Chemical Engineering_Set2

Topic:- Mathematics_Set2

If
$$A+B=\begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix}$$
 and $A-B=\begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$, then $AB=\begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix}$

[Question ID = 13593]

$$\begin{bmatrix} -2 & 2 \\ 0 & -6 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -2 \\ 2 & -4 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -2 \\ 0 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Correct Answer:-

$$\begin{bmatrix} -2 & -2 \\ 0 & -6 \end{bmatrix}$$

2) If
$$A = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 4 & 0 & -1 \end{bmatrix}$, then $A^T B A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 4 & 0 & -1 \end{bmatrix}$

[Question ID = 13594]

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 6 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 4 & 0 & -1 \end{bmatrix}$$

[5]

3)
$$\begin{vmatrix} x-y & p-q & a-b \\ y-z & q-r & b-c \\ z-x & r-p & c-a \end{vmatrix} =$$

[Question ID = **13595**]

- 1. 1
- 2. 2
- 3. xyz- pqr+ abc
- 4. 0

Correct Answer:-

• (

The solution of the equation
$$\begin{vmatrix} 5-x & 4 & 3 \\ 1-3x & 7 & 6 \\ 1-x & 6 & 5 \end{vmatrix} = 0 \text{ is}$$

[Question ID = 13596]

$$x = 1$$

$$x = 2$$

3.
$$x = 0$$

$$x = 5$$

$$x=1$$

The inverse of the matrix $A = \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$,

if
$$a^2 + b^2 + c^2 + d^2 = 1$$
 is

[Question ID = 13597]

$$\begin{bmatrix} a-ib & c-id \\ c+id & a+ib \end{bmatrix}$$

$$\begin{bmatrix} a-ib & -c-id \\ c-id & a+ib \end{bmatrix}$$

$$\begin{bmatrix} c - id & a - ib \\ a + ib & c + id \end{bmatrix}$$

$$\begin{bmatrix} a-ib & c-id \\ -c-id & a+ib \end{bmatrix}$$

Correct Answer:-

$$\begin{bmatrix} a-ib & -c-id \\ c-id & a+ib \end{bmatrix}$$

$$\frac{x^2}{x^2 - 3x + 2} =$$

[Question ID = 13598]

$$\frac{1}{x-1} + \frac{2}{x-2}$$

$$1 - \frac{1}{1 - x} + \frac{3}{x - 2}$$

$$1 + \frac{1}{1-x} + \frac{4}{x-2}$$

$$1 - \frac{1}{x - 1} + \frac{2}{x - 2}$$

$$1 + \frac{1}{1-x} + \frac{4}{x-2}$$

7) If
$$Sin\theta + Cosec\theta = 2$$
, then the value of $Sin^3\theta + Cosec^3\theta =$

[Question ID = 13599]

- 1.0
- 2. 1
- 3. 2
- 4.8

Correct Answer:-

- 2
- The value of $Sin^2 \left(\frac{\pi}{8} + \frac{\theta}{2} \right) Sin^2 \left(\frac{\pi}{8} \frac{\theta}{2} \right) =$

[Question ID = 13600]

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{2}\sin\theta$$

$$\frac{1}{\sqrt{2}}\sin\theta$$

$$\sin(\frac{\theta}{2})$$

$$\frac{1}{\sqrt{2}}\sin\theta$$

If x, y are in first quadrant, $\tan(x-y) = \frac{7}{24}$ and $\tan(x) = \frac{4}{3}$, then x+y=

[Question ID = 13601]

$$\frac{\pi}{2}$$

$$\frac{\pi}{4}$$

Correct Answer:-

$$\frac{\pi}{2}$$

10) If $A - B = \frac{3\pi}{4}$, then $(1 - \tan A)(1 + \tan B) =$

[Question ID = 13602]

Correct Answer:-

• 2

11)
$$\sec^2(\tan^{-1} 3) + \cos ec^2(\cot^{-1} 3) =$$

[Question ID = **13603**]

- 1. 1
- 2.10
- 3. 20
- 4. 30

Correct Answer:-

• 20

12)
$$3Co\sec x = 4Sinx \Rightarrow x =$$

[Question ID = **13604**]

$$n\pi \pm \frac{\pi}{2}; n \in \mathbb{Z}$$

$$n\pi \pm \frac{\pi}{3}; n \in \mathbb{Z}$$

$$2n\pi\pm\frac{\pi}{2}; n\in z$$

$$n\pi \mp \frac{\pi}{4}$$
; $n \in \mathbb{Z}$

Correct Answer:-

$$n\pi \pm \frac{\pi}{3}; n \in \mathbb{Z}$$

13) If
$$x = \log_{e} \left(5 + \sqrt{26} \right)$$
, then Sinhx =

[Question ID = 13605]

- 1. 5
- 2. ¹
- 2

5

14)

If a, b and c are the lengths of the sides opposite to the angles A,B and C of a triangle ABC, then

$$(b-c)^2 Cos^2 \frac{A}{2} + (b+c)^2 Sin^2 \frac{A}{2} =$$

[Question ID = **13606**]

1. a

2. b

3. b^2

4. a^2

Correct Answer:-

a

15) If
$$z = 2 - i\sqrt{7}$$
, then $2z^2 - 8z + 22 =$

[Question ID = **13607**]

1.0

2. 1

3. 2

4. 4

Correct Answer:-

• (

The least positive integer n, satisfying $\left(\frac{1+i}{1-i}\right)^n = 1$ is

[Question ID = **13608**]

1. 2

- 2. 1
- 3. 4
- 4.8

- 4
- The distance between the parallel straight lines 3x + 4y 3 = 0 and 6x + 8y 1 = 0 is

[Question ID = 13609]

- $\frac{1}{2}$
- 2. 4
- 3
- $\sqrt{2}$

Correct Answer:-

- $\frac{1}{2}$
- **18)** Angle between the lines 3x 5y 9 = 0; 4x y + 7 = 0 is

[Question ID = 13610]

- $\theta = 30^{\circ}$
- $\theta = 45^{\circ}$
- 3. $\theta = 60^{\circ}$
- 4. $\theta = 15^{\circ}$

$$\theta = 45^{\circ}$$

19)

Equation of the circle passing through (3,-4) and concentric with $x^2 + y^2 + 4x - 2y + 1 = 0$ is

[Question ID = **13611**]

$$x^2 + y^2 + 4x - 2y - 15 = 0$$

$$x^2 + y^2 + 4x - 2y - 30 = 0$$

$$x^2 + y^2 + x - 2y - 45 = 0$$

$$x^2 + y^2 + 4x - 2y - 45 = 0$$

Correct Answer:-

$$x^2 + y^2 + 4x - 2y - 45 = 0$$

20) The eccentricity of Ellipse $9x^2 + 16y^2 = 144$ is

[Question ID = 13612]

$$\frac{7}{4}$$

$$\frac{\sqrt{7}}{4}$$

$$\frac{5}{4}$$

$$\frac{\sqrt{7}}{4}$$

$$\lim_{x \to 0} \frac{8^x - 2^x}{x} =$$

[Question ID = 13613]

- 1. log 2
- 2. 0
- 3. log 4
- 4. 1

Correct Answer:-

- log 4
- 22) If $y = \cos^{-1}(4x^3 3x)$, then $\frac{dy}{dx} =$

[Question ID = 13614]

$$\frac{-3}{\sqrt{1-x^2}}$$

$$\frac{4}{\sqrt{1-x^2}}$$

$$\frac{1}{\sqrt{1+x^2}}$$

$$\frac{-4}{3\sqrt{1-x^2}}$$

$$\frac{-3}{\sqrt{1-x^2}}$$

If
$$y = (\sin x)^{\log x}$$
, then $\frac{dy}{dx} =$

[Question ID = 13615]

$$(\sin x)^{\log x} \left\{ \tan x \cdot \log x + \log(\sin x) \right\}$$

$$\log x \left\{ \cot x \cdot \sin x + \frac{1}{x} \log(\sin x) \right\}$$

$$(\sin x)^{\log x} \left\{ \cot x \cdot \log x + \frac{1}{x} \log(\sin x) \right\}$$

$$\left(\cos x\right)^{\log x} \left\{ \tan x \cdot \log x + \frac{1}{x} \log(\cos x) \right\}$$

Correct Answer:-

$$\left(\sin x\right)^{\log x} \left\{\cot x \cdot \log x + \frac{1}{x} \log(\sin x)\right\}$$

24) If
$$y = \log(x + \sqrt{1 + x^2})$$
, then $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} =$

[Question ID = 13616]

- 1.
- 2. 0
- 3 X

$$\int_{4}^{1} \frac{1}{\sqrt{1+x^2}}$$

Correct Answer:-

0

At $\theta = \frac{\pi}{4}$, the slope of the normal to the curve $x = a \cos^3 \theta$; $y = a \sin^3 \theta$ is

[Question ID = **13617**]

1. -1

2. -2

3. 2

4. 1

Correct Answer:-

•

If $x^y = e^{x-y}$, then $\frac{dy}{dx} =$

[Question ID = **13618**]

$$\int_{1}^{\log x} \frac{\log x}{(1+\log x)^2}$$

$$\int_{2}^{\infty} \frac{1}{(1+\log x)^2}$$

$$\int_{3.}^{\log x} \frac{\log x}{1 + \log x}$$

$$\frac{(\log x)^2}{(1+\log x)^2}$$

Correct Answer:-

$$\frac{\log x}{(1+\log x)^2}$$

Equation of the tangent to the curve $y = 5x^4$ at the point (1,5) is

[Question ID = 13619]

$$y = 15(x-1)$$

$$y = 20x - 15$$

$$x = 15y - 20$$

$$y = 20(x-1)$$

$$y = 20x - 15$$

If
$$u = \sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$$
, then $x \frac{\partial u}{\partial y} + y \frac{\partial u}{\partial y} =$

[Question ID = 13620]

- 1. cot u
- 2. tan u
- 3. 1
- 4. sin u

Correct Answer:-

• tan u

$$\int \frac{a}{h+ce^x} dx =$$

[Question ID = 13621]

$$\int_{1}^{a} \log \left(\frac{e^{x}}{b + ce^{x}} \right) + C$$

$$\int_{2}^{\infty} \log \left(\frac{e^{-x}}{b + e^{-x}} \right) + C$$

$$\frac{a}{b}\log\left(\frac{1}{be^x + ce^{-x}}\right) + C$$

$$\frac{b}{a}e^{(b+ce^{x})} + C$$

$$\frac{a}{b}\log\left(\frac{e^x}{b+ce^x}\right) + C$$

$$\int \frac{1}{(1+x^2)\tan^{-1}x} dx =$$

[Question ID = 13622]

- 1. $tan^{-1}x + C$
- 2. $\cot^{-1}x + C$
- 3. log(secx)tanx + C
- 4. $\log (\tan^{-1}x) + C$

Correct Answer:-

• $\log (\tan^{-1}x) + C$

$$\int \frac{\cos(\log x^2)}{x^4} dx =$$

[Question ID = 13623]

$$\frac{1}{x^3} \cos \left[\log x^2 + \tan^{-1}\left(\frac{3}{2}\right)\right] + C$$

1

$$\frac{x^3}{\sqrt{13}} Cos \left[log x^2 + cot^{-1} (\frac{2}{3}) \right] + C$$

$$\int_{3}^{1} \frac{-1}{2x^3} \cos \left[\log x^2 + \tan^{-1}(\frac{2}{3}) \right] + C$$

$$\int_{4.}^{1} \frac{1}{x^3 \sqrt{13}} \cos \left[\log x^2 + \cot^{-1}(\frac{3}{2}) \right] + C$$

$$\frac{1}{x^3} Cos \left[\log x^2 + \tan^{-1}(\frac{3}{2}) \right] + C$$

 $\int \frac{dx}{e^x - 1} =$

[Question ID = 13624]

$$\log\left(\frac{1-e^x}{e^x}\right) + C$$

 $\log(e^x - 1) + C$

$$\log\left(\frac{e^x-1}{e^x}\right) + C$$

$$\log\left(\frac{e^{-x}-1}{e^{-x}}\right)+C$$

Correct Answer:-

$$\log\left(\frac{e^x - 1}{e^x}\right) + C$$

33) $\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx =$

[Question ID = 13625]

$$\sec x + \cot x$$

$$\cos ecx - \cot x$$

$$\cos ecx + \tan x$$

$$\sec x - \cos ecx$$

 $\sec x - \cos ecx$

$\int_{0}^{\pi/4} \frac{e^{\tan x}}{\cos^2 x} dx$

[Question ID = 13626]

- e^{-1}
- $e^{-1}-1$
- $e^{-1}+1$
- $e^{-2}-1$

Correct Answer:-

 e^{-1}

35) $\int_{0}^{\pi} \sin^{3} x (1 - \cos x)^{2} dx =$

[Question ID = 13627]

- 1. 5/3
- 2.8/5
- 3. 1
- 4. 0

Correct Answer:-

• 8/5

36)

The volume generated by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its major axis is

[Question ID = 13628]

$$4\pi ab^2$$

$$\frac{4}{3}\pi ab^2$$

$$\frac{4}{3}\pi a^2b$$

$$\frac{8}{3}\pi a^2b^2$$

$$\frac{4}{3}\pi ab^2$$

The general solution of $x \frac{dy}{dx} = y[\log y - \log x + 1]$ is

[Question ID = 13629]

$$y = Ce^{x}$$

$$y = Ce^y$$

$$y = xe^{cx}$$

$$x = Ce^{y/x}$$

Correct Answer:-

$$y = xe^{cx}$$

A and B are arbitrary constants, the differential equation having $xy = Ae^{x} + Be^{-x} + x^{2}$ as its general solution is

[Question ID = 13630]

$$y'' + 2xy' - xy + x^2 = 0$$

$$xy'' + y' - xy - 2 = 0$$

$$xy'' + 2y' - 2xy + 3x^2 - 2 = 0$$

$$xy'' + 2y' - xy + x^2 - 2 = 0$$

$$xy'' + 2y' - xy + x^2 - 2 = 0$$

The solution of $\left(e^{-2\sqrt{x}} - y\right) \frac{dx}{dy} = \sqrt{x}$

[Question ID = 13631]

$$y = e^{-2\sqrt{x}} \left(2\sqrt{x} + C \right)$$

$$y = e^{-2\sqrt{x}} + \sqrt{x} + C$$

$$y = e^{-2\sqrt{x}} + e^{\sqrt{x}} \sqrt{x} + C$$

$$y = e^{2\sqrt{x}} + \log x + C$$

Correct Answer:-

$$y = e^{-2\sqrt{x}} \left(2\sqrt{x} + C \right)$$

40) The solution of Cosx dy = (Sinx - y)ydx

[Question ID = 13632]

$$y = \sec x \tan x + C$$

$$y^{-1}Co\sec x = \cot x + C$$

$$\int_{3}^{2} y^{-1} \sec x = \tan x + C$$

$$y = \log \sin x + C$$

$$y^{-1}\sec x = \tan x + C$$

The solution of
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$$
 satisfying $y(0) = 1$ and $y'(0) = 0$ is

[Question ID = **13634**]

$$y = e^{-2x} \left[\cos x + 2\sin x\right]$$

$$y = e^{-x} \left[2\cos x + \sin x \right]$$

$$y = e^{2x} [2\cos x + 3\sin x]$$

$$y = e^x [\cos x + 2\sin x]$$

Correct Answer:-

$$y = e^{-2x} [\cos x + 2\sin x]$$

42)
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2e^x$$
; with $y(0) = 1$; $y'(0) = 1$ satisfies

[Question ID = 13635]

$$y = c_1 e^{2x} + c_2 e^{3x} + e^x$$

$$y = 2e^{2x} + 3e^{3x} + e^x$$

$$y = e^{2x} + 2e^{3x} + e^{-x}$$

4.
$$y = e^x$$

$$y = e^x$$

The solution of $(y \log x - 2) y dx = x dy$

[Question ID = 13636]

$$y = x(\log x + C)$$

1

$$y = \frac{1}{x} \log x + x + C$$

$$\frac{1}{y} = x \log x + x + Cx$$

$$\frac{1}{y} = x^2 \log x + x + C$$

Correct Answer:-

$$\frac{1}{y} = x^2 \log x + x + C$$

44) Mean deviation about the median for the data 4,6,9,3,10,13,2 is [Question ID = 13641]

- 1. 4.31
- 2. 5.253
- 3. 3.285
- 4. 3.785

Correct Answer:-

- 3.285
- 45) If E_1 , E_2 are any two events of a random experiment and P is a probability function then

[Question ID = 13642]

$$P(E_1 \cap E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

3.
$$P(E_1 \cap E_2) = P(E_1) + P(E_2) + P(E_1 \cup E_2)$$

4.
$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cup E_2)$$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

The solution of the initial value problem
$$\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 0$$
;

with
$$x(0) = 2$$
; $x'(0) = 0$ is

[Question ID = 23975]

$$x(t) = Ae^t + Be^{2t}$$

$$x(t) = 2e^t - 4e^{2t}$$

$$x(t) = 4e^t - 2e^{2t}$$

$$x(t) = e^t - 2e^{2t}$$

Correct Answer:-

$$x(t) = 4e^t - 2e^{2t}$$

The Laplace transform of
$$\left\{ \frac{e^{-at}t^{n-1}}{(n-1)!} \right\} =$$

[Question ID = 23976]

$$\frac{e^{-at}}{(s+a)^n}$$

$$\frac{1}{(s+a)^n}$$

$$\frac{1}{(s-a)^n}$$

$$\frac{e^{at}}{(s-a)^n}$$

$$\frac{1}{(s+a)^n}$$

The inverse Laplace transform of
$$\left\{ \frac{1}{(8s-27)^{1/3}} \right\} =$$

[Question ID = 23977]

$$\frac{e^{(3/2)t} t^{-2/3}}{\Gamma\left(\frac{1}{3}\right)}$$

$$\frac{e^{(8/27)t} t^{-3/2}}{2\Gamma\left(\frac{1}{3}\right)}$$

$$\frac{e^{(2/3)t}t^{-3/2}}{2\Gamma(\frac{1}{-})}$$

$$\frac{e^{(27/8)t} t^{-2/3}}{25(1)}$$

$$2\Gamma\left(\frac{1}{3}\right)$$

$$\frac{e^{(27/8)t} t^{-2/3}}{2\Gamma\left(\frac{1}{3}\right)}$$

49)

If
$$f(x) = \begin{cases} 0 & ; -\pi \le x \le 0 \\ \sin x ; & 0 \le x \le \pi \end{cases}$$
, $f(x+2\pi) = f(x)$ and

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
, then $a_0 =$

[Question ID = 23978]

- $\frac{1}{\pi}$
- ຸ 1
- _{3.} 0
 - $\frac{2}{\pi}$

4. π

Correct Answer:-

 $\frac{2}{\pi}$

50)

The inverse Laplace transform of
$$\left\{ \frac{s+3}{s^2+6s+25} \right\} =$$

[Question ID = 23979]

- $e^{-3t}\cos 4t$
- $e^{3t}\sin 4t$

 $e^{3t}\cos 4t$

 $e^{-3t}\cos 3t$

Correct Answer:-

 $e^{-3t}\cos 4t$

Topic:- Physics_set2

The physical quantity having the dimension [ML²T⁻³] is

[Question ID = 34198]

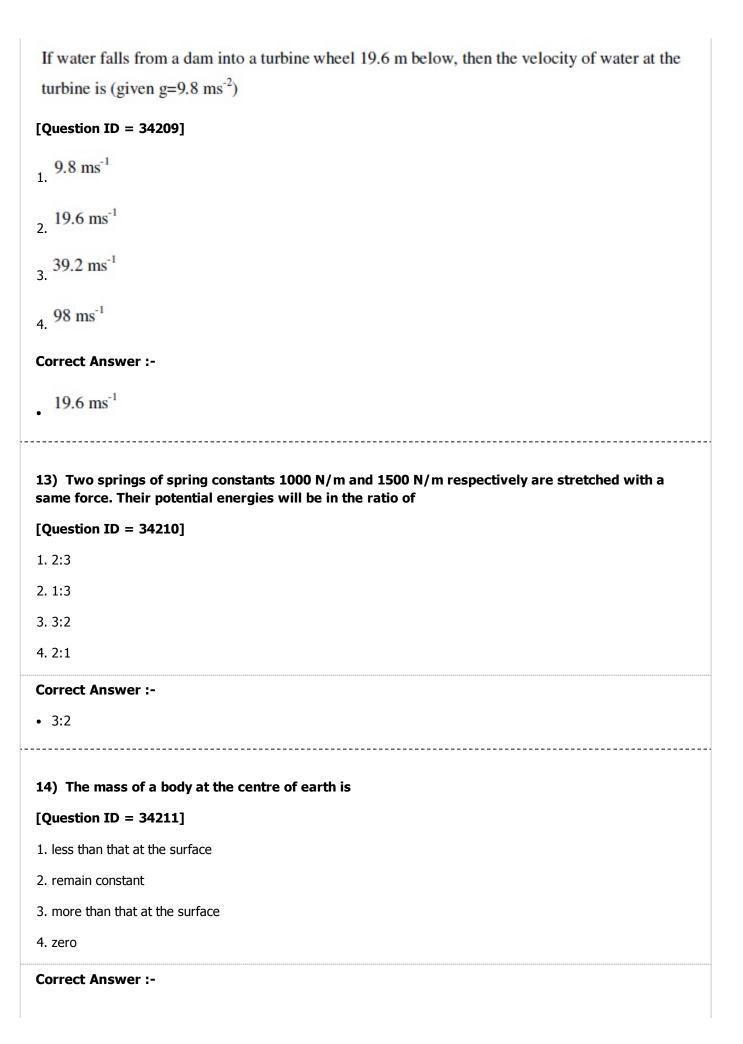
- 1. work
- 2. power
- 3. pressure
- 4. impulse

Correct Answer:-

- power
- 2) Force F is given by F=at +bt² where t is time. The dimensions of a and b are

[Question ID = 34199]

- [MLT⁻³] and [MLT⁻⁴]
- [MLT $^{-1}$] and [MLT 0]
- 3. [MLT⁻³] and [MLT⁴]
- [MLT⁻⁴] and [MLT⁻¹]


Correct Answer:-

[MLT-3] and [MLT-4]

The magnitudes of two vectors are 4 and 5 and their scalar product is 10. Then the angle between the two vectors is [Question ID = 34200]
1. 30°
2. ^{45°}
60° 3.
0° 4.
Correct Answer :-
60°
4) If $\bar{a} + \bar{b} = \bar{c}$ and $\bar{a}^2 + \bar{b}^2 = \bar{c}^2$, then the angle between the vectors \bar{a} and \bar{b} is
[Question ID = 34201]
1. ^{0°}
2. ^{20°}
3. ^{45°}
90° 4.
Correct Answer :-
90°
ā and \bar{b} are two vectors and θ is the angle between them. If $ \bar{a} \times \bar{b} = \sqrt{3}$ ($\bar{a} \cdot \bar{b}$), the value of
θ is
[Question ID = 34202]
1. 30°
2. ^{45°}

3. 60° 90° **Correct Answer:-**30° 6) A body under action of five forces can be in equilibrium [Question ID = 34203] 1. if all forces are equal 2. sum of resolved components along x-axis is zero 3. sum of resolved components along y-axis is zero 4. sum of resolved components along x-axis and y-axis, individually zero **Correct Answer:-** sum of resolved components along x-axis and y-axis, individually zero 7) Two vibrating systems are said to be in resonance, if their [Question ID = 34204] 1. amplitudes are equal 2. temperatures are equal 3. frequencies are equal 4. phase values are equal **Correct Answer:-** frequencies are equal 8) A balloon is ascending at the rate of 9.8 ms⁻¹ at a height of 39.2 m above the ground when a food packet is dropped from the balloon. The velocity with which the food packet reach the ground is [Question ID = 34205] - 9.8 ms⁻¹ - 58.8 ms⁻¹ 3. - 4.9 ms⁻¹ - 29.4 ms⁻¹ **Correct Answer:-**

- 29.4 ms⁻¹ 9) The walls of hall built for music concerts should [Question ID = 34206] 1. amplify sound 2. reflect sound 3. transmit sound 4. absorb sound **Correct Answer:-** absorb sound 10) When a star approaches the earth , the waves are shifted towards [Question ID = 34207] 1. green colour 2. yellow colour 3. blue end 4. red end **Correct Answer:-**• blue end 11) A body of mass m is placed on a rough surface with coefficient of friction μ inclined at θ . If the mass is in equilibrium, then the value of θ is [Question ID = 34208] Tan -1 µ Tan $^{-1}(1/\mu)$ Tan -1 (m/μ) 3. Tan $^{-1}(\mu/m)$ **Correct Answer:-**Tan -1 µ

remain constant
15) The maximum velocity of a particle executing simple harmonic motion with an amplitude 7 mm is 4.4 ms ⁻¹ . The period of oscillation is [Question ID = 34212]
1. 0.01 s 2. 0.1 s 3. 10 s 4. 100 s
Correct Answer :- • 0.01 s
16) In a simple harmonic oscillator, at the mean position [Question ID = 34213]
 both kinetic energy and potential energies are minimum kinetic energy is maximum, potential energy is minimum kinetic energy is minimum, potential energy is maximum both kinetic energy and potential energies are maximum
Correct Answer:- • kinetic energy is maximum, potential energy is minimum
17) The intensity of sound produced by thunder is 0.1Wm ⁻² . The intensity level in decibels is [Question ID = 34214]
1. 110 dB 2. 100 dB 3. 90 dB 4. 140 dB
Correct Answer :- • 110 dB
18) A classroom has dimensions 20 x 15 x 5 m³. The reverberation time is 3.5 s. The average absorption coefficient is
[Question ID = 34215]
1. 0.05 2. 0.09 3. 0.03 4. 0.07

Correct Answer :-	
• 0.07	
19) Which of the following is not a characteristic of musical sound? [Question ID = 34216]	
1. pitch	
2. loudness	
3. frequency4. quality	
T. quanty	
Correct Answer :-	
• frequency	
20) In a simple harmonic motion, the particle is [Question ID = 34217]	
1. always accelerated	
2. alternately accelerated and retarded	
3. always retarded4. neither accelerated nor retarded	
T. Helther accelerated not retained	
Correct Answer :-	
alternately accelerated and retarded	
21)	
100 g of water is heated from 30°C to 50°C. Ignoring the slight expansion of water, the cha	nge i
its internal energy is (specific heat of water is 4200 J kg-1K-1)	
[Question ID = 34218]	
[Question ID = 34218] 1. 4.2 kJ	
1. 4.2 kJ 2. 84 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ	
1. 4.2 kJ 2. 84 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ 4. 8.4 kJ Correct Answer:- • 8.4 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ 4. 8.4 kJ Correct Answer:-	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ 4. 8.4 kJ Correct Answer:- • 8.4 kJ	
1. 4.2 kJ 2. 84 kJ 3. 2.1 kJ 4. 8.4 kJ Correct Answer: 8.4 kJ 22) Which of the following is correct [Question ID = 34219]	

4. $H_1T_1 + H_2T_2=0$

$(H_1/T_1) = (H_2/T_2)$
23) An ideal gas in a cylinder is compressed adiabatically to one-third its original volume. During the process 50J of work is done on the gas by the compressing agent. The change in the internal energy of the gas in the process is [Question ID = 34220]
1. 50 J 2. 50/3 J 3. 150 J 4. 45 J
Correct Answer :- • 50 J
24) The maximum kinetic energy of photoelectrons ejected from a potassium surface by ultraviolet light of wavelength 200 nm is (photoelectric threshold wavelength for potassium is 440 nm) [Question ID = 34221]
1. 2.82 eV 2. 4.40 eV 3. 6.20 eV 4. 3.38 eV
Correct Answer :- • 3.38 eV
For a light wave to undergo total internal reflection ('i _c ' is critical angle, 'i' is incident angle) [Question ID = 34222]
light moves from rarer to denser medium and $i>i_c$
light moves from denser to rarer medium and $i > i_c$
light moves from rarer to denser medium and $i < i_c$
light moves from denser to rarer medium and i $<$ i $_c$
Correct Answer :-
light moves from denser to rarer medium and $i > i_c$
Topic:- Chemistry_Set2

1) For an f-orbital, the val	ues of 'm' are [Question ID = 23999]
11, 0, +1	
23, -2, -1, 0, +1, +2, +3 3. 0, +1, +2, +3	
42, -1, 0, +1, +2	
Correct Answer :-	
• -3, -2, -1, 0, +1, +2, +3	
2) Among LiCl, BeCl ₂ , BCl ₃	and CCl ₄ , the covalent character follows the order:
[Question ID = 24000]	
1. LiCl>BeCl ₂ >BCl ₃ >CCl ₄	
2. LiCl <becl<sub>2<bcl<sub>3<ccl<sub>4</ccl<sub></bcl<sub></becl<sub>	
3. LiCl>BeCl2 <bcl3>CCl4</bcl3>	
4. LiCl <becl2<bcl3>CCl4</becl2<bcl3>	
Correct Answer :-	
 LiCl<becl2<bcl3<ccl4< li=""> </becl2<bcl3<ccl4<>	
3) Lowest oxidation state	in its compound is exhibited by
3) Lowest oxidation state [Question ID = 24001]	
3) Lowest oxidation state [Question ID = 24001] 1. N	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O	
3) Lowest oxidation state [Question ID = 24001] 1. N	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer :-	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:-	
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:-	in its compound is exhibited by
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:- • F	in its compound is exhibited by
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:- • F 4) Which of the following [Question ID = 24002]	in its compound is exhibited by
3) Lowest oxidation state [Question ID = 24001] 1. N 2. O 3. C 4. F Correct Answer:- • F 4) Which of the following in the control of t	in its compound is exhibited by

	Correct Answer :-
	NH4Cl, CuSO4 and K3[Fe(CN)6]
	5) Molarity of 4% (W/V) solution of NaOH is [Question ID = 24003]
	1. 0.1
	2. 0.5 3. 0.001
	4. 1
	Correct Answer :- • 1
	6) The weight of $H_2C_2O_4$. $2H_2O$ required to prepare 500mL of 0.2 N solution is
	[Question ID = 24004]
	1. 1.26 g
	2. 6.3g 3. 1.575g
	4. 3.15g
	Correct Answer :-
	• 6.3g
	7) The conjugate base of hydrogen molecule is [Question ID = 24005]
	1. Electron
	Hydride ion Proton
	4. Hydroxide ion
	Correct Answer :-
	Hydride ion
-	
	p^H of a solution is 1. It is diluted by 1X 10^3 times. The p^H of the resulting solution will be
	[Question ID = 24006]
	1. 1
	2. 3
	3. 4 4. 5
	Correct Answer :- • 4
	• 4

9) Which of the following is a basic flux
[Question ID = 24007]
$Na_2B_4O_7$
2. CaO
3. SiO ₂
4. P ₂ O ₅
Correct Answer :-
• CaO
10) Roasting of a metal oxide is carried out in which of the following furnaces
[Question ID = 24008]
1. Blast furnace
2. Reverberatory furnace
3. Both reverbaratory furnace and blast furnace
4. Muffle furnace
Correct Answer :-
Reverberatory furnace
11) Three faradays of electricity was passed through an aqueous solution of Ferrous chloride. The weight of iron metal (at $Wt = 56$) deposited at the cathode in grams is [Question ID = 24009]
1. 56
2. 84 3. 112
4. 168
Correct Answer :-
• 84
12) Which one of the following could not be liberated from a suitable electrolyte by the passage of 0.25 Faraday of electricity through the electrolyte
[Question ID = 24010]
1. 0.25 mole of Ag
2. 16 gms of Cu

- 3. 2gms of O₂ (g)
- 4. 2.8 lit of H₂ at STP

• 16 gms of Cu

13) Given standard electrode potentials

Fe³⁺ + 3e⁻ ----> Fe
$$E^0$$
 = -0.036 V

Fe²⁺ + 2e⁻ ----> Fe
$$E^0 = -0.440 \text{ V}$$

The standard electrode potential E^0 for Fe³⁺ + e⁻ ----> Fe²⁺ is

[Question ID = 24011]

- 1. 0.476 V
- 2. -0.404 V
- 3. 0.40 V
- 4. 0.772 V

Correct Answer:-

- 0.772 V
- 14) Water acts as an excellent solvent, due to which property among the following:

[Question ID = 24012]

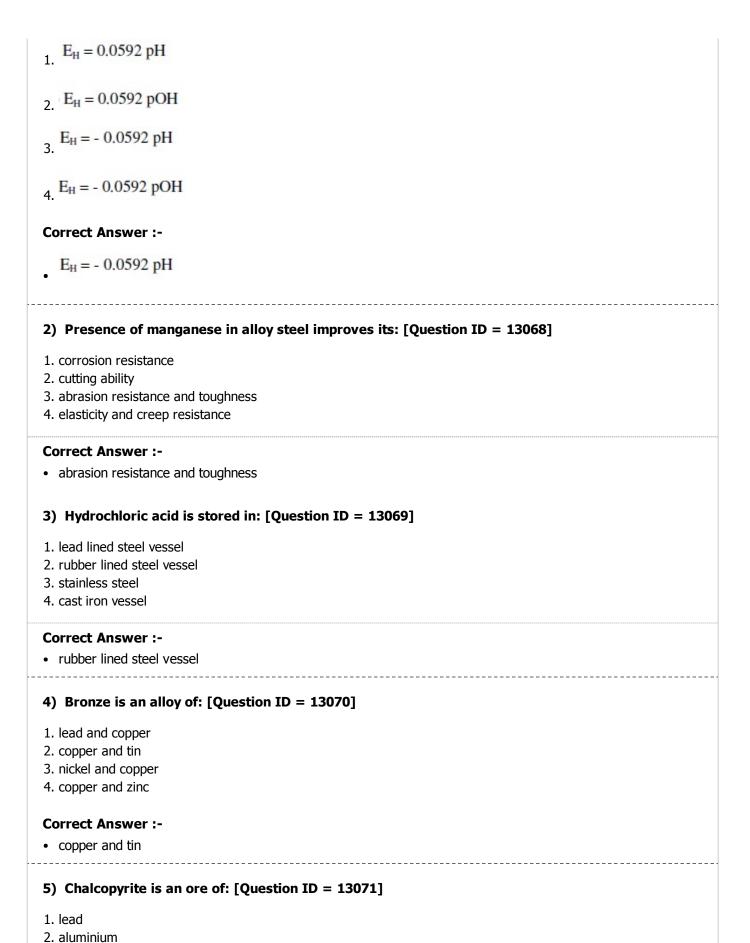
- 1. High viscosity
- 2. High Entholpy of formation
- 3. High dielectric constant
- 4. High density

Correct Answer:

- High dielectric constant
- 15) A sample of water has $Mg(HCO_3)_2 = 73 \text{ mg/L}$, $Ca(HCO_3)_2 = 162 \text{ mg/L}$, $MgCl_2 = 95 \text{ mg/L}$ and $CaSO_4 = 136 \text{ mg/L}$. Temporary hardness in ppm is

[Question ID =
$$24013$$
]

1. 150


2. 350
3. 500
4. 200
Correct Answer :-
• 150
16) The process which removes all ionic, colloidal and high molecular weight organic matter in water is [Question ID = 24014]
1. Ion exchange process
zeolite process Reverse osmosis
4. Lime soda process
Correct Answer :-
Reverse osmosis
17) The monomer used in PVC preparation is [Question ID = 24015]
1. Ethene
2. Chloroethene
Dichloroethene Tetrachloroethene
ii reademorocarene
Correct Answer :-
Chloroethene
40). The about of the continuous form and the Valencian in the continuous form of the conti
18) The chemical used for accelerating Vulcanization is
[Question ID = 24016]
1. ZnO
2. SiO ₂
3. Sulphur
4. Zinc sterate
Correct Answer :-
• Sulphur
19) Which one of the following type of forces are present in Nylon-6,6 [Question ID = 24017]
Electrostatic forces of attraction Hydrogen bonding

3. Three dimensional network of bonds

4. Metallic bonding

	Hydrogen bonding
	20) Which one of the following is a primary pollutant
	[Question ID = 24018]
	1. CO
	2. PAN
	3. Aldehyde
	4. H ₂ SO ₄
	Correct Answer :-
	• co
	21) Ozone layer of upper atmosphere is being destroyed by
	[Question ID = 24019]
	[Question 15 - 24015]
	Photochemical oxidants like O ₂ and CO ₂
	1.
	2. Chloro fluorocarbon
	3. Smog
	SO_2
	4.
	Correct Answer :-
	Chloro fluorocarbon
_	22) Eutrophication causes reduction in [Question ID = 24020]
	1. Dissolved salts
	2. Dissolved hydrogen
	3. Dissolved oxygen4. Dissolved solids
	Correct Answer:-
	Dissolved oxygen
	23) Which one of the chemical substance is maximum in natural gas [Question ID = 24021]

CH ₄ 1.
C_2H_6
3. H ₂
CO+CO ₂ 4.
Correct Answer :-
CH ₄
24) Which one of the following metals could provide cathodic protection to iron [Question ID = 24022]
 Cu and Ni Zn and Cu Al and Zn Al, Zn and Ni
Correct Answer :-
Al and Zn
Al and Zn 25) Rusting of iron is catalysed by which of the following
25) Rusting of iron is catalysed by which of the following
25) Rusting of iron is catalysed by which of the following [Question ID = 24023]
25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe
 25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn
25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn 3. O_2 H ⁺
25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn 3. O_2 H^+ 4.
25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn 3. O2 H ⁺ 4. Correct Answer :-

3. copper4. zinc

Correct Answer :-
• copper
6) Copper, iron, cobalt, nickel are examples of metals that form oxide films of a type on their surfaces at room temperature: [Question ID = 13072]
1. linear
2. parabolic3. logarithmic
4. cubic
Correct Answer :-
parabolic
7) The weight percent of toluene in an equimolar solution of benzene-toluene is: [Question ID = 13073]
1. 50%
2. 46% 3. 54%
4. 75%
Correct Answer :-
• 54%
8) The point representing composition where extract and raffinate phases become mutually soluble is called: [Question ID = 13074]
1. boiling point
2. plait point
3. critical point4. tripple point
Correct Answer :-
plait point
9) A producer gas has the following composition by volume:
CO: 22%; CO ₂ : 5.5%; O ₂ : 0.5%; N ₂ : 72%
If the combustion is 96% complete, the moles of CO in products are:
[Question ID = 13075]
1. 21.12
2. 10.56
3. 0.88 4. 0.44
Correct Answer :-

• 0.88
10) have lowest hydrogen content. [Question ID = 13076]
1. paraffins
2. naphthenes
3. olefins 4. aromatics
Correct Answer :-
• aromatics
11) Consider the four types of coals, namely, anthracite, semi-anthracite, semi-bituminous, bituminous. Write them in the increasing order of fuel ratio: [Question ID = 13077]
1. anthracite, semi-anthracite, semi-bituminous, bituminous
 semi-anthracite, anthracite, semi-bituminous, bituminous bituminous, semi-bituminous, semi-anthracite, anthracite
4. semi-bituminous, semi-antinacite, anthracite
Correct Answer :-
bituminous, semi-bituminous, semi-anthracite, anthracite
12) Consider the four gases: Ethylene, propylene, butylene, amylene. Write them in the increasing order of total heating value. [Question ID = 13078]
1. ethylene, propylene, butylene, amylene
 amylene, butylene, propylene, ethylene butylene, propylene, ethylene, amylene
4. amylene, ethylene, propylene, butylene
Correct Answer :-
ethylene, propylene, butylene, amylene
13) Flue gas analysis is done using: [Question ID = 13079]
1. boiling point apparatus
2. othmer still
orsat apparatus distillation unit
Correct Answer :-
orsat apparatus
14) The mole fraction of N ₂ in a mixture of N ₂ and O ₂ having an average molecular weight
of 30.6 is:
[Question ID = 13080]
1. 0.3
2. 0.35

3. 0.4 4. 0.45
Correct Answer :-
• 0.35
15)
The partial pressure of ethanol in a hydrogen - ethanol mixture at 50 °C and 1 atm is 100 mm Hg.
The vapor pressure of ethanol at 50 °C is 235 m Hg. The relative saturation of ethanol is:
[Question ID = 13081]
1. 38.65 2. 42.55 3. 49.25 4. 51.45
Correct Answer :- • 42.55
16) The density of a liquid is 1200 kg/m ³ . Its value in g/litre is:
[Question ID = 13082]
1. 1200
2. 1203. 1.2
4. 12000
Correct Answer :- • 1200
17) Which of the following is a detergent? [Question ID = 13083]
 fatty alcohol alkyl benzene sulphonate fatty acids
4. methylene chloride
Correct Answer :-
alkyl benzene sulphonate
18) The main product of high temperature carbonization is: [Question ID = 13084]
coke ammonia
3. tar
4. phenol
Correct Answer :-

• coke
10) Delv vind chleride in [Overtien ID = 1200F]
19) Poly vinyl chloride is: [Question ID = 13085]
1. thermosetting
thermoplastic a fibrous material
4. chemically active
Correct Answer :-
• thermoplastic
20) Nylon 6-6 is manufactured from: [Question ID = 13086]
1. hexamethylene diamine and adipic acid
2. hexamethylene diamine and maleic anhydride
3. caprolactum
4. dimethyl terephthalate and ethylene glycol
Correct Answer :-
hexamethylene diamine and adipic acid
21) Salt is added in the kettle during soap manufacture to separate: [Question ID = 13087]
1. soap from lye
2. glycerine from lye
3. the metallic soap
4. the unsaponified fat from soap
Correct Answer :-
soap from lye
22) The most economical pulp for production of news print would be: [Question ID = 13088]
1. groundwood pulp
2. sulphate pulp
3. sulphite pulp
4. semi-chemical pulp
Correct Answer :-
groundwood pulp
23) Teflon is: [Question ID = 13089]
1 phenol formaldehyde

- 1. phenol formaldehyde
- 2. an inorganic polymer
- 3. poly tetraflouroethylene (PTFE)
- 4. a monomer

• poly tetraflouroethylene (PTFE)

24) Oil is : [Question ID = 13090] 1. a mixture of esters 2. a mixture of glycerides of fatty acids 3. solid at normal temperature 4. esters of alcohols other than glycerin **Correct Answer:-**• a mixture of glycerides of fatty acids 25) Widely used method for conditioning of boiler feed water is: [Question ID = 13091] 1. cold lime soda process 2. coagulation 3. hot lime soda process 4. sequestration **Correct Answer:-** hot lime soda process 26) Carborundum consists mainly of: [Question ID = 13092] 1. bauxite 2. silicon carbide 3. boron carbide 4. calcium carbide **Correct Answer:-**· silicon carbide 27) Which of the following is an yellow pigment? [Question ID = 13093] 1. titanium dioxide 2. ferrous sulphate 3. lead chromates 4. zinc sulphides **Correct Answer:-**· lead chromates 28) Sulphuric acid is used mainly in: [Question ID = 13094] 1. fertiliser industry 2. steel industry 3. paper making 4. paint industry **Correct Answer:-** fertiliser industry 29) In the production of soda ash by Solvay process, the by-product formed is:

[Question ID = 13095]
CaCl ₂
2. NH ₄ Cl
3. NH ₃
4. NaOH
Correct Answer :-
· CaCl ₂
30) Triple superphosphate is made by reacting phosphate rock with: [Question ID = 13096]
phosphoric acid nitric acid
3. sulphuric acid
4. hydrochloric acid
Correct Answer :- phosphoric acid
31) The most adverse factor challenging the mercury electrolytic cell process for the manufacture of caustic soda is: [Question ID = 13097]
1. high cost of mercury
 high cost of mercury high specific gravity of mercury non-availability of mercury of high purity
2. high specific gravity of mercury
 high specific gravity of mercury non-availability of mercury of high purity pollution of water stream by mercury Correct Answer :-
2. high specific gravity of mercury3. non-availability of mercury of high purity4. pollution of water stream by mercury
 high specific gravity of mercury non-availability of mercury of high purity pollution of water stream by mercury Correct Answer :-
 2. high specific gravity of mercury 3. non-availability of mercury of high purity 4. pollution of water stream by mercury Correct Answer:- pollution of water stream by mercury 32) Which of the following contains least amount of nitrogen? [Question ID = 13098] 1. coke oven gas
 2. high specific gravity of mercury 3. non-availability of mercury of high purity 4. pollution of water stream by mercury Correct Answer:- pollution of water stream by mercury 32) Which of the following contains least amount of nitrogen? [Question ID = 13098] 1. coke oven gas 2. blast furnace gas
 2. high specific gravity of mercury 3. non-availability of mercury of high purity 4. pollution of water stream by mercury Correct Answer:- pollution of water stream by mercury 32) Which of the following contains least amount of nitrogen? [Question ID = 13098] 1. coke oven gas
 2. high specific gravity of mercury 3. non-availability of mercury of high purity 4. pollution of water stream by mercury Correct Answer:- pollution of water stream by mercury 32) Which of the following contains least amount of nitrogen? [Question ID = 13098] 1. coke oven gas 2. blast furnace gas 3. producer gas 4. water gas Correct Answer:-
 2. high specific gravity of mercury 3. non-availability of mercury of high purity 4. pollution of water stream by mercury Correct Answer:- pollution of water stream by mercury 32) Which of the following contains least amount of nitrogen? [Question ID = 13098] 1. coke oven gas 2. blast furnace gas 3. producer gas 4. water gas
 2. high specific gravity of mercury 3. non-availability of mercury of high purity 4. pollution of water stream by mercury Correct Answer:- pollution of water stream by mercury 32) Which of the following contains least amount of nitrogen? [Question ID = 13098] 1. coke oven gas 2. blast furnace gas 3. producer gas 4. water gas Correct Answer:-
 2. high specific gravity of mercury 3. non-availability of mercury of high purity 4. pollution of water stream by mercury Correct Answer: pollution of water stream by mercury 32) Which of the following contains least amount of nitrogen? [Question ID = 13098] 1. coke oven gas blast furnace gas producer gas water gas Correct Answer: coke oven gas 33) A liquid which does not flow at all, till a threshold shear stress is attained is: [Question ID =

- 3. dilatant
- 4. rheopectic

· bingham plastic

34) For a pump, the relation between inlet pressure, vapor pressure and NPSH is: [Question ID = 13100]

- 1. inlet pressure = vapor pressure + NPSH
- 2. inlet pressure = vapor pressure NPSH
- 3. inlet pressure = vaor pressure X NPSH
- 4. inlet pressure = vapor pressure/NPSH

Correct Answer:-

- inlet pressure = vapor pressure + NPSH
- 35) A jet ejector is a: [Question ID = 13101]
- 1. compressor
- 2. blower
- 3. vacuum pump
- 4. positive displacement pump

Correct Answer:-

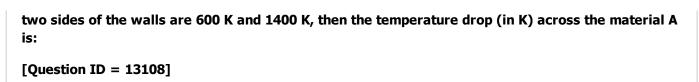
- vacuum pump
- 36) In the Stokes law regime, drag coefficient, C_D is given by:

[Question ID = 13102]

$$C_D = 16/Re_p$$

$$C_D = 24/Re_p$$

$$C_D = 18.5/Re_p$$


 $C_D = 0.079/Re_p^{0.25}$

Correct Answer:-

$$C_D = 24/Re_p$$

- 37) Check valves are used: [Question ID = 13103]
- 1. at high pressure
- 2. in bends

1. decrease in density 2. increase in density 3. decrease in viscosity 4. increase in viscosity Correct Answer: • decrease in density
 decrease in density increase in density decrease in viscosity increase in viscosity
 decrease in density increase in density decrease in viscosity
decrease in density increase in density
1. decrease in density
13107]
41) Thermal conductivity of a liquid decreases with increase in temperature due to: [Question ID =
kinematic viscosity
Correct Answer :-
4. Weber number
Froude number In a second of the se
1. pressure coefficient
40) Which of the following is not a dimensionless parameter? [Question ID = 13106]
• increase
Correct Answer :-
4. be quadrupled
decrease remain same
1. increase
39) Assuming the flow to be laminar, if the diameter of the pipe is halved then the pressure drop will: [Question ID = 13105]
diaphragm
Correct Answer :-
4. pneumatic
3. centrifugal
reciprocating diaphragm
38) For pumping slurry, one can use a pump of the type: [Question ID = 13104]
for unidirectional flow
Correct Answer :-
4. for unidirectional flow

- 1.130
- 2.140
- 3, 150
- 4. 160

160

43) Grashof number is the ratio of: [Question ID = 13109]

- 1. buoyancy to viscous force
- 2. buoyancy to inertia force
- 3. buoyancy to gravity force
- 4. buoyancy to surface tension force

Correct Answer:-

buoyancy to viscous force

44) Peclet number in heat transfer is a product of: [Question ID = 13110]

- 1. Reynolds number and Prandtl number
- 2. Nusselt number and Prandtl number
- 3. Stanton number and Prandtl number
- 4. Grashof number and Prandtl number

Correct Answer:-

• Reynolds number and Prandtl number

45) Unsteady state heat conduction occurs when: [Question ID = 13111]

- 1. temperature distribution is independent of time
- 2. temperature distribution varies with time
- 3. heat flows in one direction only
- 4. three dimensional heat flow occurs

Correct Answer:-

• temperature distribution varies with time

46) Pick the correct statement: [Question ID = 13112]

- 1. Rate = driving force X resistance
- 2. Driving force = rate X resistance
- 3. Resistance = driving force X rate
- 4. Rate = resistance / driving force

Correct	۸m		
Correct	Δn	SWE	 -

• Driving force = rate X resistance

47) Maximum heat transfer rate is obtained in: [Question ID = 13113]

- 1. laminar flow
- 2. turbulent flow
- 3. creeping flow
- 4. transition region

Correct Answer:-

· turbulent flow

48) The heat transfer coefficient in film type condensation is: [Question ID = 13114]

- 1. higher than that for dropwise condensation
- 2. lower than that for dropwise condensation
- 3. same as that for dropwise condensation
- 4. half that of dropwise condensation

Correct Answer:-

lower than that for dropwise condensation

49) The energy radiated from a surface, Q at absolute temperature, T is related as: [Question ID = 13115]

$$Q \propto T^2$$

1.

$$Q \propto T^4$$

2

$$Q \propto T^3$$

3.

$$Q \propto T^{1.5}$$

Correct Answer:-

$$Q \propto T^4$$

•

50) In a feed forward multiple effect evaporator, the pressure is: [Question ID = 13116]

- 1. highest in last effect
- 2. lowest in last effect
- 3. same in all effects
- 4. dependent on the number of effects

· lowest in last effect

51) The critical speed of a ball mill depends on: [Question ID = 13117]

- 1. the density of the feed material
- 2. the size of the feed
- 3. the diameter of the ball
- 4. the length of the ball

Correct Answer:-

the diameter of the ball

52) The overall efficiency of a cyclone is primarily a function of: [Question ID = 13118]

- 1. average particle size of the feed
- 2. particle density of feed
- 3. radial velocity of the fluid
- 4. particle size distribution of the feed

Correct Answer:-

· particle size distribution of the feed

53) Dust laden air can be purified using: [Question ID = 13119]

- 1. cyclone separator
- 2. bag filter
- gravity settler
- 4. tubular centrifuge

Correct Answer:-

cyclone separator

54) Ultrafine grinders operate by: [Question ID = 13120]

- 1. slow compression
- 2. impact
- 3. attrition
- 4. cutting action

Correct Answer:-

attrition

55) Most efficient equipment for removal of sub-micron dust particles from blast furnace gas is: [Question ID = 13121]

- 1. venturi atomiser
- 2. gravity settling chamber
- 3. electro-static precipitator
- 4. cyclone separator

Correct Answer:-

electro-static precipitator
56) Traces of solids are removed from a liquid in a: [Question ID = 13122]
1. classifier
clarifier sparkler filter
4. rotary vacuum filter
Correct Answer :-
• clarifier
57) For preliminary breaking of hard rock, we use: [Question ID = 13123]
1. gyratory crusher
ball mill tube mill
4. squirrel cage disintegrator
Correct Answer :-
gyratory crusher
58) For the removal of large amount of solids from liquid, the recommended device is: [Question ID = 13124]
1. cross flow filter
cake filter clarifying filter
4. screens
Correct Answer :-
• cake filter
59) Roasting of ores is a: [Question ID = 13125]
1. homogeneous catalytic reaction
homogeneous non-catalytic reaction heterogeneous catalytic reaction
4. heterogeneous non-catalytic reaction
Correct Answer :-
heterogeneous non-catalytic reaction
60) According to half life method, a plot of $log(t_{1/2})$ vs $log C_{A0}$ gives a straight line of slope:
[Question ID = 13126]
1. (n-1)
2. (1-n) 3. n
4. 1/n

Correct Answer :- • (1-n)
61) As the number of mixed flow reactors in series tends to infinity, the behaviour of the system tends to: [Question ID = 13127]
1. plug flow 2. mixed flow 3. discovered taken flow
dispersed plug flow segregated flow
Correct Answer :- • plug flow
62) For a steady state mixed flow reactor, the material balance is: [Question ID = 13128]
1. input = output + disappearance + accumulation
2. 0 = output + disappearance + accumulation3. input = disappearance + accumulation
4. input = output + disappearance
Correct Answer :-
input = output + disappearance
63) For a gas obeying the equation, $Z=1+(BP/RT)$, the residual volume is given by: [Question ID = 13129]
1. B
2. B/RT 3. RT/B
4. BRT
Correct Answer :-
• B
64) In refrigerators, expansion through throttle valve occurs at: [Question ID = 13130]
1. constant entropy
2. constant enthalpy
3. constant temperature4. constant pressure
Correct Answer :-
constant enthalpy
65) Trichlorotriflouroethane is represented as: [Question ID = 13131]
1. R-114
2. R-113 3. R-112
3. R-112 4. R-111

Correct Answer :-
• R-113
66) In the two phase region of liquid and vapour, the H-S diagram is: [Question ID = 13132]
1. linear
2. nonlinear
3. vertical
4. horizontal
Correct Answer :-
• linear
67) Consider the quaternary system of components L, M, N and P in the decreasing order of their volatilities. In differential distillation of the mixture, the second cut contains mainly component: [Question ID = 13133]
1. L
2. M 3. N
4. P
Correct Answer :-
• M
68) For a binary non-ideal solution of components 1 and 2 with activity coefficients, γ ₁ and
γ_2 , relative volatility is given by:
[Question ID = 13134]
$\frac{\gamma_2 P_2^{Sat}}{\gamma_1 P_1^{Sat}}$
1.
y pSat
$\frac{\gamma_1 P_1^{Sat}}{\gamma_2 P_2^{Sat}}$
$\gamma_2 P_2^{\text{ac}}$
$\frac{\gamma_2 P_1^{Sat}}{\gamma_1 P_2^{Sat}}$
3.
Cat
$\gamma_1 P_2^{\text{Sat}}$
$\frac{\gamma_1 P_2^{Sat}}{\gamma_2 P_1^{Sat}}$

$\frac{\gamma_1 P_1^{Sat}}{\gamma_2 P_2^{Sat}}$
69) In a distillation operation with a feed flow rate of 200 moles/h and with q-value of 1.08 and when the liquid flow rate in the enriching section being 75 mole/h, the liquid flow rate in the stripping section is: [Question ID = 13135]
1. 291 moles/h 2. 141 moles/h 3. 183 moles/h 4. 33 moles/h
Correct Answer :- • 291 moles/h
70) A wet solid has a moisture content of 70%. The moisture content on dry basis is: [Question ID = 13136]
1. 0.21 2. 1.19 3. 0.412 4. 2.33
Correct Answer :- • 2.33
71) Potato slurry is dried in a to give potato flakes: [Question ID = 13137]
 tray dryer fluidized bed dryer spray dryer drum dryer
Correct Answer :- • drum dryer
72) Tannin is removed from tree barks by with water: [Question ID = 13138]
 absorption extraction leaching distillation
Correct Answer :- • leaching
73) In gas absorption, if x is the mole fraction of the solute, the non-volatile solvent rate, L _s is given by:

[Question ID = 13139]
1. L(1-x)
2. L/(1-x)
3. L(1+x)
4. L/(1+x)
Correct Answer :-
• L(1-x)
74) In triangular coordinate system representing liquid-liquid extraction data, any point inside the
triangle represents a: [Question ID = 13140]
1. binary system
2. ternary system
3. pure component
4. quaternary system
Correct Answer :-
ternary system
75) Lewis number is related to Prandtl number (Pr) and Schmidt number (Sc) as: [Question ID =
13141]
1. Sc X Pr
2. Sc / Pr
3. Pr / Sc
4. 1/ (Pr X Sc)
Correct Answer :-
• Sc / Pr
76) The diffusivity, D of a binary gas mixture is related to temperature, T as: [Question ID = 13142]
70) The unitusivity, D of a biliary gas mixture is related to temperature, 1 as. [Question ID = 13142]
$D \propto T$
1.
0.5
$D \propto T^{0.5}$
2.
D - 71.5
$D \propto T^{1.5}$
$D \propto T^2$
4.
Correct Answer :-

 $D \propto T^{1.5}$

77) Steam distillation is used to : [Question ID = 13143]

- 1. reduce the number of plates
- 2. avoid thermal decomposition of a component
- 3. increase the efficiency of separation
- 4. increase the total pressure of distillation

Correct Answer:-

• avoid thermal decomposition of a component

78) Among the following, for a given set of conditions, the pressure drop is least in: [Question ID = 13144]

- 1. wetted wall tower
- 2. bubble cap tower
- 3. perforated tray tower
- 4. packed tower

Correct Answer:-

· wetted wall tower

79) As damping coefficient increases, for ξ < 1, the response of a second order system becomes:

[Question ID = 13145]

- 1. more and more oscillatory
- 2. more and more less oscillatory
- 3. sustained oscillatory
- 4. non-oscillatory

Correct Answer:-

more and more less oscillatory

80) Reset rate is: [Question ID = 13146]

- 1. variation of integral time
- 2. variation of proportional gain
- 3. reciprocal of proportional gain
- 4. reciprocal of integral time

Correct Answer:-

reciprocal of integral time

81) The controlled variable is returned fast to the original value without oscillations in a: [Question ID = 13147]

- 1. proportional controller
- 2. integral controller
- 3. PI controller
- 4. PID controller

PID controller

82) For a system with transportation lag, the response to a forcing function, X = A sinωt is given by:

[Question ID = 13148]

$$Y = A \sin \omega t$$

1.

$$Y = A \sin \omega (t + \tau)$$

2.

$$Y = A \sin \omega (t-\tau)$$

3.

$$Y = A \sin \omega \tau$$

4.

Correct Answer:-

$$Y = A \sin \omega (t-\tau)$$

•

83) For accurate measurement of temperature of a molten metal at 1500 °C, the measuring device used is:

[Question ID = 13149]

- 1. resistance thermometer
- 2. thermocouple
- 3. bimetallic thermometer
- 4. optical pyrometer

Correct Answer:-

· optical pyrometer

84) Psychrometer determines: [Question ID = 13150]

1. humidity of gases

2. moisture content of solids
3. water of crystallization
4. hygroscopic nature of solids
Correct Answer :-
humidity of gases
85) Out of the following flow measuring instruments, which is area meter? [Question ID = 13151]
1. venturimeter
2. rotameter
3. pitot tube
4. hot wire anemometer
Correct Answer :-
• rotameter
86) The time constant of a first order system for a step input change is the time for system to reach: [Question $ID = 13152$]
1. 63.2% of its final value
2. 99.8% of its final value
3. 85.4% of its final value
4. 18.8% of its final value
Correct Answer :-
63.2% of its final value
87) Destruction of Ozone layer is due to: [Question ID = 13153]
1. chloroflorocarbons
2. methane
3. carbon dioxide
4. sulphur dioxide
Correct Answer :-
• chloroflorocarbons
88) Methaemoglobin anemia or The blue baby disease is due to high concentrations of in drinking water: [Question ID = 13154]
1. sulphate
2. chloride
3. carbonate
4. nitrate
Correct Answer :-
• nitrate
89) Among the following metals that are of particular concern in industrial waste waters, the most aquatic pollutant is: [Question ID = 13155]

10.0

	 3. solvent extraction 4. adsorption by activated carbon Correct Answer:- sedimentation
	4. adsorption by activated carbon
	3. solvent extraction
	2. sedimentation
	1. biological treatment
_	93) is a primary method for wastewater treatment [Question ID = 13159]
	Nessler method
	Correct Answer :-
	4. by using atomic absorption spectrophotometer
	colorimetric method by using flame photometer
	 Nessler method colorimetric method
	92) Standard method to determine ammonia is: [Question ID = 13158]
	is used to remove fine particles from dirty gas
	Correct Answer :-
	4. is used to remove gaseous pollutant by diffusion
	3. is used to remove gaseous pollutant by chemical reaction
	2. is used to remove fine particles from dirty gas
	1. is used for flow measurement
	91) Venturi scrubber: [Question ID = 13157]
	cyclone separator
	Correct Answer :-
	4. cyclone separator
	S. gravity settler
	 electrostatic precipitator mist eliminator
	13156]
-	90) Equipment operating with centrifugal force to separate particulate matter is: [Question ID =
	• mercury
	Correct Answer :-
	4. silver
	2. mercury3. lead
	1. cadmium

- 1. graphite
- 2. cadmium
- 3. Zircalloy
- 4. stainless steel

• graphite

95) Pick the odd term out: [Question ID = 13161]

- 1. solar power
- 2. wind power
- 3. tidal power
- 4. thermal power

Correct Answer:-

thermal power

96) Which of the following is most poisonous gas? [Question ID = 13162]

- 1. coke oven gas
- 2. producer gas
- 3. blast furnace gas
- 4. L. D. converter gas

Correct Answer:-

L. D. converter gas

97) Fossil fuels mean: [Question ID = 13163]

- 1. solid fuels
- 2. liquid fuels
- 3. those which are found in the crust of the earth
- 4. premature fuels with low calorific value

Correct Answer:-

· those which are found in the crust of the earth

98) LPG used for household cooking comprises mainly of: [Question ID = 13164]

- 1. propane and butane
- 2. butane and ethane
- 3. methane and ethane
- 4. methane and carbon monoxide

Correct Answer:-

propane and butane

99) A coal containing high amount of volatile matter will have: [Question ID = 13165]

- 1. low ignition temperature
- 2. very little ash content

- 3. high fusion point of its ash
- 4. low adiabatic flame temperature

• low ignition temperature

100) With increase in carbonization temperature: [Question ID = 13166]

- 1. gas yield increases
- 2. tar yield increases
- 3. hydrogen percentage in coke oven gas decreases
- 4. methane percentage in coke oven gas decreases

Correct Answer:-

• gas yield increases