Section – II – Agricultural Engineering

1.	The velocity of a fluid in a pipe of diameter D is V. The pipe is connected to another pipe of diameter 2D. Reynolds number in the pipe of diameter D in relation to the pipe of diameter 2D is:								
1)	Double	2) Four	rtimes	3) Half		4) Same			
2.	The part of called:	a refrigeration	unit in which	the refrige	rant changes	from vapour to liquid is	S		
1)	Evaporator	2) compressor	3) co	ondenser	4) thro	ttle valve			
3.	3. Psychrometric chart is a graphical representation of which properties of air:								
1)	Chemical	2) Aerodynam	ic 3) H	ygroscopic	4) The	rmodynamic			
4.	Logarithmi	c mean radius o	of a pipe in re	lation to its	arithmetic n	nean radius is always:			
1)	Smaller	2) Grea	ater	3) Equal	or smaller	4) Equal or greater			
5.		and 50% rh ha e wet bulb depr		depression o	of 10 ⁰ C. If t	he relative humidity de	creases		
1)	increase	2) decrease	3) re	emain consta	ant 4) follo	ow no definite trend			
6.	Regenerato	n is economica	l when produ	ct is					
1)	Heated	2) Coo	led	3) Heate	d and cooled	4) None of the above	<i>r</i> e		
7.	The dimens	ions of therma	l diffusivity a	re:					
1)	MLT ⁻²	$2) M^0L$	T	3) M ⁻¹ L ⁷	Γ	4) None of the above			
8.	8. Freezing temperature of brine is :								
1)	Lower than	pure water	2) Higher tha	an pure wate	er 3) sam	e 4) None of the Abo	ove		
9.	Which of th	ne following mi	neral particle	e size (s) is o	classified as	silt according to ISSS:			
1)	0.05 to 0.1 i	nm	2) 0.002 to 0	0.05 mm 3	0.002 to 0.	02 mm 4) None of the	above		
10	. Maize is a	:							
1)	Soil maintai	ning crop	2) Soil build	ing crop 3	Soil deplet	ing crop4) None of the	above		

11.Class IV type lands are:								
 Suitable for cultivatio Partly suitable for cultivation 			2) Not suitable for cultivation4) None of the above					
12. Length of the survey	12. Length of the surveyor's chain is							
1) 33 ft.	2) 66 ft		3) 100 ft.	4) 150 ft.				
13. Soil degradation take	13. Soil degradation takes place due to:							
1) Glacial erosion	2) Geo	logic erosion	3) Accelerated er	osion 4) All of the above				
14. Darcy's Law is valid	l for :							
 Laminar and turbulen Laminar flow 	t flow	,	bulent flow nsient flow					
15. A refrigerant vapour water as the cooling				nt exchanger using				
2) Tube side of the h	 Shell side of the heat exchanger Tube side of the heat exchanger Any of 1) and 2) above None of the above 							
16. Fluid which become known as	more fluid v	viscosity decre	eases with time as th	ney are stirred are				
1) Pseudoplastic	2) Dila	ntant	3) Thixotropic	4) Rheopeetle				
17. Sun's radiation corresponding to that of a black body temperature is about								
1) 5000^{0} K 2)	6000^{0} K	3) 7000 ⁰ K	4) 14000 ⁰ K					
18. In a heat exchanger, the rate of heat transfer from the hot fluid to the cold fluid								
 Varies as square of the area Varies directly as the area and its LMTD Directly proportional to LMTD and inversely as the area none of the above 								

19. Slump test is used for measurement of								
2)plasticity of	concrete	3)Elasticity of concrete						
with:								
•		y						
21. The ratio of water stored in the root zone of the plants to water delivered to the field is termed as								
	_	•						
to the total soil	volume is	called						
3) Dry bulk de	ensity 4)	Wet bulk density						
te								
	-	otranspiration of crops er requirement of crops						
Starch	4) Vitami	ns						
ie to								
 frictionless nature of soil low value of cohesion of soil upward seepage force greater than submerged weight of soil downward seepage pressure 								
26.At field capacity, soil moisture tension of sandy soil is approximately equal to								
3) 10 bar	4) none o	f the above						
27. One ton of refrigeration is equivalent to the heat required to melt one tonne of ice in								
3) 18 h	4) 24 h							
	2) plasticity of with: 2) Reynolds n 4) Nusselt nur out zone of the p 2) Wat 4) Wat 3) Dry bulk de te 2) Pote 4) Irrig Starch ne to 2) low value of than submerged nsion of sandy 3) 10 bar alent to the heat	2) plasticity of concrete with: 2) Reynolds number only 4) Nusselt number only of zone of the plants to we 2) Water storage 4) Water use efficient to the total soil volume is 3) Dry bulk density 4) the 2) Potential evapes 4) Irrigation water water by 4 in the consistency of the plants of the total soil volume is 3) Dry bulk density 4) Irrigation water by 4 in the consistency of the plants to we have a solution of the plants to we allent to the heat required to with the consistency of the plants of the plants to we have a solution of the plants o						

surrounded by vegetation due to							
1) conduction of heat 2) oasis effect 3) clothesline effect 4) convection of heat							
29. For a watershed, th	e universal soil-loss e	equation comp	outes				
1) annual runof rainfall	f 2) average annual	soil loss 3)	erodibility	factor	4) average annual		
30. The porosity of sai	ndy soil usually range	s from					
1) 30 to 35%	2) 35 to 50%		3) 40 to 6	50%	4) 50 to 60%		
31. The indicator plant	t used for determining	g the permane	nt wilting	percentag	ge		
1) Wheat	b) Safflower		c) Sunfloy	wer	d) Paddy		
32. When the soil moi healthy crop grow	sture and rainfall are a	=	iring the g	rowing se	eason to support		
1) Metrological dr	ought b) Hydrologic	cal drought	c) Agricu	ltural dro	ught d) None of these		
33. Soil strength is de	termined by :						
1) Penetrometer	2) Micrometer	3) Hydrome	eter	4) Dynar	nometer		
34. Lysimeter is used	to measure						
1) Infiltration	2) Evaporatio	n 3) E	Evapotrans	piration 4	1) Vapour pressure		
35. The dominant cation	on in most of the soils	s is					
1) Sodium	2) Potassium	3) Calcium		4) Magne	esium		
36. The element response	onsible for dispersion	of particles in	n soils is				
1) Manganese	2) Potassium	3) Sodium		4) Calci	um		
37. The relative mo	bility of this ion is lea	st in soil syst	em				
1) Magnesium	2) Silicon	3) Aluminu	m	4) Iron			
38. This is an abundant group of rocks on the surface of the earth crust 1) Igneous 2) Sedimentary 3) Metamorphic 4) Organic							

39. The mechanical	lly formed sedimentary	rock is	
1) Bauxite	2) Sand stone	3) Halite	4) Graphite
40. This is an acce	ssory mineral		
1) Microcline	2) Biotite	3) Quartz	4) Magnetite
41. This soil structu	ure is common in sub-su	rface of alkali soi	ls
1) Spheroidal	2) Blocky	3) Crum	by 4) Columnar
42. The net negative	ve charge of colloidal co	omplex is more at	рН
1) 3.0-5.0	b) 5.0-6.5	c) 7.0-8	0 d) Not changed with pH
43. The chemical r	reaction involved in nitro	ogen fixation is	
1) Oxidation	2) Deamination	on 3) Nitrifi	cation 4) Reduction
44. Laterite soils b	elong to the order		
1) Alfisols	2) Oxisols	3) Spodo	sols 4) Inceptisols
45. Atterberg's limi	ts are related to the soil	property	
1) Structure	2) Plasticity	3) Dens	ity 4) Strength
46. The dominant	soil order in India		
1) Vertisols	2) Alfisols	3) Entisc	ls 4) Inceptisols
47. The clay enrich	ed sub-surface horizon	is called	
1) Albic	2) Argillic	3) Camb	ic 4) Oxic
48. This textural cla	ss is comparatively coa	rser	
1) Silty clay l	oam 2) Silty loam	3) Sandy	clay 4) Silty clay

49. Internal drainage is the common problem in these soils									
1) Deltaic alluv	ium 2) (2) Coastal sands 3		k cotton soils	4) Red loam soils				
50. Bulk density is likely to be less in these soils									
1) Organic	2) Red	3	3) Sandy	4) Black					
Section – II – Agricultural Engineering - Key									
	1-10: 1, 3, 4, 1, 1, 3, 4, 1, 3, 3								
	11-	20:	3, 2, 3, 3, 2, 3,	2, 2, 2, 3					
	21-	30:	1, 2, 2, 3, 3, 1,	4, 2, 2, 2					
	31	40:	3, 3, 1, 3, 3, 3,	3, 2, 2, 4					
	41-	50:	1, 3, 4, 2, 2, 4,	2, 2, 1, 1					
	Secti	ion – III – Ag	ricultural Eng	ineering					
1. The discharge rate	of drip emit	ters usually	ranges from:						
1) 2-10 liters/day	2) 2	-10 liters/hr	3) 2-10	liters/min	4) 2-10 liters/sec				
2. Sprinkler irrigation	n is recomme	ended in :							
 Highly undulating area Soils having high infiltration rate Irrigation source is a tube well In all the above situations 									
3. The soil property f	or good gro	und water yi	eld is:						
 Porosity Uniformity coe 	efficient > 3		2) Effective siz 4) Uniformity of						
4. Vertical interval (V	T) of bench	terrace for a	vertical cut is	given as:					
1) (100S)/W	2) (100S)/S	3) (100)/(WS)	4) (WS/100)				

5. Mole drains are suitable for								
1) Very coarse so	il 2) Medium	coarse soil 3) Sandy	loam soil 4) Fine texture soil					
6. Hydraulically most efficient cross-section of an open channel is								
1) Triangular	2) Rectangular	3) Semi-circular	4) Trapezoidal					
7. Sediment yield is	the							
1) Total soil loss 3) Both 1) and 2)		roduct of gross erosion one of the above	n and delivery ration					
8. Chute spillway is	used in control a dro	p of						
1) 0-3 m	2) 1-4 m	3) 2-4 m	4) 3-6 m					
9. Soil loss in geolog	gic erosion is							
 Les than accele Medium 	erated erosion	2) Greater than4). None of the	accelerated erosion above					
10. Self priming cent	rifugal pump has imp	pellor of following typ	e					
1) Backward curved 3) Forward curved	ed vane impeller2) R vane impeller 4) (nd forward curved vane impeller.					
11. Toe-in and toe-ou	at are related with							
1) Front axle of trac	tor b) Rear axle or	f tractor c) Tractor st	teering d) Transmission system					
12. In the Rational fo	12. In the Rational formula $Q = 0.0028$ C.I.A., I is the intensity of rainfall in							
1) mm per hour	2) cm per hour	3) m per hour	4) cm per minute					
13. Separation of liqu	aids from solids by th	ne application of pressu	ure is known as:					
1)Extraction	2) Expression	3) Filtration	4) Leaching.					
14. In size reduction	of fine powders, whi	ch of the following lav	ws in more applicable:					
1) Kick' Law	2) Rittinger's Law	3) Bond's Law	4) All of the above					

15	The percentage of	of bran received	from pado	ly:				
	1) 5	2) 10	3)	15	4) 20			
16.	Increasing the cy	linder speed res	sults in					
	1) Increase the thi 3) Increase seed	-	cy	2) Reduce cyli 4) All of the al				
17.	In a rubber roll paddy sheller, the direction or rotation and peripheral speeds of the Rollers are respectively							
	1) Same and equa 3) Opposite and e			ne and different posite and differ	ent			
18.	In dry milling pro	ocess of pulses,	prior to tre	eatment with oil,	the following operation is			
	1) Conditioning	2) Gra	ding	3) Pitting	4) scalping			
19.	In case of intermi	ttent drying, tot	al drying ti	me reduces as e	xposure time			
	1) Increases	2) Decreases	3)	No effect	4) None of the above.			
20.	Generally tempera	ature in multipl	e effect eva	aporators will	_in subsequent effects			
	1) Decrease	2)Increase	3) remains	s constant 4) I	None of the above			
21.	Theoretically number of ways to increase cyclone efficiency when particle size reduces from 10 micron to 5 micron diameter are							
	 By increasing 6 Temperature in 		•	By increasing le 1 and 2	ength of cyclone			
22.	Milk and fruit juidone in order to:	ce are deaerated	l before the	ey are allowed to	o flow through pasteurizer. This is			
	 reduce fouling reduce oxidative 	-		increase rate of reduce microbia				
23.	Thermal vapour c	compression is u	ised in					
	1) Evaporator	2) Homogeniz	er 3)	Pasteurizer	4) None of the above			
24.	The specific gravi	ity of skim milk	is is					
	1) lower than wh 3) higher than wh		2) same as 4) same as	s whole milk s water				

25. 0	25. Centrifugal discharge is used in								
1)	belt conveyor	2) chain con	nveyor	3) screw (au	ger) conveyo	r 4) bı	icket elevator		
26. Т	26. The removal of few large particles in an initial process is								
1) Scalping	2) Cleaning		3) Grading		4) Sor	ting		
27. I	27. Disc separator separates materials on the basis of								
1) Length	2) W	Vidth		3) Weight		4) Shape		
28. F	28. For biological materials, the relationship between EMC and RH was given by								
1) Janssen	2) R	ankine		3) Henderson	1	4) Chung Fast		
29. I	n ball mill, the si	ze of food gr	ains is red	luced due to					
1) Crushing	2) S	hearing		3) Impact		4) All of the above		
	n a godown extra vhich is generally	-	leyways fo	or inspection	and disinfect	ion of st	acks is provided		
1	.) 30 %	2) 20 %		3) 5 %	4) 1 %				
31.	In stanchion barn	, the cows ar	e housed	and milked in					
	1)Different build	ing 2)op	en space	3)same build	dings 4)	None of	the above		
32. I	n deep litter poul	try house, th	e depth of	litter in centi	meters should	d be			
	1)15-20 2)20-2	5 3)10)-15	4) 30)-40				
33. I	Herring bone is a								
1)Milking parlour	2)fe	ncing	3)barn	4) All of t	the abov	e		
34. 7	The velocity requi	ired to opera	te a wind	mill is more t	han				
1)5 KMPH	2)10 KMPF	I	3) 5 miles pe	er hour 4) 10 mil	es per hour		
35. N	Main constituent	of biogas is							
1) Methane	2) E	thane	3) Bı	utane	4) Carb	on dioxide		

36.	36. In floating type biogas plant, the gasholder is made of							
	1) Metal	2) Wood	3) (Cement and Br	icks	4) All of the above		
37.		n per unit volume of dig igester will be in the ran		capacity will b	e maximum	n when the diameter		
	1) 0.66 to 1.00	2) 0.75 to 1.20		3) 0.85 t	o 1.30	4) 0.90 to 1.40		
38.	The wet process o	f biomass digestion inv	olve					
	1) Pyrolysis and C3) Liquefaction an			2) Hydrogenation and liquefaction4) Anaerobic digestion and fermentation				
39.	Tilt angle in a dis	c plough varies from:						
	1) 5-10 deg.	2) 10-15 deg	3) 15-	25 deg.	4) 25-30 (deg.		
40.	Increasing length	of land side of a one bo	ttom 1	right hand mou	ıld board ple	ow will:		
	 Increase the am Decrease the ar No affect None of the abo 		ctor					
41.	Disc type furrow	openers are especially s	uited	to				
	 Stoney and root infested soils Poorly prepared bed in trashy soils Hard and sticky ground with considerable amount of debris and mulch All of the above 							
42.	A power tiller is n	nost suited for rotary cul	tivati	on because				
	 It generates negative draft Its traction requirement is low It provides high degree of soil pulverization All of the above 							
43.	The most used an	d least efficient power of	outlet	of a tractor is				
	1) Power take-off 3) P.T.O. in the re			Drawbar in the None of the ab				
44.	If the travel speed 1) Increase linearl 3) Increase quadra	-	ased.	The draft will 2) Decrease 1 4) Decrease of	inearly	y		

45.	The penetration of	of animal-drawn	disc harro	ws can b	e increased by:			
		the disc angle re dead weight		-	_			
46.	6. The use of a pressurized radiator cap in forced-circulation water cooling system in tractor engines helps in							
					sing the engine-oper increasing the radiate			
	47. The common type of fertilizer metering mechanism used on animal-drawn seed cum fertilizer drills is							
	 star-wheel feed Auger Stationary opening Edge cell vertical rotor 							
48.	The firing order	of 4 stroke 4cyl	inder engir	ne is				
	1) 1-3-2-4	2) 1-3-4-2	3) 1-4-3-2	2 4) 1	1-2-3-4			
49.	Angle between co	entre line of kin	gpin of trac	ctor and	vertical line is called	d		
	1) Tilt angle	2) Car	nber Angle		3) Caster angle	4) All of the above		
50.	Jointer and coulte	er are the parts of	of					
	1) Disc plough	2) Har	row plough	ı	3) Indigenous plou	igh 4) MB plough		
	Section – III – Agricultural Engineering - Key							
		1-10:	2,	4, 4, 4,	4, 3, 1, 4, 3, 1			
		11-20	: 1,	1, 2, 2,	1, 4, 4, 3, 2, 1			
		21-30	: 4,	3, 1, 3,	4, 1, 1, 3, 3, 1			
		31-40	: 3,	1, 1, 2,	1, 1, 1, 4, 3, 3			
		41-50	: 3,	1, 3, 3,	4, 3, 1, 2, 3, 4			