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In computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack. 

Pushdown automata are used in theories about what can be computed by machines. They are more 

capable than finite-state machines but less capable than Turing machines. Deterministic pushdown 

automata can recognize all deterministic context-free languages while nondeterministic ones can 

recognize all context-free languages. Mainly the former are used in parser design. 

The term "pushdown" refers to the fact that the stack can be regarded as being "pushed down" like a 

tray dispenser at a cafeteria, since the operations never work on elements other than the top element. A 

stack automaton, by contrast, does allow access to and operations on deeper elements. Stack automata 

can recognize a strictly larger set of languages than pushdown automata. A nested stack automaton 

allows full access, and also allows stacked values to be entire sub-stacks rather than just single finite 

symbols. 

Here, it describes the nondeterministic pushdown automaton. 

 Basic Structure of PDA 

A pushdown automaton is a way to implement a context-free grammar in a similar way we design DFA 

for a regular grammar. A DFA can remember a finite amount of information, but a PDA can remember 

an infinite amount of information. 

Basically a pushdown automaton is − 

 "Finite state machine" + "a stack" 

A pushdown automaton has three components – 

• an input tape,  

• a control unit, and  

• a stack with infinite size.  

The stack head scans the top symbol of the stack. 

A stack does two operations − 

• Push − a new symbol is added at the top. 

• Pop − the top symbol is read and removed. 

A PDA may or may not read an input symbol, but it has to read the top of the stack in every transition. 
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A PDA can be formally described as a 7-tuple (Q, ∑, S, δ, q0, I, F) − 

• Q is the finite number of states 

• ∑ is input alphabet 

• S is stack symbols 

• δ is the transition function − Q × (∑  {ε}) × S × Q × S* 

• q0 is the initial state (q0  Q) 

• I is the initial stack top symbol (I  S) 

• F is a set of accepting states (F  Q) 

The following diagram shows a transition in a PDA from a state q1 to state q2, labeled as a, b → c − 

 
This means at state q1, if we encounter an input string ‘a’ and top symbol of the stack is ‘b’, then we 
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pop ‘b’, push ‘c’ on top of the stack and move to state q2. 

Terminologies Related to PDA 

 Instantaneous Description: 

The instantaneous description (ID) of a PDA is represented by a triplet (q, w, s) where 

• q is the state 

• w is unconsumed input 

• s is the stack contents 

Turnstile Notation 

The "turnstile" notation is used for connecting pairs of ID's that represent one or many moves of a 

PDA. The process of transition is denoted by the turnstile symbol " ". 

Consider a PDA (Q, ∑, S, δ, q0, I, F). A transition can be mathematically represented by the following 

turnstile notation − 

 (p, aw, Tβ)  (q, w, αb) 

This implies that while taking a transition from state p to state q, the input symbol ‘a’ is consumed, and 

the top of the stack ‘T’ is replaced by a new string ‘α’. 

Note − If we want zero or more moves of a PDA, we have to use the symbol ( *) for it. 

Final State Acceptability 

In final state acceptability, a PDA accepts a string when, after reading the entire string, the PDA is in a 

final state. From the starting state, we can make moves that end up in a final state with any stack 

values. The stack values are irrelevant as long as we end up in a final state. 

For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the set of final states F is − 

L(PDA) = {w | (q0, w, I) * (q, ε, x), q  F} 

For any input stack string x. 

 Empty Stack Acceptability 

Here a PDA accepts a string when, after reading the entire string, the PDA has emptied its stack. 

For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the empty stack is− 

L(PDA) = {w | (q0, w, I) * (q, ε, ε), q  Q} 

Example 

Construct a PDA that accepts L= {0n 1n | n ≥ 0} 
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 Solution 

 
This language accepts L = {ε, 01, 0011, 000111, .............................} 

Here, in this example, the number of ‘a’ and ‘b’ have to be same. 

• Initially we put a special symbol ‘$’ into the empty stack. 

• Then at state q2, if we encounter input 0 and top is Null, we push 0 into stack. This may 

iterate. And if we encounter input 1 and top is 0, we pop this 0. 

• Then at state q3, if we encounter input 1 and top is 0, we pop this 0. This may also iterate. And 

if we encounter input 1 and top is 0, we pop the top element. 

• If the special symbol ‘$’ is encountered at top of the stack, it is popped out and it finally goes 

to the accepting state q4. 

Example 

Construct a PDA that accepts L= {ww
R
 | w = (a+b)* }  

Solution 

 
Initially we put a special symbol ‘$’ into the empty stack. At state q2, the w is being read. In state q3, 

each 0 or 1 is popped when it matches the input. If any other input is given, the PDA will go to a dead 

state. When we reach that special symbol ‘$’, we go to the accepting state q4. 
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Equivalence of CFL and PDA: 

 If a grammar G is context-free, we can build an equivalent nondeterministic PDA which accepts the 

language that is produced by the context-free grammarG. A parser can be built for the grammar G. 

Also, if P is a pushdown automaton, an equivalent context-free grammar G can be constructed where 

 L(G) = L(P) 

Algorithm to find PDA corresponding to a given CFG 

Input   − A CFG, G= (V, T, P, S) 

Output  − Equivalent PDA, P= (Q, ∑, S, δ, q0, I, F) 

Step 1   Convert the productions of the CFG into GNF. 

Step 2   The PDA will have only one state {q}. 

Step 3   The start symbol of CFG will be the start symbol in the PDA. 

Step 4   All non-terminals of the CFG will be the stack symbols of the PDA and all the  

   terminals of the CFG will be the input symbols of the PDA. 

Step 5   For each production in the form A → aX where a is terminal and A, X are  
     combination of terminal and non-terminals, make a transition δ (q, a, A). 
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