APSPDCL-2012 QUESTION PAPER

1. In two wattmeter method of 3-phase power measurements, when the power factor is 0.5
(A) the readings of the two wattmeters are equal and positive
(B) the readings of the two wattmeters are equal and opposite
(C) the total power is measured by only 1 wattmeter
(D) the readings of the 2 wattmeters are not equal and positive
2. The readings of the wattmeter connected to measure the reactive power in a 3-phase circuit is given by zero when the line voltage is 400 Volts and the line current is 15 Amps . Then the power factor of the circuit is:
(A) 0
(B) 0.6
(C) 0.8 unity
3. The resistance which should be connected between terminals P and Q for maximum transfer of power from source to the combined load is

(A) 0Ω
(B) 2Ω
(C) 4Ω
(D) infinity ohms
4. In the given circuit given below the current is $i(t)=4 \sin (500 t)$ Amps. The applied voltage $\mathrm{v}(\mathrm{t})$ in volts is

a. $40 \sin (500 \mathrm{t})$
b. $56.56 \sin \left(500 t+45^{\circ}\right)$
c. $40 \cos (500 t)$
d.
$56.56 \cos \left(500 t+45^{\circ}\right)$
5. In a two port network open circuit impedance parameters express

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
a. $\mathrm{V}_{1}, \mathrm{~V}_{2}$ in terms of $\mathrm{I}_{1}, \mathrm{I}_{2}$
b. $\mathrm{I}_{1}, \mathrm{I}_{2}$ in terms of $\mathrm{V}_{1}, \mathrm{~V}_{2}$
c. $\mathrm{V}_{1}, \mathrm{I}_{1}$ in terms of $\mathrm{V}_{2}, \mathrm{I}_{2}$
d. $\mathrm{V}_{1}, \mathrm{I}_{2}$ in terms of $\mathrm{V}_{2}, \mathrm{I}_{1}$
6. When two 2-port networks are connected in parallel it is convenient to use
a. O.C impedance parameters
b. S.C admittance parameters
c. transmission parameters
d. inverse hybrid parameters
7. On increasing the Q -factor of a coil
a. its power factor increases
b. its power factor decreases
c. its power factor remains unaltered
d. its power may increase or decrease
8. The value of current at resonance in a series RLC circuit is affected by the value of
a. R
b. L
c. R, L and C
d. C
9. The equivalent inductance of the below given circuit at the terminals P Q is

a. 4 H
b. 2 H
c. 6 H
d. 8 H
10. A capacitor C at time $\mathrm{t}=0^{+}$with initial charge Q_{0} acts as
a. S.C
b. O.C
c. current source
d. voltage source
11. An electrical network with 8 independent nodes will have
a. 4 nodal equations
b. 8 nodal equations
c. 7 nodal equations
d. 9 nodal equations
12. Impedance $\mathrm{Z}_{1}=20 \angle 50^{\circ} \Omega$ and $\mathrm{Z}_{2}=10 \angle 30^{\circ}$. Then $\frac{z_{1}}{z_{2}}$ is
a. $2 \angle 80^{\circ} \Omega$
b. $2 \angle 50^{\circ} \Omega$
c. $2 \angle 30^{\circ} \Omega$
d. $2 \angle 20^{\circ} \Omega$
13. Transformers used in conjunction with measuring instruments for measurement of high voltage and high current are called
Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
a. transformer meters
b. power transformer
c. pulse transformers
d. instrument transformer
14. Swamping resistance is used in moving coil instruments to reduce error due to
a. thermal EMF
b. temperature
(C) power taken by instrument
c. galvanometer sensitivity
15. It is required to measure pf of an electrical load. No power factor meter is available. The following combination is used to determine pf
a. a wattmeter
b. a voltmeter and ammeter
c. a voltmeter, ammeter and wattmeter
d. a KWH meter
16. The dielectric loss of a capacitor can be measured by
a. Wein bridge
b. Owen bridge
c. Schering bridge d. Maxwell bridge
17. One of the following is an active transducer
a. Strain guage
b. Selsyn
c. Photo voltaic cells
d. Photo emissive cell
18. The breakaway point of the root from the real axis for a closed loop system with loop gain

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}(\mathrm{~s}+10)}{(\mathrm{s}+2)(\mathrm{s}+5)}
$$

a. between -10 and $-\infty$
b. at $-\infty$
c. between -2 and origin
d. between -2 and -5
19. A system has 12 poles and 2 zeros. Its high frequency asymptote in its magnitude polt will have a slope of
a. $-60 \mathrm{~dB} / \mathrm{dec}$
b. $-120 \mathrm{~dB} / \mathrm{dec}$
c. $-200 \mathrm{~dB} / \mathrm{dec}$
d. $-240 \mathrm{~dB} / \mathrm{dec}$
20. The Nyquist plot of a transfer function is shown in the figure. The gain margin is

a. 5
b. 8
c. 10
d. 15

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
21. If the gain of the open loop system is doubled the gain margin
a. gets $1 / 4$ th
b. gets halved
c. gets doubled
d. is not affected
22. The maximum phase shift that can be obtained by using a lead compensator with transfer function $\mathrm{G}(\mathrm{s})=\frac{4(1+0.15 \mathrm{~s})}{(1+0.05 \mathrm{~s})}$ is equal to
a. 15°
b. 30°
c. 45°
d. 60°
23. In monostable multivibrator using 555 timer, the time delay is 100 msec , timing resistor is $100 \mathrm{k} \Omega$, the value of timing capacitor is
a. 9 mF
b. $0.9 \mu \mathrm{~F}$
c. 9 F
d. $1.8 \mu \mathrm{~F}$
24. The ideal operational amplifier has
a. $\mathrm{R}_{\mathrm{i}}=\infty, \mathrm{R}_{0}=\infty$
b. $\mathrm{R}_{\mathrm{i}}=0, \mathrm{R}_{\mathrm{O}}=\infty$
c. $\mathrm{R}_{\mathrm{i}}=\infty, \mathrm{R}_{\mathrm{O}}=0$
d. $\mathrm{R}_{\mathrm{i}}=0, \mathrm{R}_{\mathrm{o}}=0$
25. In the LM741, LM stands for
a. Motorola
b. RCA
c. Texas instruments
d. National semiconductor
26. ADC preferred for digital panel meters and multimeters
a. Flash ADC
b. Servo ADC
c. Successive approximation ADC
d. Dual-slope ADC
27. The output of an op-amp voltage follower is a triangular wave as shown in fig. for a square wave input of frequency 2 MHz and 8 V peak amplitude. The slew rate of the op amp is

a. $6 \mu \mathrm{~s}$
b. $8 \mathrm{~V} / \mathrm{\mu s}$
c. $14 \mathrm{~V} / \mu \mathrm{s}$
d. $14 \mu \mathrm{~s}$
28. Match the following with parts in list-I with machines in list-II
list-I
list-II
p. damper bars
1.dc machine
q. rotor bars
2.synchronous machine
r. commutator
3.induction machine

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
a. $\mathrm{p}-1$
b. $\mathrm{p}-3 \quad \mathrm{q}-1 \quad \mathrm{r}-2$
c. $\mathrm{p}-2$
$\mathrm{q}-3 \quad \mathrm{r}-1$
d. p-3 \quad q-2 $\quad r-1$
29. The following is the apparent disadvantage of auto transformer as compared to two-winding transformer
a. power rating is greater
b. efficiency is low
c. conductive isolation is not present
d. voltage regulation is low
30. A $230 / 2300 \mathrm{~V}, \mathrm{Y} / \Delta$ 3-phase transformer is rated at 230 KVA its rated secondary current/phase is
a. 33.33 A
b. 133.33 A
c. 66.66 A
d. 30.33 A
31. A 3-phase induction motor is run in counter colckwise direction as motor with reverse phase sequence of supply. The range of slip variation for this mode is
a. $0<\mathrm{s}<1$
b. $2<\mathrm{s}<1$
c. $0<\mathrm{s}<-1$
d. $3<\mathrm{s}<$

2
32. The following is phasor diagram of rotor variables of 3-phase induction motor with E_{j} as injected EMF. This provides

a. sub synchronous speed without pf improvement
b. super synchronous speed without pf improvement
c. sub synchronous speed with pf improvement
d. super synchronous speed with pf improvement
33. The variation of synchronising power for variation of power angle for a salient pole machine will be
a.

b.

c.

d.

34. If the supply frequency and voltage apply to a synchronous motor are both reduced to fractions $K f, K \mathrm{~V}$ the motor becomes
a. K times of $\mathrm{P}_{\max }$ at ' f '
b. $\frac{1}{K}$ times of $\mathrm{P}_{\max }$ at ' f,
c. K^{2} times of $\mathrm{P}_{\max }$ at ' f '
d. $\frac{1}{K^{2}}$ times of $\mathrm{P}_{\max }$ at ' f
35. For a salient pole synchronous machine, when the speed becomes super synchronous, during hunting, the damper bars develop
a. synchronous motor torque
b. DC motor torque
c. induction motor torque
d. induction generator torque
36. The output waveform given below can be obtained from

a. controlled rectifier
c. DC chopper
b. AC chopper
d. DIAC -TRIAC face controlled
circuit
37. The candle power of a lamp placed normal to a working plane is 30 C.P. Find the distance if the illumination is 15 lux;
a. 2 m
b. 0.5 m
c. 1.414 m
d. 0.707 m

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
38. The luminous intensity of a lamp is 750 C.P then the flux is given out is
a. $\frac{750}{\pi}$ lumen
b. 750π lumen
c. $\frac{750}{2 \pi}$ lumen
d. 1500π
lumen
39. Furnaces used for electric crematorium are of type
a. resistance heating
b. induction heating
c. dielectric heating d. arc heating
40. For the same rating the amount of radiant heat produced is least in
a. florescent lamp
b. filament lamp
c. sodium vapour lamp
d. mercury vapour lamp
41. In electric traction , the friction at the track is proportional to
(A) $\frac{1}{\text { speed }}$
(B) $\frac{1}{(\text { speed })^{2}}$
(C) speed
(D) speed ${ }^{2}$
42. Polar form of $\left(1-\mathrm{a}^{2}+\mathrm{a}\right)$ is
(A) $1.732 \angle 150^{\circ}$
(B) $2 \angle-60^{\circ}$
(C) $1.732 \angle-150^{\circ}$
(D) $2 \angle 60^{\circ}$
43. The number of strands on 3-layer cable is
(A) 24
(B) 7
(C) 37
(D)

19
44. Given maximum power transmitter through a line $\mathrm{P}_{\text {max }}$, the with 60% of series capacitor compensation the maximum power transfer becomes
A. $\frac{\mathrm{P}_{\max }}{0.4}$
B. $0.4 \mathrm{P}_{\text {max }}$
C. $\frac{\mathrm{P}_{\max }}{0.6}$
(D) $0.6 \mathrm{P}_{\max }$
45. In $A, B, C_{*} D$ parameters, $Z_{L} / 2$ in the T- equivalent shown can be represented as

(A) $(\mathrm{A}-1) \mathrm{C}$
(B) $(A-1) B$
(C) $(\mathrm{A}-1) / \mathrm{C}$
(D) $B /(A-1)$
46. An industrial consumer has a load of 1500 kw at 0.8 pf lag. for 12 hrs and 1000 kw at Upf for 12 hrs during a day. The daily load factor of the consumer is
Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
(A) 0.666
(B) 0.833
(C) 0.8
(D) 1.25
47. In a power system with negligible resistance, the fault current at a point is 8.0 pu. the series reactance to be connected at the fault point to reduce the short ckt current to 5.0 pu is
(A) 3.0 pu
(B) 0.25 pu
(C) 0.075 pu
(D) 0.125 pu
48. Merz-price protection is most suitable for
(A) transformers
(B) generators
(C) transmission lines
(D) load
49. The load torque versus speed characteristic of an industrial load is given below

The motor suitable for the above load is
(A) DC shunt motor
(B) 3-phase induction motor
(C) DC series motor
(D) capacitor motor
50. Between 2 supports, due to sag, the conductor takes the shape of
(A) parabola
(B) hyperbola
(C) catenary
(D) semi circle
51. In suspension type insulator, the potential drop is maximum across
(A) top disc
(B) centre disc
(C) lowest disc
(D) depends on number of discs of the string
52. The chances of occurrence of corona is maximum during
a. dry weather
b. humid weather
c. winter
d. hot summer
53. Equal area criterion can be applied to
a. multi machine system
b. to any system with any number of loads and generators
c. single machine connected to infinite bus system
d. system with induction machines
54. An ideal current source has zero

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
a. internal conductance
b. internal resistance
c. voltage on no load
d. ripple
55. 3-resistances of $1 \Omega, 2 \Omega$ and 3Ω are connected in delta. These resistances of are to be replaced by star connection as shown in the fig below, maintaining the same terminal conditions

The value of highest resistance in start will be
a. $1 / 4 \Omega$
b. $1 / 3 \Omega$
c. $1 / 2 \Omega$
d. 1Ω
56. Superposition theorem requires as many circuitss to be solved as there are
a. sources
b. nodes
c. source+node
d. source+nodes+meshes
57.

The ckt shown above can be easily solved by
a. series parallel n / w
b. start mesh theorem
c. thevenins theoerm
d. reciprocity theorem
58. At half power frequencies, the current in the RLC series ckt is
a. $1 / 2 \times$ current at resonance
b. $1 / \sqrt{2} \times$ current at resonance
c. $1 / 4 \times$ current at resonance
d. $1 / \sqrt{3} \times$ current at resonance
58. In RLC ckts, the current at resonance is
a. maximum in parallel resonance and minimum in series resonance

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
b. maximum in series resonance and minimum in parallel resonance
c. maximum in both series and parallel resonance
d. minimum in both series and parallel resonance
60. The equivalent inductance of the circuit between terminals P and Q is equal to

(A) $\frac{\mathrm{L}_{1}+\mathrm{L}_{2}+2 \mathrm{M}}{\mathrm{L}_{1} \mathrm{~L}_{2}-\mathrm{M}^{2}}$
(B) $\frac{L_{1}+L_{2}-2 M}{L_{1} L_{2}-M^{2}}$
(C) $\frac{L_{1}+L_{2}+2 M}{L_{1} L_{2}+M^{2}}$
(D) $\frac{L_{1}+L_{2}-2 M}{L_{1} L_{2}+M^{2}}$
61. In the given circuit below, the voltage across the inductor is
(A) $\frac{220}{\sqrt{2}} \mathrm{~V}$
(B) $220 \sqrt{2} \mathrm{~V}$
(C) 220 V
(D) 110 V
62. In the given RC circuit, the current reaches its maximum value

(A) after 50μ.sec of turning on the switch S
(B) after 100μ.sec of turning on the switch S
(C) after 1000μ.sec of turning on the switch S

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
(D) immediately after turning on the switch S
63. The time constant of a series RL circuit is given by
(A) $L^{2} R$
(B) LR^{2}
(C) LR
(D) $\frac{\mathrm{L}}{\mathrm{R}}$
64. For the circuit given below, the current through lohm resistor will be

(A) 2 amps
(B) 4 amps
(C) 6 amps
(D) 8 amps
65. Admittance is the reciprocal of
(A) impedance
(B) inductance
(C) suseptance
(D) reactance
66. The power expression in 3-phase circut in terms of line voltage V_{L} the line current I_{L} and power factor of the load is $\sqrt{3} V_{L} I_{L} \cos \phi$ where ϕ is the angle between
(A) line voltage and line current
(B) line voltage and phase current
(C) phase voltage and line current
(D) phase voltage and phase current
67. The open loop transfer function of a unity feedback control system is given by
$G(s)=\frac{K}{s(s+1)}$
If the gain K is increased to infinity then the damping ratio will tend to become
(A) $1 / \sqrt{2}$
(B) 1
(C) 0
(D) infinity
68. The overall gain for the block diagram shown below is given by

(A) $\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4}$
(B) $\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}+\mathrm{G}_{4}$
(C) $\mathrm{G}_{1} \mathrm{G}_{2}+\mathrm{G}_{3} \mathrm{G}_{4}$
(D) $\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)\left(\mathrm{G}_{3}+\mathrm{G}_{4}\right)$
69. Which of the following systems does have the tendency to oscillate?

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
(A) closed loop system
(B) open loop system
(C) either (A) or (B)
(D) both (A) and (B)
70. The feedback system with characteristic equation $s^{4}+2 \mathrm{Ks}^{3}+\mathrm{s}^{2}+5 \mathrm{~s}+5=0$
a. unstable for all values of K
b. stable for all values of K
c. stable for positive values of K
d. stable for zero value of K
71. For making an unstable system as stable system
a. gain of the system should be decreased
b. gain of the system should be increased
c. the number of zeros of the loop transfer function should be increased
d. the number of poles of the loop transfer function should be increased
72. For the BJT shown in figure $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \beta=100$. Find I_{B}

a. $36.35 \mu \mathrm{~A}$
b. 19.3 mA
c. 38.6 mA
d. $57 \mu \mathrm{~A}$
73. The value of transconductance at a bias voltage of 0 V for the JEFET which is having $\mathrm{I}_{\mathrm{DSS}}=$ 0.9 mA and $\mathrm{V}_{P}=-3 \mathrm{~V}$ is
(A) 6 mV
(B) 6 mS
(C) 27 S
(D) 3 mS
74. The efficiency of a class B amplifier for a supply voltage Vcc $=24 \mathrm{~V}$ with peak to peak output of 6 V is
(A) 4%
(B) 48%
(C) 19.6%
(D) 39.2%
75. The ripple voltage of a FWR with a $100 \mu \mathrm{~F}$ filter capacitor connected to a load of 50 mA is
(A) 2.4 V
(B) 1.2 V
(C) 4.4 V
(D) 6.6 V
76. The timing resistor is $10 \mathrm{k} \Omega$ and timing capacitor is 200 pF for a 565 PLL. The free running frequency is
(A) 500 KHz
(B) 350 KHz
(C) 250 KHz
(D) 150 KHz
77. A DC motor is driving a load that requires constant output power. The PU value of torque with its field current reduced to half would be (consider rated quantities as 1.0 PU)
a. 0.5 pu
b. 1.0 pu
c. 2 pu
d. 1.5 pu
78. A 2 -pole wave wound DC generator has 120 conductors in each parallel path of its armature. If it is driven at 1200 rpm and excited to have $0.02 \mathrm{wb} /$ pole, the induced emf would be
a. 48 V
b. 96 V
c. 24 V
d. 124 V
79. The variation of open circuit emf of a separate excited generator when $\mathrm{I}_{\mathrm{f}}=$ constant and variable speed would be

a. 1
b. 2
c. 3
d. 4
80. A $220 \mathrm{~V} / 12-0-12 \mathrm{~V}$ transformer has an emf/turn of 1 V . The number of turns on secondary would be
a. 12 with centre tapped
b. 220 with centre tapped
c. 24 with no centre tapped
d. 24 with centre tapped
81. An ideal transformer has $\mathrm{N}_{1}=100$ turns $\mathrm{N}_{2}=200$ turns with a mutual flux of $\phi_{\mathrm{m}}(\mathrm{t})=-0.05\left(\mathrm{t}^{2}-\right.$ 2 t). The induced emf of secondary in volts is
a. $-5(t-1)$
b. $-10(t-1)$
c. $-5\left(\mathrm{t}^{2}-1\right)$
d. $-20(t-1)$
82. Four conductors in a stationary armature (alternator) are shown as $1,1^{\prime}, 2,2$ for given direction of rotation of router the direction of induced emf (at the instant shown) in the conductors respectively.

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.

$\begin{array}{llllll}\text { Conductor } & 1 & 1^{\prime} & 2 & 2^{\prime}\end{array}$
a.
\bigoplus
\odot
O
O
b. O
O
\bigoplus
\odot
c.
\oplus
\odot
\oplus
\odot
d.
\odot
\bigoplus
\odot
\bigoplus
83. A synchronous machine has $\mathrm{X}_{\mathrm{s}}=1 \mathrm{pu}$ and operates at $\mathrm{V}=1 \mathrm{pu}$ when its emf is 1.5 pu with load angle $0^{\circ}{ }_{\mathrm{e}}$, current has $(0+\mathrm{j} 0.5)$, the mode of operation is
a. generator with lagging pf
b. generator with leading pf
c. motor with lagging pf
d. motor with leading pf
84. A 3- phase, 16 pole, 108 slot alternator will have the following phase grouping in each phase with 60° phase spread
a. 2,2,2,2 coils in basic unit of 4 poles
b. 3,2,2,2 coils in basic unit of 4 poles
c. $3,2,2,2$ coils in basic unit of 16 poles
d. 2,2,2,2 coils in basic unit of 8 poles
85. For the power circuit given below, SCR is operated at 1 KHz with T_{ON} of 0.5 msec

motor ratings: $200 \mathrm{~V}(\mathrm{dc}), 1000 \mathrm{rpm}, 10 \mathrm{~A}$
Neglecting armature resistance the speed of motor at given duty cycle ($\mathrm{Tm}=$ constant $)$
a. 1000 rpm
b. 500 rpm
c. 1500 rpm
d. 750 rpm
86. A converter is feeding a dc machine as shown below:

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.

The mode of operation of machine is
a. motoring
b. regenerating
c. plugging
d. rheostatic braking
87. The output of a single phase inverted bridge is as given below:

In the above output voltage
a. $5^{\text {th }}$ and $7^{\text {th }}$ harmonics will be absent
b. $3^{\text {rd }}, 5^{\text {th }}$ and $7^{\text {th }}$ harmonics will be absent
c. $3^{\text {rd }}, 9^{\text {th }}, 15^{\text {th }}$ harmonics will be absent
d. $3^{\text {rd }}$ and $7^{\text {th }}$ harmonics will be absent
88. A 4-pole turbo generator rated $500 \mathrm{MVA}, 22 \mathrm{KV}$ has it angular acceleration 437.8 ele.degrees $/ \mathrm{sec}^{2}$; It is equivalent to
a. $1500 \mathrm{rpm} / \mathrm{sec}$
b. $36.48 \mathrm{rpm} / \mathrm{sec}$
c. $145.92 \mathrm{rpm} / \mathrm{sec}$
d. $72.97 \mathrm{rpm} / \mathrm{sec}$
89. A 50 Hz generator having $\mathrm{H}=6 \mathrm{MJ} / \mathrm{MVA}$ is connected to synchronous motor having $\mathrm{H}=4 \mathrm{MJ} / \mathrm{MVA}$ through a n / w of reactances. The generator is delivering power of 1.0 pu to the motor which reduces to 0.6 pu when fault occurs. the angular acceleration in ele.degrees $/ \mathrm{sec}^{2}$ is
a. 360
b. 180
c. 1500
d. 1800
90. Synchronizing power co-efficient can be written as
a. $\mathrm{P}_{\alpha} \cos \delta_{0}$
b. $\mathrm{P}_{\text {max }} \cos \delta_{\mathrm{O}}$
c. $\mathrm{P}_{\mathrm{e}} \cos \delta_{\mathrm{O}}$
d. $\mathrm{P}_{\alpha} \sin \delta_{\mathrm{O}}$
91. The relay most likely to operate during power swings is
a. reactance relay
b. impedance relay
c. Mho relay
d. Bucholtz's relay
92. An OCB is rated $1500 \mathrm{~A}, 200 \mathrm{MVA}, 33 \mathrm{kV}$. Its making in kA is
a. 51.51
b. 35
c. 89.25
d. 154.54

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.
93. The rating of lightning arrester used for $220 \mathrm{kV}, 3$ phase system is
a. $220 \mathrm{kV}, 10 \mathrm{kA}$
b. $220 \mathrm{kV}, 5 \mathrm{kA}$
c. $198 \mathrm{kV}, 10 \mathrm{kA}$
d. $198 \mathrm{kV}, 2$
kA
94. A generation system has maximum demand of 30 MW , a load factor of 0.6 and plant capacity factor 0.48 ; The reverse capacity of the plant is
a. 37.5 MW
b.7.5 MW
c.19.5 MW
d. 12 MW
95. A transformer of $10 \mathrm{MVA}, 33 \mathrm{KV}$ has reactance 0.1 pu . On $20 \mathrm{MVA}, 11 \mathrm{kV}$ the new pu value is
a. 0.45
b.1.8
c.1.2
d.0.6
96. In which type of fault, zero sequence currents are absent?
a. L-L
b. L-G
c. L-L-G
d. L-L-L-G
97. In a single machine connected to infinite bus bar system alternator voltage is 1.5 pu and its reactance is 1.0 pu are connected through a line reactance of 0.3 pu . the maximum steady state power transfer is
a. 1.154 pu
b. 5.0 pu
c. 1.5 pu
d. 0.76 pu
98. Value of acceleration factor used in Gauss-seidal method in load flow studies is
a. 1.59
b. 1.66
c. 1.0
d. 1.6
99. The Z-bus of the following system of impedance is
a. $\left[\begin{array}{cc}j 0.08 & j 0.5 \\ j 0.5 & j 0.58\end{array}\right]$
b. $\left[\begin{array}{ll}j 0.08 & j 0.08 \\ j 0.08 & j 0.58\end{array}\right]$
c. $\left[\begin{array}{cc}j 0.08 & -j 0.5 \\ -j 0.5 & j 0.58\end{array}\right]$
d. $\left[\begin{array}{cc}j 0.08 & -j 0.08 \\ -j 0.08 & j 0.58\end{array}\right]$
100. An over current relay having a current setting of 125% is connected to a supply circuit through a current transformer of ratio 400/5. The pick-up value will be
a. 6.25 A
b. 500 A
c. 100 A
d. 80 A

Institute of Electrical \& Electronics Engineering (ieee), S.R.Nagar, Hyderbad.

