www.sakshieducation.com

APSPDCL-2012 Solutions:
(1) C
$\mathrm{W}_{1}=\mathrm{VI} \cos (30-\phi)-$ High reading watt meter
$\mathrm{W}_{2}=\mathrm{VI} \cos (30+\phi)$-Low reading watt meter
Given $\cos \phi=0.5 \Rightarrow \phi=\cos ^{-1}(0.5)=60^{\circ}$
$\mathrm{W}_{1}=\mathrm{VI} \cos (30-60)$
$\mathrm{W}_{2}=\mathrm{VI} \cos (30+60)=\mathrm{VI} \cos 90^{\circ}=0 \mathrm{~W}$
So, total power is measured by one wattmeter method.
(2) D

Given reactive power measured by wattmeter is zero. This means that the circuit is purely resistive, so the p.f of circuit will be unity.
(3) C

For maximum power transfer, source resistance is equal to the equivalent resistance of combined load.

Since $\mathrm{R}_{\mathrm{s}}=2 \Omega$ and to get 2Ω in load a parallel resistance of another 4Ω should be connected.
(4) B

Given,
$\mathrm{i}(\mathrm{t})=4 \sin (500 \mathrm{t})$ from which $\omega=500 \quad \Rightarrow \mathrm{f}=250 / \pi, \mathrm{L}=20 \mathrm{mH}$
$\Rightarrow \mathrm{X}_{\mathrm{L}}=2 \pi \times \frac{250}{\pi} \times 20 \times 10^{-3}=10 \Omega$.
$\therefore \mathrm{Z}=10+\mathrm{j} 10=10 \sqrt{2} \angle 45^{\circ}$
$\mathrm{v}(\mathrm{t})=\mathrm{i}(\mathrm{t}) . \mathrm{Z}$
$=4 \sin \left(500 t+0^{\circ}\right) \times 10 \sqrt{2} \angle 45^{\circ}$ $=56.56 \sin \left(500 t+45^{\circ}\right)$.
(5) A

Open circuit impedance parameters of a two port network are given by
$\mathrm{V}_{1}=\mathrm{Z}_{11} \mathrm{I}_{1}+\mathrm{Z}_{12} \mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2}$
Hence V_{1} and V_{2} are expressed in terms of I_{1} and I_{2}.
(6) B

For series connection of two 2-port networks Z-parameters, for parallel Y-parameters and for cascade connection ABCD parameters are convenient to use.
(7) $\quad \mathrm{B}$
$\mathrm{Q}=\mathrm{X}_{\mathrm{L}} / \mathrm{R} \Rightarrow \mathrm{Q} \propto \mathrm{X}_{\mathrm{L}}$
But $\mathrm{X}_{\mathrm{L}} \propto \frac{1}{\cos \phi}, \therefore \mathrm{Q} \propto \frac{1}{\cos \phi}$. Hence on increasing Q factor of a coil, its power factor decreases.
(8) A

The impedance offered by a series RLC circuit at resonance is equal to the resistance of the circuit. So at resonance, by varying R, current can be varied.

Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
(9) B

The equivalent inductance,
$\mathrm{L}_{\mathrm{eq}}=(2+2) / / 4=4 / / 4=2 \mathrm{H}$.
(10) D

A charged capacitor acts as a voltage source.
(11) B

An electric network with eight independent nodes will have eight nodal equations.
(12) D
$Z_{1} / Z_{2}=20 \angle 50^{\circ} / 10 \angle 30^{\circ}=2 \angle 20^{\circ}$.
(13) D

Instrument transformers are particularly used for measuring high voltage and high currents.
(14) B

Swamping resistance is a resistor with zero temperature co-efficient and connected in series with the meter movement in an ammeter circuit.

(15) C

The power in a 3-phase circuit is given by $\mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi$. For measuring $\cos \phi, P, \mathrm{~V}_{\mathrm{L}}$ and I_{L} are required.
(16) C

Schering bridge is used for measuring \diamond capacitance, dielectric loss etc.
(17) C
(18) D

Given, $G(s) H(s)=\frac{K(s+10)}{(s+2)(s+5)}$
The breakaway point lies between -2 and -5 .
(19)

C
$\mathrm{P}=12$ and $\mathrm{Z}=2$
For 12 poles slope $=12 \times-20 \mathrm{~dB}=-240 \mathrm{~dB}$
For 2 zeros slope $=2 \times+20 \mathrm{~dB}=+40 \mathrm{~dB}$
The resultant slope of asymptote $=-240+40=-200 \mathrm{~dB} / \mathrm{dec}$.
(20) A

Gain margin $=\frac{1}{0.2}=5$.
Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.

(21) B

Since, gain margin $\propto \frac{1}{\text { open loop gain }}$.
(22) B
$\mathrm{G}(\mathrm{s})=\frac{4(1+0.15 \mathrm{~s})}{(1+0.05 \mathrm{~s})}$, it is in the time constant form $\frac{1+\tau \mathrm{s}}{1+\tau \alpha \mathrm{s}}$
where $\tau=0.15$ and $\alpha \tau=0.05$
$\alpha=\frac{0.05}{0.15}=\frac{1}{3}$
The maximum phase shift,
$\theta=\sin ^{-1}\left(\frac{1-\alpha}{1+\alpha}\right)=\sin ^{-1}\left(\frac{1-\frac{1}{3}}{1+\frac{1}{3}}\right) \Rightarrow \theta=\sin ^{-1}(1 / 2)=30^{\circ}$.
(23) B

Given,
$\mathrm{T}=100 \mathrm{~ms}, \mathrm{R}_{\mathrm{A}}=100 \mathrm{k} \Omega$. In monostable multivibrator using 555 timer, the value of timing resistor is given by
$\mathrm{R}_{\mathrm{A}}=\frac{\mathrm{T}}{1.1 \mathrm{C}} \Rightarrow \mathrm{T}=1.1 \mathrm{R}_{\mathrm{A}} \mathrm{C}$
$\mathrm{C}=\frac{100 \times 10^{-3}}{1.1 \times 100 \times 10^{3}}=0.9 \times 10^{-6} \mathrm{~F}=0.9 \mu \mathrm{~F}$.
(24) C

For an ideal op amp $\mathrm{R}_{\mathrm{i}}=\infty, \mathrm{R}_{\mathrm{o}}=0$,
$\mathrm{A}=\infty, \mathrm{CMMR}=\infty$.
(25) D

LM stands for national semiconductor.
(26) D

For digital panel meters and multi meters accuracy is more important. So, dual slope ADC is preferred.
(27) C

Slew rate $=\frac{d V_{0}}{d t}$
Maximum change in output voltage $=6 \mathrm{~V}$. Change in time $=0.5 / 2=0.25 \mu \mathrm{~s}$
\therefore Slew rate $=\frac{6}{\frac{0.5}{2}}=24 \mathrm{~V} / \mu \mathrm{s}$.

(28) C

Damper bars are used in salient pole synchronous machines for starting and to reduce hunting. In squirrel cage machines, rotor bars are used. Commutator is used in DC machine for converting AC into DC and vice versa.
(29) C

Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.

In auto transformer there is direct connection between primary and secondary windings.
When there is a fault in the secondary, the total primary voltage will appear across secondary windings. This is one of the serious disadvantage of an auto transformer.
(30) A

Rated secondary current $/ \mathrm{ph}=\frac{\mathrm{P}}{\sqrt{3} \mathrm{~V}}=\frac{230 \times 1000}{\sqrt{3} \times 2300}=33.33 \mathrm{~A}$.
(31) B

For induction motors under normal running conditions slip varies from 1 to 0 . When the machine is running in counter clockwise direction with reverse phase sequence of supply, slip varies from 1 to 2.
(32) C

Injected e.m.f E_{j}, is out of phase with slip e.m.f SE_{2}. So, motor runs below synchronous speed. However, the phase angle β is reduced. So the rotor PF is increased.
(33) C

For cylindrical pole synchronous machines $\delta_{\max }=90^{\circ}$.
For salient pole synchronous machines $\delta_{\max }<90^{\circ}$
(34) A
$P_{\text {max }}=\frac{V^{2}}{X_{s}} ;$ at K_{f} and $K_{V} \frac{K^{2} V^{2}}{2 \pi K f L}=$
$K \frac{V^{2}}{X_{s}} ; P_{\text {max }}$ is K times reduced.
(35) D

During hunting, speed varies between above and below the synchronous speed of RMF. When speed is super synchronous damper bar develops induction generator torque and when speed is sub synchronous, it develops induction motor torque.
(36) D

Bi-directional voltage control is possible with DIAC-TRIAC phase control circuit.
C
Illumination=candle power/(distance) ${ }^{2}$
$\mathrm{d}^{2}=30 / 50=2 \Rightarrow \mathrm{~d}=\sqrt{2}=1.414$.
(38) D

Luminous intensity of a lamp $=$ flux $/ 2 \pi$. Flux $=2 \pi \times 750=1500 \pi$.
(39) A

For electrical cremation, resistance heating is used.
Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
(40) A Least radiant heat is produced by fluorescent lamps.
(41) A

Track friction $\propto \frac{1}{\text { speed }}$.
(42) D
$a=-0.5+j 0.866 ; a^{2}=-0.5-j 0.866$
$1+a-a^{2}=1-0.5+j 0.866+0.5+j 0.866=1+j \sqrt{3}=2 \angle 60^{\circ}$
(43) D

No of strands on a n-layer cable is given by $3 n^{2}-3 n+1$.If $n=3$,
$3 \times 3^{2}-3 \times 3+1=27-9+1=19$.
(44) $\quad \mathrm{A}$

Maximum power transmitted through line $=P_{\max }, 60 \%$ of series capacitor compensation reduces the \% reactance of line to 40%.

$$
\mathrm{P}_{\max 1}=\frac{\mathrm{EV}}{\mathrm{X}_{1}} ; \mathrm{P}_{\max 2}=\frac{\mathrm{EV}}{0.4 \mathrm{X}_{1}}=1 / 0.4 \times \frac{\mathrm{EV}}{\mathrm{X}_{1}}=\mathrm{P}_{\max 1} / 0.4
$$

(45) C
(46) B

Daily load factor $=\frac{1500 \times 12 \mathrm{hrs}+1000 \times 12 \mathrm{hrs}}{1500 \times 24 \mathrm{hrs}}=0.833$.
(47) C

Extra series reactance to be connected $=\frac{1}{5}-\frac{1}{8}=0.075$ p.u.
(48) B

Merz-Price protection scheme is more suitable for generators.
(49) C
$D C$ series motor is a variable speed motor. For low T_{L} its speed is very high and for increased T_{L}, speed is reduced.

Due to sag, between two supports, the conductor takes the shape of catenary. If sag is small compared to span, then the shape of conductor is parabola.
(51) C

Lowest disc is nearest to the conductor. So the potential drop across it is maximum.
(52) B

During humid weather ion concentration in air will increases. This reduces the critical distruptive voltage for corona.

Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
(53) C

Equal area criterion can be applied to single machine connected to infinite bar system.
(54) A

An ideal current source has infinite internal resistance or zero conductance.
An ideal voltage source has zero internal resistance or infinite internal conductance.
(55) D

From figure,
$\mathrm{R}_{1}=\frac{1 \times 2}{1+2+3}=1 / 3 \Omega ;$
$\mathrm{R}_{2}=\frac{1 \times 3}{1+2+3}=\frac{1}{2} \Omega ;$
$\mathrm{R}_{3}=\frac{3 \times 2}{1+2+3}=1 \Omega$.
\therefore The highest value of resistance is 1Ω.
(56) A

Super position theorem is applied by considering only one source at a time.
(57) B

The given circuit has star and mesh connections.
(58) B

At half power frequencies, the current in an RLC series circuit is $1 / \sqrt{2} \times(0.707)$ of its value at resonance.
(59) B

In a series RLC resonant circuit, inductive and capacitive reactances cancel out each other. So, the impedance at resonance will be minimum and the current through circuit will be maximum. In parallel RLC resonant circuit, the impedance will be maximum and hence will be minimum.
(60) C

The two coils are in parallel opposing.
(61) A

Given $\mathrm{V}=220 \mathrm{~V}$ and $\mathrm{f}=100 / 2 \pi \mathrm{~Hz}$,

$$
\begin{aligned}
& \mathrm{R}=100 \Omega, \mathrm{~L}=1 \mathrm{H} \\
& \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=2 \pi \times 100 / 2 \pi \times 1=100 \Omega \\
& \mathrm{Z}=\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{L}}=100+\mathrm{j} 100 \\
& |\mathrm{Z}|=\sqrt{100^{2}+100^{2}}=100 \sqrt{2} \Omega \\
& \mathrm{~V}_{\mathrm{L}}=\mathrm{V} \times \mathrm{X}_{\mathrm{L}} /|\mathrm{Z}|=220 \times 100 / 100 \sqrt{2}=220 / \sqrt{2}
\end{aligned}
$$

(62) D

For an initially relaxed series R-C circuit when DC supply is suddenly applied, the capacitor acts as a short circuit. Under steady state conditions, the capacitor acts like an open circuit.

Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
(63) D
(64) C

$$
\begin{aligned}
\mathrm{V}_{\mathrm{S}} & =\sqrt{\mathrm{V}_{\mathrm{R}}^{2}+\mathrm{V}_{\mathrm{L}}^{2}} \Rightarrow \mathrm{~V}_{\mathrm{R}}=\sqrt{\mathrm{V}_{\mathrm{s}}^{2}-\mathrm{V}_{\mathrm{L}}^{2}} \\
& =\sqrt{10^{2}-8^{2}}=6 \mathrm{~V} .
\end{aligned}
$$

Current through 1Ω resistor $=V_{R} / R=6 / 1=6 \mathrm{~A}$.
(65) A

Conductance is the reciprocal of resistance.
Admittance is the reciprocal of impedance.
Susceptance is the reciprocal of reactance.
(66) D
$\mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi=3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi$
In both the cases ϕ is the angle between phase voltage and phase current.
(67) C
$G(s)=\frac{K}{s(s+1)}$ and
C.L.T.F $=\frac{\frac{\mathrm{K}}{\mathrm{s}(\mathrm{s}+1)}}{1+\frac{\mathrm{K}}{\mathrm{s}(\mathrm{s}+1)}}=\frac{\mathrm{K}}{\mathrm{s}(\mathrm{s}+1)+\mathrm{K}}$

Comparing it with standard second order system
$2 \xi \omega_{\mathrm{n}}=1 \Rightarrow \xi=1 / 2 \sqrt{\mathrm{~K}}$
If $K=\infty$ then $\xi=0$.
(68) D
G_{1} and G_{2} blocks are added and G_{3} and G_{4} blocks are added. Now, the overall transfer function will be $\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right) \times\left(\mathrm{G}_{3}+\mathrm{G}_{4}\right)$.
(69) A

Open loop systems are highly stable.
(70) A

Using R-H criterion,

S^{4}	1	1	5
S^{3}	2 K	5	0
S^{2}	$\frac{2 \mathrm{~K}-5}{2 \mathrm{~K}}$	5	0
S^{1}	$\frac{5\left(\frac{2 \mathrm{~K}-5}{2 \mathrm{~K}}\right)-10 \mathrm{~K}}{2 \mathrm{~K}}$		
S^{0}			
$2 \mathrm{~K}>0 \Rightarrow \mathrm{~K}>0$			

Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
$\frac{2 \mathrm{~K}-5}{2 \mathrm{~K}}>0 \Rightarrow 2 \mathrm{~K}>5 \Rightarrow \mathrm{~K}>5 / 2$
$5\left(\frac{2 \mathrm{~K}-5}{2 \mathrm{~K}}\right)>10 \mathrm{~K} \Rightarrow 10 \mathrm{~K}-25>20 \mathrm{~K}^{2}$
$\Rightarrow-20 \mathrm{~K}^{2}+10 \mathrm{~K}-25>0$
$20 \mathrm{~K}^{2}-10 \mathrm{~K}+25>0 \Rightarrow 4 \mathrm{~K}^{2}-2 \mathrm{~K}+5>0$
(71) A

If the gain of an unstable system is decreased, it becomes stable.
(72) A

Applying KVL to the input loop,
$V_{C C}=I_{B} R_{B}+V_{B E}+R_{E} I_{E}$

$$
=\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}}+\mathrm{R}_{\mathrm{E}}(1+\beta) \mathrm{I}_{\mathrm{B}}
$$

$\therefore 20=\mathrm{I}_{\mathrm{B}} .430 \mathrm{k}+0.7+1 \mathrm{k}(1+100) \mathrm{I}_{\mathrm{B}}$
$20-0.7=I_{B}(430 \mathrm{k}+101 \mathrm{k})$
$\mathrm{I}_{\mathrm{B}}=\frac{19.3}{531 \mathrm{k}}=36.35 \mathrm{~mA}$.
(73) B

Given, $\mathrm{V}_{\mathrm{P}}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{DSS}}=9 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Transconductance, $\mathrm{g}_{\mathrm{m} 0}=\frac{-2 \mathrm{I}_{\text {DSS }}}{\mathrm{V}_{\mathrm{P}}}=\frac{-2 \times 9 \times 10^{-3}}{-3}=6 \mathrm{mS}$.
(74) C

Given, $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{p}-\mathrm{p}}=6 \mathrm{~V}$
Efficiency $n=78.6 \times V_{p-p} / V_{\mathrm{CC}}$
$=78.6 \times 6 / 24=19.6 \%$.
(75) B

Given, $\mathrm{C}=100 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{DC}}=50 \mathrm{~mA}$
(76) D

The free running frequency of a 565 PLL is given by
$\mathrm{f}_{0}=\frac{1.2}{4 \mathrm{R}_{1} \mathrm{C}_{1}}=\frac{1.2}{4 \times 10 \times 10^{3} \times 200 \times 10^{-12}}=150 \mathrm{kHz}$.
(77) A

When a D.C motor is operating under constant power output mode,

$$
\mathrm{T} \alpha \mathrm{I}_{\mathrm{f}}
$$

(78) B

Given $\mathrm{P}=2$, wave connected. So no of parallel paths, $\mathrm{A}=2$
No of conductors/parallel path $=120$
Total no of conductors, $Z=120 \times 2=240$
Speed, N = 1200 rpm
Flux/pole, $\phi=0.02 \mathrm{wb} /$ pole
Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.

www.sakshieducation.com

Induced emf, $\mathrm{E}_{\mathrm{s}}=\frac{\phi \mathrm{NZ}}{60} \times \frac{\mathrm{p}}{\mathrm{A}}=\frac{0.02 \times 240 \times 1200}{60} \times \frac{2}{2}=96 \mathrm{~V}$.
(79) B

For a separately excited generator, when speed is zero, the open circuit voltage is also zero. So 4 and 3 are wrong. If I_{f} is kept constant and speed is varied, the variation in induced e.m.f cannot be linear. Hence 1 is wrong. Up to critical speed, the increase in induced e.m.f is small.
(80) D

Given,
$\mathrm{V}_{1}=220 \mathrm{~V}$ and $\mathrm{V}_{2}=12-0-12$. There is a midpoint tapping on secondary side. Also e.m.f/turn $=1 \mathrm{~V}$. For a transformer, e.m.f/turn is same on both the primary and secondary windings.
For AC to be get $12 \mathrm{~V}, \mathrm{~N}_{1}=\mathrm{emf} /$ turn $\times 12=12 \mathrm{~V}$
For BC to be get $12 \mathrm{~V}, \mathrm{~N}_{2}=\mathrm{emf} /$ turn $\times 12=12 \mathrm{~V}$
\therefore Total turns on secondary $=\mathrm{N}_{1}+\mathrm{N}_{2}=24$ with center tapped.
(81) D

Given that,
$\mathrm{N}_{1}=100, \mathrm{~N}_{2}=100, \phi_{\mathrm{m}}(\mathrm{t})=-0.05\left(\mathrm{t}^{2}-2 \mathrm{t}\right)$
Induced e.m.f of secondary
$=\mathrm{N}_{2} \times \frac{d}{d t} \phi_{m}(t)=200 \times \frac{d}{d t}\left[-0.05\left(\mathrm{t}^{2}-2 \mathrm{t}\right)\right]=200 \times-0.05(2 \mathrm{t}-2)=-20 \times(\mathrm{t}-1)$.
(82) \mathbf{A}

Since N and S poles are at 1 and 1' e.m.fs are induced in them. By using Fleming's right hand rule the direction of currents can be determined.
(83) D

Given, $\mathrm{X}_{\mathrm{S}}=1$ p.u, $\mathrm{V}_{\mathrm{t}}=1$ p.u, $\mathrm{E}=1.5$ p.u, $\delta=0^{0}$ electrical, $\mathrm{I}_{\mathrm{a}}=0+\mathrm{j} 0.5$.
(84) B

Given, $P=16,3$-phase, $S=108$, Phase spread $=60^{\circ} .3,2,2,2$ coils in basic unit of 4 poles.
B
Given that,
$\mathrm{f}=1 \mathrm{KHz}, \mathrm{T}_{\mathrm{ON}}=0.5 \mathrm{~ms}$.
$\mathrm{T}=1 / \mathrm{f}=1 \mathrm{~ms}$.
So, SCR turn-on for 0.5 ms and turn-off time for 0.5 ms . Hence the average voltage across motor terminals will be 100 V . Since $\mathrm{T}_{\mathrm{m}}=$ constant $\propto \mathrm{E}_{\mathrm{b}} \propto \mathrm{V} . \therefore \mathrm{N}=500 \mathrm{rpm}$.
(86) C

The polarities at the motor terminals
Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
are reversed. This is plugging.
(87) C

The output of $-\phi$ inverter bridge for 120° conduction mode is given. Therefore $3^{\text {rd }}$ and triplen harmonics in the output voltage are absent.

(88) B

Given, $\mathrm{P}=16,500 \mathrm{MVA}, 22 \mathrm{KV}$, angular acceleration $=437.8$ electrical degrees.
Angular velocity in mechanical degrees $/ \mathrm{sec}=437.8 /$ pair of poles $=437.8 / 2=218.9 \mathrm{mech} . \mathrm{deg} / \mathrm{sec}$.
So $\omega=2 \pi \mathrm{~N} / 60 \Rightarrow(2 \times 180 \times \mathrm{N}) / 60=218.9 . \mathrm{N}$ in rpm $/ \mathrm{sec}=36.48 \mathrm{rpm} / \mathrm{sec}$.
(89) C

Given, $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{H}_{\mathrm{G}}=6 \mathrm{MJ} / \mathrm{MVA}$,
$\mathrm{H}_{\mathrm{M}}=6 \mathrm{MJ} / \mathrm{MVA}, \mathrm{P}_{\mathrm{g}}=1 \mathrm{p} . \mathrm{u}$,
$\mathrm{P}_{\mathrm{g} \text { fault }}=0.6 \mathrm{p} . \mathrm{u}$
(90) B

Synchronizing power coefficient, $\quad \mathrm{P}_{\mathrm{syn}}=\quad \mathrm{P}_{\text {max }} \cdot \cos \delta$.
(91) A
(92) C

Given 1500 A, 2000 MVA, 33 kV rated OCB
Making current $=2.55 \times \frac{2000 \times 10^{6}}{\sqrt{3} \times 33 \times 10^{3}}=89.2 \mathrm{kA}$.
(93) C
(94) B

Reserve capacity $=$ Plant capacity - Maximum demand.
Plant capacity $=\frac{\text { Average demand }}{\text { Plant capacity factor }}$
Average demand $=$ Load factor \times Maximum demand.

$$
=0.6 \times 30=1.8 \mathrm{MW}
$$

Plant capacity $=\frac{1.8}{0.48}=37.5 \mathrm{MW}$.
Reserve capacity $=37.5-30=7.5 \mathrm{MW}$.
(95) B

$$
\mathrm{Z}_{\text {new }}=\mathrm{Z}_{\text {old }} \times\left(\frac{\mathrm{MVA}_{\text {new }}}{\mathrm{MVA}_{\text {old }}}\right) \times\left(\frac{\mathrm{KV} V_{\text {old }}}{\mathrm{KV} V_{\text {new }}}\right)^{2}=0.1 \times(20 / 10) \times(33 / 22)^{2}=1.8 \text { p.u. }
$$

(96) A

Zero sequence currents will be absent
when there is no involvement of ground.
(97) \mathbf{A}

Given that,
$\mathrm{V}=1.5$ p.u, $\mathrm{X}_{\mathrm{S}}=1$ p.u, $\mathrm{X}_{1}=0.3$ p.u. Maximum steady state power transfer,
Developed by Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
www.sakshieducation.com

$$
\mathrm{P}=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{S}}+\mathrm{X}_{1}}=\frac{1.5}{1.3}=1.154 \text { p.u. }
$$

(98) D
(99) B

Step1: j0.08 is connected between $\mathrm{Z}_{\text {bus }}=[j 0.08]$
Step2: j 0.5 is connected between

$$
Z_{\text {bus }}=\left[\begin{array}{ll}
j 0.08 & j 0.08 \\
j 0.08 & j 0.58
\end{array}\right]
$$

(100) A

Relay current setting $=125 \%$ C.T ratio $=400 / 5=80$ pick up value $=1.25 \times 5=6.25 \mathrm{~A}$.

