
Consideration for Optimization:

Optimization is a program transformation technique, which tries to improve the code by

making it consume fewer resources (i.e. CPU, Memory) and deliver high speed.

In optimization, high-level general programming constructs are replaced by very efficient

low-level programming codes. A code optimizing process must follow the three rules given

below:

• The output code must not, in any way, change the meaning of the program.

• Optimization should increase the speed of the program and if possible, the program

should demand less number of resources.

• Optimization should itself be fast and should not delay the overall compiling process.

Optimization can be categorized broadly into two types: machine independent and machine

dependent.

Machine-Independent Optimization

• Intermediate code generation process introduces many inefficiencies:

o Extra copies of variables, using variables instead of constants, repeated

evaluation of expressions, etc.

• Code optimization removes such inefficiencies and improves code.

• Improvement may be time, space, or power consumption.

• It changes the structure of programs, sometimes of beyond recognition.

o Inlines functions, unrolls loops, eliminates some programmer-defined variables,

etc.

• Code optimization consists of a bunch of heuristics and percentage of improvement

depends on programs (may be zero also)

Machine-dependent Optimization

Machine-dependent optimization is done after the target code has been generated and when

the code is transformed according to the target machine architecture. It involves CPU

registers and may have absolute memory references rather than relative references. Machine-

dependent optimizers put efforts to take maximum advantage of memory hierarchy.

Basic Blocks

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Source codes generally have a number of instructions, which are always executed in

sequence and are considered as the basic blocks of the code. These basic blocks do not have

any jump statements among them, i.e., when the first instruction is executed, all the

instructions in the same basic block will be executed in their sequence of appearance

without losing the flow control of the program.

A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-

CASE conditional statements and loops such as DO-WHILE, FOR, and REPEAT-UNTIL,

etc.

Basic Block Identification:

We may use the following algorithm to find the basic blocks in a program:

• Search header statements of all the basic blocks from where a basic block starts:

o First statement of a program.

o Statements that are target of any branch (conditional/unconditional).

o Statements that follow any branch statement.

• Header statements and the statements following them form a basic block.

• A basic block does not include any header statement of any other basic block.

Basic blocks are important concepts from both code generation and optimization point of

view.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Basic blocks play an important role in identifying variables, which are being used more than

once in a single basic block. If any variable is being used more than once, the register

memory allocated to that variable need not be emptied unless the block finishes execution.

Control Flow Graph

Basic blocks in a program can be represented by means of control flow graphs. A control

flow graph depicts how the program control is being passed among the blocks. It is a useful

tool that helps in optimization by help locating any unwanted loops in the program.

Local Optimization:

Optimizations performed exclusively within a basic block are called "local optimizations".

These are typically the easiest to perform since we do not consider any control flow

information; we just work with the statements within the block. Many of the local

optimizations we will discuss have corresponding global optimizations that operate on the

same principle, but require additional analysis to perform.

Loop Optimization

Most programs run as a loop in the system. It becomes necessary to optimize the loops in

order to save CPU cycles and memory. Loops can be optimized by the following techniques:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• Invariant code: A fragment of code that resides in the loop and computes the same

value at each iteration is called a loop-invariant code. This code can be moved out of

the loop by saving it to be computed only once, rather than with each iteration.

• Induction analysis: A variable is called an induction variable if its value is altered

within the loop by a loop-invariant value.

• Strength reduction: There are expressions that consume more CPU cycles, time, and

memory. These expressions should be replaced with cheaper expressions without

compromising the output of expression. For example, multiplication (x * 2) is

expensive in terms of CPU cycles than (x << 1) and yields the same result.

Dead-code Elimination

Dead code is one or more than one code statements, which are:

• Either never executed or unreachable,

• Or if executed, their output is never used.

Thus, dead code plays no role in any program operation and therefore it can simply be

eliminated.

Partially dead code

There are some code statements whose computed values are used only under certain

circumstances, i.e., sometimes the values are used and sometimes they are not. Such codes

are known as partially dead-code.

The above control flow graph depicts a chunk of program where variable ‘a’ is used to

assign the output of expression ‘x * y’. Let us assume that the value assigned to ‘a’ is never

used inside the loop. Immediately after the control leaves the loop, ‘a’ is assigned the value

of variable ‘z’, which would be used later in the program. We conclude here that the

assignment code of ‘a’ is never used anywhere, therefore it is eligible to be eliminated.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Likewise, the picture above depicts that the conditional statement is always false, implying

that the code, written in true case, will never be executed, hence it can be removed.

Partial Redundancy

Redundant expressions are computed more than once in parallel path, without any change in

operands whereas partial-redundant expressions are computed more than once in a path,

without any change in operands. For example,

[redundant expression] [partially redundant expression]

Loop-invariant code is partially redundant and can be eliminated by using a code-motion

technique.

Another example of a partially redundant code can be:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 If (condition)

 {

 a = y OP z;

 }

 else

 {

 ...

 }

 c = y OP z;

We assume that the values of operands (y and z) are not changed from assignment of

variable a to variable c. Here, if the condition statement is true, then y OP z is computed

twice, otherwise once. Code motion can be used to eliminate this redundancy, as shown

below:

 If (condition)

 {

 ...

 tmp = y OP z;

 a = tmp;

 ...

 }

 else

 {

 ...

 tmp = y OP z;

 }

 c = tmp;

Here, whether the condition is true or false; y OP z should be computed only once.

Directed Acyclic Graph

Directed Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, helps to

see the flow of values flowing among the basic blocks, and offers optimization too. DAG

provides easy transformation on basic blocks. DAG can be understood here:

• Leaf nodes represent identifiers, names or constants.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• Interior nodes represent operators.

• Interior nodes also represent the results of expressions or the identifiers/name where

the values are to be stored or assigned.

Example:

 t0 = a + b

 t1 = t0 + c

 d = t0 + t1

[t0 = a + b]

[t1 = t0 + c]

[d = t0 + t1]

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

