$$

[Question ID = 13622]

- 1. $tan^{-1}x + C$
- 2. $\cot^{-1}x + C$
- 3. log(secx)tanx + C
- 4. $\log (\tan^{-1}x) + C$

Correct Answer:-

• $\log (\tan^{-1}x) + C$

$$\int \frac{\cos(\log x^2)}{x^4} dx =$$

[Question ID = 13623]

$$\frac{1}{x^3} \cos \left[\log x^2 + \tan^{-1}\left(\frac{3}{2}\right)\right] + C$$

1

$$\frac{x^3}{\sqrt{13}} Cos \left[log x^2 + cot^{-1} (\frac{2}{3}) \right] + C$$

$$\int_{3}^{1} \frac{-1}{2x^3} \cos \left[\log x^2 + \tan^{-1}(\frac{2}{3}) \right] + C$$

$$\int_{4.}^{1} \frac{1}{x^3 \sqrt{13}} \cos \left[\log x^2 + \cot^{-1}(\frac{3}{2}) \right] + C$$

$$\frac{1}{x^3} Cos \left[\log x^2 + \tan^{-1}(\frac{3}{2}) \right] + C$$

 $\int \frac{dx}{e^x - 1} =$

[Question ID = 13624]

$$\log\left(\frac{1-e^x}{e^x}\right) + C$$

 $\log(e^x - 1) + C$

$$\log\left(\frac{e^x-1}{e^x}\right) + C$$

$$\log\left(\frac{e^{-x}-1}{e^{-x}}\right)+C$$

Correct Answer:-

$$\log\left(\frac{e^x - 1}{e^x}\right) + C$$

33) $\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx =$

[Question ID = 13625]

$$\sec x + \cot x$$

$$\cos ecx - \cot x$$

$$\cos ecx + \tan x$$

$$\sec x - \cos ecx$$

 $\sec x - \cos ecx$

$\int_{0}^{\pi/4} \frac{e^{\tan x}}{\cos^2 x} dx$

[Question ID = 13626]

- e^{-1}
- $e^{-1}-1$
- $e^{-1}+1$
- $e^{-2}-1$

Correct Answer:-

 e^{-1}

35) $\int_{0}^{\pi} \sin^{3} x (1 - \cos x)^{2} dx =$

[Question ID = 13627]

- 1. 5/3
- 2.8/5
- 3. 1
- 4. 0

Correct Answer:-

• 8/5

36)

The volume generated by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its major axis is

[Question ID = 13628]

$$4\pi ab^2$$

$$\frac{4}{3}\pi ab^2$$

$$\frac{4}{3}\pi a^2b$$

$$\frac{8}{3}\pi a^2b^2$$

$$\frac{4}{3}\pi ab^2$$

The general solution of $x \frac{dy}{dx} = y[\log y - \log x + 1]$ is

[Question ID = 13629]

$$y = Ce^{x}$$

$$y = Ce^y$$

$$y = xe^{cx}$$

$$x = Ce^{y/x}$$

Correct Answer:-

$$y = xe^{cx}$$

A and B are arbitrary constants, the differential equation having $xy = Ae^{x} + Be^{-x} + x^{2}$ as its general solution is

[Question ID = 13630]

$$y'' + 2xy' - xy + x^2 = 0$$

$$xy'' + y' - xy - 2 = 0$$

$$xy'' + 2y' - 2xy + 3x^2 - 2 = 0$$

$$xy'' + 2y' - xy + x^2 - 2 = 0$$

$$xy'' + 2y' - xy + x^2 - 2 = 0$$

The solution of $\left(e^{-2\sqrt{x}} - y\right) \frac{dx}{dy} = \sqrt{x}$

[Question ID = 13631]

$$y = e^{-2\sqrt{x}} \left(2\sqrt{x} + C \right)$$

$$y = e^{-2\sqrt{x}} + \sqrt{x} + C$$

$$y = e^{-2\sqrt{x}} + e^{\sqrt{x}} \sqrt{x} + C$$

$$y = e^{2\sqrt{x}} + \log x + C$$

Correct Answer:-

$$y = e^{-2\sqrt{x}} \left(2\sqrt{x} + C \right)$$

40) The solution of Cosx dy = (Sinx - y)ydx

[Question ID = 13632]

$$y = \sec x \tan x + C$$

$$y^{-1}Co\sec x = \cot x + C$$

$$\int_{3}^{2} y^{-1} \sec x = \tan x + C$$

$$y = \log \sin x + C$$

$$y^{-1}\sec x = \tan x + C$$

The solution of
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$$
 satisfying $y(0) = 1$ and $y'(0) = 0$ is

[Question ID = **13634**]

$$y = e^{-2x} \left[\cos x + 2\sin x\right]$$

$$y = e^{-x} \left[2\cos x + \sin x \right]$$

$$y = e^{2x} [2\cos x + 3\sin x]$$

$$y = e^x [\cos x + 2\sin x]$$

Correct Answer:-

$$y = e^{-2x} [\cos x + 2\sin x]$$

42)
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2e^x$$
; with $y(0) = 1$; $y'(0) = 1$ satisfies

[Question ID = 13635]

$$y = c_1 e^{2x} + c_2 e^{3x} + e^x$$

$$y = 2e^{2x} + 3e^{3x} + e^x$$

$$y = e^{2x} + 2e^{3x} + e^{-x}$$

4.
$$y = e^x$$

$$y = e^x$$

The solution of $(y \log x - 2) y dx = x dy$

[Question ID = 13636]

$$y = x(\log x + C)$$

1

$$y = \frac{1}{x} \log x + x + C$$

$$\frac{1}{y} = x \log x + x + Cx$$

$$\frac{1}{y} = x^2 \log x + x + C$$

Correct Answer:-

$$\frac{1}{y} = x^2 \log x + x + C$$

44) Mean deviation about the median for the data 4,6,9,3,10,13,2 is [Question ID = 13641]

- 1. 4.31
- 2. 5.253
- 3. 3.285
- 4. 3.785

Correct Answer:-

- 3.285
- 45) If E_1 , E_2 are any two events of a random experiment and P is a probability function then

[Question ID = 13642]

$$P(E_1 \cap E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

3.
$$P(E_1 \cap E_2) = P(E_1) + P(E_2) + P(E_1 \cup E_2)$$

4.
$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cup E_2)$$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

The solution of the initial value problem
$$\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 0$$
;

with
$$x(0) = 2$$
; $x'(0) = 0$ is

[Question ID = 23975]

$$x(t) = Ae^t + Be^{2t}$$

$$x(t) = 2e^t - 4e^{2t}$$

$$x(t) = 4e^t - 2e^{2t}$$

$$x(t) = e^t - 2e^{2t}$$

Correct Answer:-

$$x(t) = 4e^t - 2e^{2t}$$

The Laplace transform of
$$\left\{ \frac{e^{-at}t^{n-1}}{(n-1)!} \right\} =$$

[Question ID = 23976]

$$\frac{e^{-at}}{(s+a)^n}$$

$$\frac{1}{(s+a)^n}$$

$$\frac{1}{(s-a)^n}$$

$$\frac{e^{at}}{(s-a)^n}$$

$$\frac{1}{(s+a)^n}$$

The inverse Laplace transform of
$$\left\{ \frac{1}{(8s-27)^{1/3}} \right\} =$$

[Question ID = 23977]

$$\frac{e^{(3/2)t} t^{-2/3}}{\Gamma\left(\frac{1}{3}\right)}$$

$$\frac{e^{(8/27)t} t^{-3/2}}{2\Gamma\left(\frac{1}{3}\right)}$$

$$\frac{e^{(2/3)t}t^{-3/2}}{2\Gamma(\frac{1}{-})}$$

$$\frac{e^{(27/8)t} t^{-2/3}}{25(1)}$$

$$2\Gamma\left(\frac{1}{3}\right)$$

$$\frac{e^{(27/8)t} t^{-2/3}}{2\Gamma\left(\frac{1}{3}\right)}$$

49)

If
$$f(x) = \begin{cases} 0 & ; -\pi \le x \le 0 \\ \sin x ; & 0 \le x \le \pi \end{cases}$$
, $f(x+2\pi) = f(x)$ and

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
, then $a_0 =$

[Question ID = 23978]

- $\frac{1}{\pi}$
- ຸ 1
- _{3.} 0
 - $\frac{2}{\pi}$

4. π

Correct Answer:-

 $\frac{2}{\pi}$

50)

The inverse Laplace transform of
$$\left\{ \frac{s+3}{s^2+6s+25} \right\} =$$

[Question ID = 23979]

- $e^{-3t}\cos 4t$
- $e^{3t}\sin 4t$

 $e^{3t}\cos 4t$

 $e^{-3t}\cos 3t$

Correct Answer:-

 $e^{-3t}\cos 4t$

Topic:- Physics_set2

The physical quantity having the dimension [ML²T⁻³] is

[Question ID = 34198]

- 1. work
- 2. power
- 3. pressure
- 4. impulse

Correct Answer:-

- power
- 2) Force F is given by F=at +bt² where t is time. The dimensions of a and b are

[Question ID = 34199]

- [MLT⁻³] and [MLT⁻⁴]
- [MLT $^{-1}$] and [MLT 0]
- 3. [MLT⁻³] and [MLT⁴]
- [MLT⁻⁴] and [MLT⁻¹]

Correct Answer:-

[MLT-3] and [MLT-4]

The magnitudes of two vectors are 4 and 5 and their scalar product is 10. Then the angle between the two vectors is [Question ID = 34200]
1. 30°
2. ^{45°}
60° 3.
0° 4.
Correct Answer :-
60°
4) If $\bar{a} + \bar{b} = \bar{c}$ and $\bar{a}^2 + \bar{b}^2 = \bar{c}^2$, then the angle between the vectors \bar{a} and \bar{b} is
[Question ID = 34201]
1. ^{0°}
2. ^{20°}
3. ^{45°}
90° 4.
Correct Answer :-
90°
ā and \bar{b} are two vectors and θ is the angle between them. If $ \bar{a} \times \bar{b} = \sqrt{3}$ ($\bar{a} \cdot \bar{b}$), the value of
θ is
[Question ID = 34202]
1. 30°
2. ^{45°}

3. 60° 90° **Correct Answer:-**30° 6) A body under action of five forces can be in equilibrium [Question ID = 34203] 1. if all forces are equal 2. sum of resolved components along x-axis is zero 3. sum of resolved components along y-axis is zero 4. sum of resolved components along x-axis and y-axis, individually zero **Correct Answer:-** sum of resolved components along x-axis and y-axis, individually zero 7) Two vibrating systems are said to be in resonance, if their [Question ID = 34204] 1. amplitudes are equal 2. temperatures are equal 3. frequencies are equal 4. phase values are equal **Correct Answer:-** frequencies are equal 8) A balloon is ascending at the rate of 9.8 ms⁻¹ at a height of 39.2 m above the ground when a food packet is dropped from the balloon. The velocity with which the food packet reach the ground is [Question ID = 34205] - 9.8 ms⁻¹ - 58.8 ms⁻¹ 3. - 4.9 ms⁻¹ - 29.4 ms⁻¹ **Correct Answer:-**

- 29.4 ms⁻¹ 9) The walls of hall built for music concerts should [Question ID = 34206] 1. amplify sound 2. reflect sound 3. transmit sound 4. absorb sound **Correct Answer:-** absorb sound 10) When a star approaches the earth , the waves are shifted towards [Question ID = 34207] 1. green colour 2. yellow colour 3. blue end 4. red end **Correct Answer:-**• blue end 11) A body of mass m is placed on a rough surface with coefficient of friction μ inclined at θ . If the mass is in equilibrium, then the value of θ is [Question ID = 34208] Tan -1 µ Tan $^{-1}(1/\mu)$ Tan -1 (m/μ) 3. Tan $^{-1}(\mu/m)$ **Correct Answer:-**Tan -1 µ

remain constant
15) The maximum velocity of a particle executing simple harmonic motion with an amplitude 7 mm is 4.4 ms ⁻¹ . The period of oscillation is [Question ID = 34212]
1. 0.01 s 2. 0.1 s 3. 10 s 4. 100 s
Correct Answer :- • 0.01 s
16) In a simple harmonic oscillator, at the mean position [Question ID = 34213]
 both kinetic energy and potential energies are minimum kinetic energy is maximum, potential energy is minimum kinetic energy is minimum, potential energy is maximum both kinetic energy and potential energies are maximum
Correct Answer:- • kinetic energy is maximum, potential energy is minimum
17) The intensity of sound produced by thunder is 0.1Wm ⁻² . The intensity level in decibels is [Question ID = 34214]
1. 110 dB 2. 100 dB 3. 90 dB 4. 140 dB
Correct Answer :- • 110 dB
18) A classroom has dimensions 20 x 15 x 5 m³. The reverberation time is 3.5 s. The average absorption coefficient is
[Question ID = 34215]
1. 0.05 2. 0.09 3. 0.03 4. 0.07

Correct Answer :-	
• 0.07	
19) Which of the following is not a characteristic of musical sound? [Question ID = 34216]	
1. pitch	
2. loudness	
3. frequency4. quality	
T. quanty	
Correct Answer :-	
• frequency	
20) In a simple harmonic motion, the particle is [Question ID = 34217]	
1. always accelerated	
2. alternately accelerated and retarded	
3. always retarded4. neither accelerated nor retarded	
T. Helther accelerated not retained	
Correct Answer :-	
alternately accelerated and retarded	
21)	
100 g of water is heated from 30°C to 50°C. Ignoring the slight expansion of water, the cha	nge i
its internal energy is (specific heat of water is 4200 J kg-1K-1)	
[Question ID = 34218]	
[Question ID = 34218] 1. 4.2 kJ	
1. 4.2 kJ 2. 84 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ	
1. 4.2 kJ 2. 84 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ 4. 8.4 kJ Correct Answer:- • 8.4 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ 4. 8.4 kJ Correct Answer:-	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ 4. 8.4 kJ Correct Answer:- • 8.4 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ 4. 8.4 kJ Correct Answer: 8.4 kJ 22) Which of the following is correct [Question ID = 34219]	

4. $H_1T_1 + H_2T_2=0$

$(H_1/T_1) = (H_2/T_2)$
23) An ideal gas in a cylinder is compressed adiabatically to one-third its original volume. During the process 50J of work is done on the gas by the compressing agent. The change in the internal energy of the gas in the process is [Question ID = 34220]
1. 50 J 2. 50/3 J 3. 150 J 4. 45 J
Correct Answer :- • 50 J
24) The maximum kinetic energy of photoelectrons ejected from a potassium surface by ultraviolet light of wavelength 200 nm is (photoelectric threshold wavelength for potassium is 440 nm) [Question ID = 34221]
1. 2.82 eV 2. 4.40 eV 3. 6.20 eV 4. 3.38 eV
Correct Answer :- • 3.38 eV
For a light wave to undergo total internal reflection ('i _c ' is critical angle, 'i' is incident angle) [Question ID = 34222]
light moves from rarer to denser medium and $i>i_c$
light moves from denser to rarer medium and $i > i_c$
light moves from rarer to denser medium and $i < i_c$
light moves from denser to rarer medium and i $<$ i $_c$
Correct Answer :-
light moves from denser to rarer medium and $i > i_c$
Topic:- Chemistry_Set2

1) For an f-orbital, the val	ues of 'm' are [Question ID = 23999]
11, 0, +1	
23, -2, -1, 0, +1, +2, +3 3. 0, +1, +2, +3	
42, -1, 0, +1, +2	
Correct Answer :-	
• -3, -2, -1, 0, +1, +2, +3	
2) Among LiCl, BeCl ₂ , BCl ₃	and CCl ₄ , the covalent character follows the order:
[Question ID = 24000]	
1. LiCl>BeCl ₂ >BCl ₃ >CCl ₄	
2. LiCl <becl<sub>2<bcl<sub>3<ccl<sub>4</ccl<sub></bcl<sub></becl<sub>	
3. LiCl>BeCl2 <bcl3>CCl4</bcl3>	
4. LiCl <becl2<bcl3>CCl4</becl2<bcl3>	
Correct Answer :-	
 LiCl<becl2<bcl3<ccl4< li=""> </becl2<bcl3<ccl4<>	
3) Lowest oxidation state	in its compound is exhibited by
3) Lowest oxidation state [Question ID = 24001]	
3) Lowest oxidation state [Question ID = 24001] 1. N	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O	
3) Lowest oxidation state [Question ID = 24001] 1. N	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer :-	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:-	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:-	in its compound is exhibited by
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:- • F	in its compound is exhibited by
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:- • F 4) Which of the following [Question ID = 24002]	in its compound is exhibited by
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:- • F 4) Which of the following in the control of t	in its compound is exhibited by

	Correct Answer :-
	NH4Cl, CuSO4 and K3[Fe(CN)6]
	5) Molarity of 4% (W/V) solution of NaOH is [Question ID = 24003]
	1. 0.1
	2. 0.5 3. 0.001
	4. 1
	Correct Answer :- • 1
	6) The weight of $H_2C_2O_4$. $2H_2O$ required to prepare 500mL of 0.2 N solution is
	[Question ID = 24004]
	1. 1.26 g
	2. 6.3g 3. 1.575g
	4. 3.15g
	Correct Answer :-
	• 6.3g
	7) The conjugate base of hydrogen molecule is [Question ID = 24005]
	1. Electron
	Hydride ion Proton
	4. Hydroxide ion
	Correct Answer :-
	Hydride ion
-	
	p^H of a solution is 1. It is diluted by 1X 10^3 times. The p^H of the resulting solution will be
	[Question ID = 24006]
	1. 1
	2. 3
	3. 4 4. 5
	Correct Answer :- • 4
	• 4

9) Which of the following is a basic flux
[Question ID = 24007]
$Na_2B_4O_7$
2. CaO
3. SiO ₂
4. P ₂ O ₅
Correct Answer :-
• CaO
10) Roasting of a metal oxide is carried out in which of the following furnaces
[Question ID = 24008]
1. Blast furnace
2. Reverberatory furnace
3. Both reverbaratory furnace and blast furnace
4. Muffle furnace
Correct Answer :-
Reverberatory furnace
11) Three faradays of electricity was passed through an aqueous solution of Ferrous chloride. The weight of iron metal (at $Wt = 56$) deposited at the cathode in grams is [Question ID = 24009]
1. 56
2. 84 3. 112
4. 168
Correct Answer :-
• 84
12) Which one of the following could not be liberated from a suitable electrolyte by the passage of 0.25 Faraday of electricity through the electrolyte
[Question ID = 24010]
1. 0.25 mole of Ag
2. 16 gms of Cu

- 3. 2gms of O₂ (g)
- 4. 2.8 lit of H₂ at STP

• 16 gms of Cu

13) Given standard electrode potentials

Fe³⁺ + 3e⁻ ----> Fe
$$E^0$$
 = -0.036 V

Fe²⁺ + 2e⁻ ----> Fe
$$E^0 = -0.440 \text{ V}$$

The standard electrode potential E^0 for Fe³⁺ + e⁻ ----> Fe²⁺ is

[Question ID = 24011]

- 1. 0.476 V
- 2. -0.404 V
- 3. 0.40 V
- 4. 0.772 V

Correct Answer:-

- 0.772 V
- 14) Water acts as an excellent solvent, due to which property among the following:

[Question ID = 24012]

- 1. High viscosity
- 2. High Entholpy of formation
- 3. High dielectric constant
- 4. High density

Correct Answer:

- High dielectric constant
- 15) A sample of water has $Mg(HCO_3)_2 = 73 \text{ mg/L}$, $Ca(HCO_3)_2 = 162 \text{ mg/L}$, $MgCl_2 = 95 \text{ mg/L}$ and $CaSO_4 = 136 \text{ mg/L}$. Temporary hardness in ppm is

[Question ID =
$$24013$$
]

1. 150

2. 350
3. 500
4. 200
Correct Answer :-
• 150
16) The process which removes all ionic, colloidal and high molecular weight organic matter in water is [Question ID = 24014]
1. Ion exchange process
zeolite process Reverse osmosis
4. Lime soda process
Correct Answer :-
Reverse osmosis
17) The monomer used in PVC preparation is [Question ID = 24015]
1. Ethene
2. Chloroethene
Dichloroethene Tetrachloroethene
ii reademorocarene
Correct Answer :-
Chloroethene
40). The about of the continuous form and the Valencian in the continuous form of the conti
18) The chemical used for accelerating Vulcanization is
[Question ID = 24016]
1. ZnO
2. SiO ₂
3. Sulphur
4. Zinc sterate
Correct Answer :-
• Sulphur
19) Which one of the following type of forces are present in Nylon-6,6 [Question ID = 24017]
Electrostatic forces of attraction Hydrogen bonding

3. Three dimensional network of bonds

4. Metallic bonding

	Hydrogen bonding
	20) Which one of the following is a primary pollutant
	[Question ID = 24018]
	1. CO
	2. PAN
	3. Aldehyde
	4. H ₂ SO ₄
	Correct Answer :-
	• co
	21) Ozone layer of upper atmosphere is being destroyed by
	[Question ID = 24019]
	[Question 15 - 24015]
	Photochemical oxidants like O ₂ and CO ₂
	1.
	2. Chloro fluorocarbon
	3. Smog
	SO_2
	4.
	Correct Answer :-
	Chloro fluorocarbon
_	22) Eutrophication causes reduction in [Question ID = 24020]
	1. Dissolved salts
	2. Dissolved hydrogen
	3. Dissolved oxygen4. Dissolved solids
	Correct Answer:-
	Dissolved oxygen
	23) Which one of the chemical substance is maximum in natural gas [Question ID = 24021]

	CH ₄
	C_2H_6
	3. H ₂
	CO+CO ₂ 4.
	Correct Answer :-
	CH ₄
	24) Which one of the following metals could provide cathodic protection to iron [Question ID = 24022]
	 Cu and Ni Zn and Cu Al and Zn Al, Zn and Ni
	Correct Answer :- • Al and Zn
	25) Rusting of iron is catalysed by which of the following
-	
_	25) Rusting of iron is catalysed by which of the following
_	25) Rusting of iron is catalysed by which of the following [Question ID = 24023]
_	25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe
_	 25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn
_	25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn 3. O_2 H ⁺
	25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn 3. $\frac{O_2}{H^+}$ 4.
_	25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn 3. O_2 H ⁺ 4. Correct Answer :-
	25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn 3. $\frac{O_2}{H^+}$ 4. Correct Answer :-

When a particle is settling in a fluid under Newtonian conditions, then the time taken by the particle to attain its terminal velocity is proportional to [Question ID = 34423]
1. (Particle diameter) 0.5
2. Particle diameter
(particle diameter) ² 3.
(Particle diameter) -0.5
Correct Answer :-
• (Particle diameter) 0.5
2) If the liberation of valuable mineral is in the coarse size range, the concentration method is [Question ID = 34424]
heavy media separation flotation
3. sizing classification 4. electrostatic separation
heavy media separation
3) In the differential flotation of Pb-Zn ore, the reagent used to depress sphalerite is [Question ID = 34425]
1. pine oil
2. lime 3. sodium cyanide
4. zinc sulphate
Correct Answer :-zinc sulphate
4) Separation of materials into products based on the difference in their flow velocities through fluids is termed as [Question ID = 34426]
clarification classification
3. elutriation 4. sedimentation
Correct Answer :- • classification
5) 'Xanthates' are used in froth floatation process as a/an [Question ID = 34427]

 conditioner frother collector 		
4. activator		
Correct Answer :-		
• collector		
6) Cage mill is a type of _	[Question ID = 34428]	
1. roll mill		
2. impact mill		
3. disc mill		
4. vibratory mill		
Correct Answer :-		
impact mill		
7) Grizzly is used for	[Question ID = 34429]	
1. crushing		
2. grinding		
3. screening		
4. electrostatic separator		
Correct Answer :-		
 screening 		
8) The gangue material dis 34430] 1. tailing	scarded after ore dressing operation is also called	[Question ID =
2. flux		
3. concentrate		
4. run of mine ore		
Correct Answer :-		
• tailing		
	old ores is mostly accomplished by [Question	
1. tabling		
2. jigging		
3. flotation		
4. elutriation		
Correct Answer :-		
 tabling 		
10) coal has the h	ighest fixed carbon content out of the following? [Que	estion ID = 34432]
1. bituminous		

3. anthracite	
J. and hacite	
4. semi-bituminous	
Correct Answer	! -
anthracite	
11) Construction	of thermocouple is based on the principle of [Question ID = 34433]
1. Peltier effect	
2. Seebeck effect	
3. Thomson effect	ant law
4. Wein-displaceme	ent idw
Correct Answer	: -
 Seebeck effect 	
12) Bomb calorii	meter is used to determine of coal [Question ID = 34434]
1. moisture content	
volatile matter	
calorific value	
4. Ash content	
Correct Answer	! -
 calorific value 	
13) Water gas is	produced with the interaction of hot coke with [Question ID = 34435]
13) Water gas is 1. steam	
1. steam 2. air	
 steam air air and steam 	produced with the interaction of hot coke with [Question ID = 34435]
1. steam 2. air	produced with the interaction of hot coke with [Question ID = 34435]
 steam air air and steam oxygen and steam Correct Answer	produced with the interaction of hot coke with [Question ID = 34435]
 steam air air and steam oxygen and steam 	produced with the interaction of hot coke with [Question ID = 34435]
 steam air air and steam oxygen and steam Correct Answer steam 	produced with the interaction of hot coke with [Question ID = 34435]
 steam air air and steam oxygen and steam Correct Answer steam 	produced with the interaction of hot coke with [Question ID = 34435] m is liable to spontaneous ignition
 steam air air and steam oxygen and steam Correct Answer steam 	produced with the interaction of hot coke with [Question ID = 34435] m is liable to spontaneous ignition
 steam air air and steam oxygen and steam oxteam Correct Answer steam 14) Stored [Question ID = 3	produced with the interaction of hot coke with [Question ID = 34435] m is liable to spontaneous ignition
 steam air air and steam oxygen and steam steam Correct Answer steam 14) Stored [Question ID = 3 diesel oil 	produced with the interaction of hot coke with [Question ID = 34435] m is liable to spontaneous ignition
 steam air air and steam oxygen and steam oxygen and steam steam 14) Stored	produced with the interaction of hot coke with [Question ID = 34435] m is liable to spontaneous ignition
 steam air air and steam oxygen and steam oxygen and steam steam 14) Stored	produced with the interaction of hot coke with [Question ID = 34435] in is liable to spontaneous ignition 4436]

	15) Blue gas is the other name of [Question ID = 34437]
	1. producer gas
	2. coal gas
	3. blast furnace gas4. water gas
	n nate. gas
	Correct Answer :-
_	• water gas
	16) Refractrories are not used for the lining of [Question ID = 34438]
	1. ingot moulds
	2. ladles3. hot metal mixers
	4. soaking pits
	• ingot moulds
	• Ingot modius
	17) Fossil fuels are
	[Question ID = 34439]
	1. hydrocarbons
	2. inorganic hydroxides
	3. organic aldehydes
	4. inorganic salts
	Correct Answer :-
	• hydrocarbons
	18) The percentage of nitrogen in is 50% to 55%
	[Question ID = 34440]
	1. coke oven gas
	2. water gas
	3. super gas
	4. producer gas
	Correct Answer :-
	• producer gas
-	
	19)

The equation which describes the variation of equilibrium constant with temperature [Question ID = 34441]
 Vant'Hoff Gibbs-Helmholtz Gibbs –Duhem Kirchhoff
Correct Answer :-
Vant'Hoff
20) The equilibrium percent solubility of diatomic gases in ambient atmosphere is [Question ID = 34442]
1. k.partial pressure of the gas
k. (partial pressure of the gas) ²
3. k. (partial pressure of the gas) ⁻¹
4. k. (partial pressure of the gas) ^{0.5}
Correct Answer :-
k. (partial pressure of the gas) ^{0.5}
21) Internal energy (E) represents of all atoms in a system [Question ID = 34443]
1. total kinetic energy
potential Energy total kinetic and potential energy
4. thermal and kinetic energy
Correct Answer :-
total kinetic and potential energy
22) An ideal solution is one, which obeys [Question ID = 34444]
1. Raoult's law
2. Henry's law 3. Sivert's law
4. Gibb's Duhem law
Correct Answer :-
Raoult's law
23) When a reaction occurs at constant, no work is done by the system [Question ID = 34445]

1. temperature	
2. density	
3. pressure	
4. volume	
Correct Answer :-	
• volume	
• volume	
24) Ellingham diagrams for the form	mation of metal oxides are plotted as [Question ID = 34446]
ΔG° versus 1/T	
1.	
ΔG° versus 1/T ²	
ΔG° versus 1/T ⁰	
3.	
ΔG° versus T	
4.	
Correct Answer :-	
4.000 m	
ΔG° versus T	
•	
25) The free energy change for a cl	nemical reaction is [Question ID = 34447]
	nemical reaction is [Question ID = 34447]
25) The free energy change for a cl1. RTInK2. RInK	nemical reaction is [Question ID = 34447]
1. RTInK	nemical reaction is [Question ID = 34447]
1. RTlnK 2. RlnK	nemical reaction is [Question ID = 34447]
1. RTInK 2. RInK 3. –RTInK 4. –RInK	nemical reaction is [Question ID = 34447]
1. RTInK 2. RInK 3RTInK 4RInK Correct Answer :-	nemical reaction is [Question ID = 34447]
1. RTInK 2. RInK 3RTInK 4RInK Correct Answer:RTInK	
1. RTInK 2. RInK 3RTInK 4RInK Correct Answer:RTInK	
1. RTInK 2. RInK 3RTInK 4RInK Correct Answer:RTInK 26) The entropy, when a sp	
1. RTInK 2. RInK 3RTInK 4RInK Correct Answer :RTInK 26) The entropy, when a sp 34448]	
 RTInK RInK -RTInK -RInK Correct Answer :- -RTInK 26) The entropy, when a sp 34448] decreases 	
 RTInK RInK -RTInK -RInK Correct Answer :- -RTInK 26) The entropy, when a sp 34448] decreases unchanged 	
 RTInK RInK -RTInK -RInK Correct Answer :- -RTInK 26) The entropy, when a sp 34448] decreases unchanged equal to zero 	
 RTInK RInK -RTInK -RInK Correct Answer :- -RTInK 26) The entropy, when a sp 34448] decreases unchanged 	
 RTInK RInK -RTInK -RInK Correct Answer :- -RTInK 26) The entropy, when a sp 34448] decreases unchanged equal to zero 	
 RTInK RInK -RTInK -RInK Correct Answer :- -RTInK 26) The entropy, when a sp 34448] decreases unchanged equal to zero increases 	
 RTInK RInK -RTInK -RInK Correct Answer :- -RTInK 26) The entropy, when a sp 34448] decreases unchanged equal to zero increases Correct Answer :- increases 	
1. RTInK 2. RInK 3RTInK 4RInK Correct Answer:RTInK 26) The entropy, when a sp 34448] 1. decreases 2. unchanged 3. equal to zero 4. increases Correct Answer: increases	ontaneous change occurs in an isolated system [Question ID =
 RTInK RInK -RTInK -RInK Correct Answer :- -RTInK 26) The entropy, when a sp 34448] decreases unchanged equal to zero increases Correct Answer :- increases 27) A system is defined as a part of	ontaneous change occurs in an isolated system [Question ID =
1. RTInK 2. RInK 3RTInK 4RInK Correct Answer:RTInK 26) The entropy, when a sp 34448] 1. decreases 2. unchanged 3. equal to zero 4. increases Correct Answer: increases	ontaneous change occurs in an isolated system [Question ID =

4. consisting of gaseous phase only
Correct Answer:-
selected for consideration
28) In blast furnace iron making conditions for desiliconisation are [Question ID = 34450]
 low temperature and basic slag high temperature and basic slag
3. low temperature and acidic slag
4. high temperature and acidic slag
Correct Answer :-
low temperature and basic slag
29) In MIDREX process the reducing agent is [Question ID = 34451]
1. CO
H_2
2.
CO + H ₂ 3.
4. coal
Correct Answer :-
CO + H ₂
• CO + H ₂
• CO + H ₂ • 30) Rimmed steels are used for [Question ID = 34452]
30) Rimmed steels are used for [Question ID = 34452] 1. structurals
• 30) Rimmed steels are used for [Question ID = 34452]
• 30) Rimmed steels are used for [Question ID = 34452] 1. structurals 2. wires
30) Rimmed steels are used for [Question ID = 34452] 1. structurals 2. wires 3. Flats
30) Rimmed steels are used for [Question ID = 34452] 1. structurals 2. wires 3. Flats 4. rods
30) Rimmed steels are used for [Question ID = 34452] 1. structurals 2. wires 3. Flats 4. rods Correct Answer:- • Flats
30) Rimmed steels are used for [Question ID = 34452] 1. structurals 2. wires 3. Flats 4. rods Correct Answer:- • Flats 31) Thickness of skin formed during the solidification of steel is equal to
30) Rimmed steels are used for [Question ID = 34452] 1. structurals 2. wires 3. Flats 4. rods Correct Answer:- • Flats 31) Thickness of skin formed during the solidification of steel is equal to [Question ID = 34453]
30) Rimmed steels are used for [Question ID = 34452] 1. structurals 2. wires 3. Flats 4. rods Correct Answer: Flats 31) Thickness of skin formed during the solidification of steel is equal to [Question ID = 34453] 1. constant. Time
30) Rimmed steels are used for [Question ID = 34452] 1. structurals 2. wires 3. Flats 4. rods Correct Answer:- • Flats 31) Thickness of skin formed during the solidification of steel is equal to [Question ID = 34453]
30) Rimmed steels are used for [Question ID = 34452] 1. structurals 2. wires 3. Flats 4. rods Correct Answer: • Flats 31) Thickness of skin formed during the solidification of steel is equal to [Question ID = 34453] 1. constant \(\text{Time} \)

constant. (Time) ⁻¹ 4.
Correct Answer :-
constant.√Time
32) Efficiency of blast furnace operation is assessed in terms of [Question ID = 34454]
 productivity driving rate coke consumption productivity and coke consumption rate
Correct Answer :- • productivity and coke consumption rate
33) Steels containing approximately 0.3% C are generally [Question ID = 34455]
 killed semi-killed capped rimmed
Correct Answer :- • killed
34) Solution loss reaction occurs in [Question ID = 34456]
 LD converter Blast furnace coke oven Regenerators
Correct Answer :- • Blast furnace
35) LD converter is lined with [Question ID = 34457]
 dolomite fire clay Alumina silica
Correct Answer :- • dolomite
36) Teeming of metal into mould in vacuum causes [Question ID = 34458]
1. Inverse segregation in ingots

Sulphur inclusions in ingots Brittleness in ingots
Correct Answer :- • gas free ingots
37) Reducing agent used in Pidgeon process is [Question ID = 34459]
 carbon hydrogen Fe-Si calcium
Correct Answer :- • Fe-Si
38) Imperial smelting process is used for the production of [Question ID = 34460]
1. Cu 2. Zn 3. Mg 4. Ni
Correct Answer :- • Zn
 39) In the refining of lead, Parkes process is used for [Question ID = 34461] 1. desilverising 2. dezincing 3. decopperising 4. softening
Correct Answer :- • desilverising
40) In Bayer's process, sodium aluminate is formed, the chemical formula is [Question ID = 34462]
NaAlO ₃ 1.
NaAlO ₂ 2.
Na ₂ AlO ₂ 3.
Na ₃ AlO ₂ 4.
Correct Answer :-

NaAlO ₂
41) The principal advantage of flash smelting in copper extraction is [Question ID = 34463]
1. precise process control
2. versatility
3. energy conservation4. low copper losses in slag
Correct Answer :-
energy conservation
42) Refining of zinc is carried out by [Question ID = 34464]
1. Liquation
2. fractional distillation
electrolytic refining both liquation and fractional distillation
1. Both ilquation and inactional distillation
Correct Answer :-
both liquation and fractional distillation
43) Electro metallurgy is involved in extraction of [Question ID = 34465]
1. Iron
2. aluminum
3. zinc4. tin
i. uii
Correct Answer :-
• aluminum
44) Ti is produced by reducing with magnesium [Question ID = 34466]
TiO ₂
1.
TI'CI
TiCl ₄ 2.
TiF ₄
3.
4. ilemenite
Correct Answer :-
T:Cl
TiCl ₄

45) Carbonyl process is used for the refining of	[Question ID = 34467]	
1. Cu		
2. Si		
3. Ni		
4. Zn		
Correct Answer :-		
• Ni		
46) The atomic radius of an FCC crystal (having lattic	e parameter a) is	_[Question ID =
34468]		
$a\sqrt{2}/2$		
1.		
a/2./2		
$a/2\sqrt{2}$		
2.		
$a\sqrt{3}/4$		
3.		
4. a/2		
Correct Answer :-		
$a/2\sqrt{2}$		
•		
47) What is the atomic packing factor of BCC? [Quest	ion ID = 34469]	
1. 0.74		
2. 0.72		
3. 0.68		
4. 0.82		
Correct Answer :-		
• 0.68		
48) Stacking sequence in FCC is [Question	on ID = 34470]	
1ABABABAB		
2ABCABCABC		
3ABABCBCBC		
4ACCBCABCABC		
Correct Answer :-		
•ABCABCABC		
49) The octahedron has [Question ID = 34471]		
1. 4 edges		

 2. peritectic 3. eutectoid 4. peritectoid Correct Answer:- eutectoid 54) Lead melts at 327°C. It is hot rolled at 	tion ID = 34475]
3. eutectoid4. peritectoidCorrect Answer :-• eutectoid	tion ID = 34475]
3. eutectoid 4. peritectoid Correct Answer:-	
3. eutectoid	
·	
z. peritectic	
1. eutectic	
53) If one solid phase splits into two solid phases on cooling, the reaction is [Ques	
alpha iron and cementite	
Correct Answer :-	
4. ledubrite and austenite	
3. ferrite and austenite	
2. gamma iron and cementite	
1. alpha iron and cementite	
52) Pearlite is a mixture of [Question ID = 34474]	
• F = C - P+2	
Correct Answer :-	
4. F = C - P - 2	
3. F = C+P - 2	
2. F = C - P+2	
1. F = C+P+2	
51) Gibbs phase rule is [Question ID = 34473]	
• 15%	
Correct Answer :-	
4. 0%	
3. 2%	
1. 50% 2. 15%	
1. 50%	
50) In Hume-Rothery rules for extensive solid solubility, the atomic diameter of the solvent atoms should not differ by more than [Question ID = 34472]	e solute and the
• 12 edges	
Correct Answer :-	
4. 16 edges	
3. 12 edges	
2. 8 edges	

4. 1 cm
Correct Answer :-
1 μm
•
Gamma iron occurs in the temperature of°C
[Question ID = 34484]
1. 0 – 770
2. 770 – 910
3. 910 – 1400 4. 1400 - 1539
Correct Answer :-
• 910 – 1400
63) Crystal structure of ferrite is [Question ID = 34485]
1. SC
2. BCC
3. FCC
4. HCP
Correct Answer :-
• BCC
64) If a material suffers permanent deformation due to application of stress/load, it is called [Question ID = 34486]
1. elastic deformation
2. plastic deformation
rupture stress ultimate stress
4. diditiate suless
Correct Answer :-
plastic deformation
65) Plastic deformation in metals is due to the presence of dislocation in crystals. This is a defect [Question ID = 34487]
1. point defect
2. surface defect
line defect volume defect
T. VOIUINE UCICUL
Correct Answer :-
line defect

66) Which of the following is not a structure sensitive property of a material [Question ID = 34488] 1. ductility 2. tensile strength 3. density 4. yield strength **Correct Answer:-** density 67) The number cycles of stress which a metal can endure before failure is known as [Question ID = 34489] 1. damping capacity 2. toughness 3. malleability 4. endurance limit **Correct Answer:-**· endurance limit 68) Hook's law [Question ID = 34490] 1. applies to the elastic deformation 2. applies beyond limit of proportional limit in stress-strain curve 3. states that stress is inversely proportional to strain upto elastic limit 4. applies to plastic deformation **Correct Answer:-**· applies to the elastic deformation 69) Crystal structure of metals is studied by [Question ID = 34491] 1. metallographic technique 2. X-ray technique 3. ultrasonic method 4. electron microscopy **Correct Answer:-** X-ray technique 70) Cold working of metals results in [Question ID = 34492] 1. increase in strength 2. increase in ductility 3. decrease in hardness 4. decrease in strength

Correct Answer :-increase in strength

1. Brittle
2. hard
3. rollable
4. soft
Correct Answer :-
• soft
72) In edge dislocation, the direction of movement of atoms is [Question ID = 34494]
1. parallel to the stress direction
2. perpendicular to the stress direction
at 120° to the stress direction
3.
at 60° to the stress direction
4.
Correct Answer :-
parallel to the stress direction
·
73) If the grain diameter increases, then yield strength of metal [Question ID = 34495]
1. decreases
2. increases
remains constant increases then decreases
1. Increases their decreases
Correct Answer :-
• decreases
74) is dimensionless quantity [Question ID = 34496]
/4) IS dimensionless dijantity (Oliestion II) = 344961
74) 15 difficilisioniess qualitaty [Question 15 = 54456]
1. Stress
1. Stress 2. strain
 Stress strain true stress
1. Stress 2. strain
 Stress strain true stress
 Stress strain true stress Young's modulus of elasticity Correct Answer:- strain
 Stress strain true stress Young's modulus of elasticity Correct Answer:- strain
 Stress strain true stress Young's modulus of elasticity Correct Answer:- strain
 Stress strain true stress Young's modulus of elasticity Correct Answer:- strain 75) At temperature, the grains and the grain boundaries have equal strength [Question ID = 34497]
1. Stress 2. strain 3. true stress 4. Young's modulus of elasticity Correct Answer:- • strain 75) At temperature, the grains and the grain boundaries have equal strength [Question ID = 34497] 1. Curie
 Stress strain true stress Young's modulus of elasticity Correct Answer:- strain 75) At temperature, the grains and the grain boundaries have equal strength [Question ID = 34497]
 Stress strain true stress Young's modulus of elasticity Correct Answer:- strain 75) At temperature, the grains and the grain boundaries have equal strength [Question ID = 34497] Curie equi-cohesive

Correct Answer :- • equi-cohesive	
76) Which of the following is not a destructive test? [Question ID = 34498]	
 Radiography Impact test Tensile test Fatigue test 	
Correct Answer :- • Radiography	
77) Creep resistance of materials decreases due to [Question ID = 34499]	
 small grain size fine dispersoid size low stacking fault energy high melting point 	
Correct Answer :- • small grain size	
78) The standard steel ball diameter used in BHN is [Question ID = 34500]	
1. 1mm 2. 2mm 3. 5mm 4. 10mm	
Correct Answer :- • 10mm	
79) In fracture toughness characterized by K_{IC} , I in the subscript indicates loading by	
[Question ID = 34501]	
1. crack opening mode	
2. forward shear mode	
3. parallel shear mode	
4. perpendicular shear mode	
Correct Answer :-	
crack opening mode	
80) A property that cannot be obtained from a tensile test is [Question ID = 34502]	
1. Young's modulus	

2. yield strength3. ultimate tensile strength4. endurance limit
Correct Answer :- • endurance limit
81) In a tensile test of a ductile material, necking starts at [Question ID = 34503]
1. lower yield stress
upper yield stress ultimate tensile strength
4. fracture stress
Correct Answer :-
ultimate tensile strength
82) of a material is designated by its Izod value [Question ID = 34504]
1. impact resistance
2. tensile strength
3. creep strength4. hardness
4. Hal uness
Correct Answer :-
impact resistance
83) Sub-zero treatment of steel is carried out for [Question ID = 34505] 1. converting austenite to bainite 2. converting austenite to martensite 3. converting austenite to pearlite 4. converting austenite to ferrite
Correct Answer :-converting austenite to martensite
84) An important property of malleable cast iron in comparison to grey cast iron is the high [Question ID = 34506]
1. compressive strength
2. carbon content
3. ductility
4. surface finish
Correct Answer :-
• ductility
85) Increasing the percentage of cold work, the recrystallization temperature
[Question ID = 34507]
• • • • • • • • • • • • • • • • • • • •

• 1.9% to negative	
Correct Answer :-	
4. 1.9% to negative	
3. 2.5 – 3%	
2. 3.5 – 4.5%	
1. 6 – 10%	
89) Volumetric shrinkage of grey cast iron is [Question ID = 34511]	
• friction stir welding	
Correct Answer :-	
4. friction stir welding	
3. resistance welding	
 arc welding gas welding 	
88) Which of the following is not a fusion welding process? [Question ID = 34510]	
arc welding	
Correct Answer :-	
4. arc welding	
resistance welding thermit welding	
1. TIG welding	
87) In which of the following welding processes, electrode gets consumed? [Question ID = 36]	4509]
• ingate	
Correct Answer :-	
4. fin	
2. ingate3. hot tear	
1. scab	
86) Which of the following is not a casting defect? [Question ID = 34508]	
• decreases	
Correct Answer :-	
4. remains constant	
3. increases then decreases	
2. decreases	
1. increases	

Carbon is present in the form of graphite flakes in the	_ cast iron [Question ID = 34512]
1. grey	
2. white	
3. nodular4. malleable	
T. Illalicable	
Correct Answer :-	
• grey	
91) Draft allowance given to patterns is for [Question ID = 34513]	l
1. compensating the liquid state shrinkage	
2. easy removal of pattern from the mold cavity	
3. providing support for the core placement4. compensating the solidification shrinkage	
T. Compensating the solidincation similarity	
Correct Answer :-	
easy removal of pattern from the mold cavity	
92) Risers are not required for casting of [Question ID = 34514]	
1. stainless steel	
2. plain carbon steel	
3. grey cast iron 4. white cast iron	
· · · · · · · · · · · · · · · · · · ·	
Correct Answer :-	
grey cast iron	
93) The element responsible for the presence of free graphite in ca	ast iron is [Question ID = 34515]
1. sulphur	
2. phosphorous	
3. silicon4. manganese	
manganese	
Correct Answer :-	
• silicon	
94) Shell moulding employs a pattern made of [Question ID = 345]	16]
1. plaster of paris	
2. wood	
3. metal 4. wax	
i. wux	
Correct Answer :-	
• metal	
95) Transition temperature of metals is concerned with its = 34517]	properties [Question ID

 creep fatigue impact tensile
Correct Answer :- • impact
96) Flux in welding process acts as a [Question ID = 34518]
 catalyst protective agent filler meterial heat generator
Correct Answer :-
protective agent
97) The most weldable material is [Question ID = 34519]
 stainless steel plain carbon steel aluminum brass
Correct Answer :- • plain carbon steel
98) In MIG welding, metal is transformed in the form of [Question ID = 34520]
 molecules molten drops weld pool a fine spray of metal
Correct Answer :- • weld pool
99) In arc welding, the arc length should be equal to, where, d = electrode rod diameter [Question ID = 34521]
1. d 2. 0.5 d 3. 2d
3. 2u 4. 2.5d
Correct Answer :- • d
100) Purpose of riser is to [Question ID = 34522]
1. help feed the casting until all solidification takes place

- 2. act as a cooling device for molten metal
- 3. feed molten metal from pouring basin to gate
- 4. get defective castings

Correct Answer:-

• help feed the casting until all solidification takes place