

Page 1

In computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack.

Pushdown automata are used in theories about what can be computed by machines. They are more

capable than finite-state machines but less capable than Turing machines. Deterministic pushdown

automata can recognize all deterministic context-free languages while nondeterministic ones can

recognize all context-free languages. Mainly the former are used in parser design.

The term "pushdown" refers to the fact that the stack can be regarded as being "pushed down" like a

tray dispenser at a cafeteria, since the operations never work on elements other than the top element. A

stack automaton, by contrast, does allow access to and operations on deeper elements. Stack automata

can recognize a strictly larger set of languages than pushdown automata. A nested stack automaton

allows full access, and also allows stacked values to be entire sub-stacks rather than just single finite

symbols.

Here, it describes the nondeterministic pushdown automaton.

 Basic Structure of PDA

A pushdown automaton is a way to implement a context-free grammar in a similar way we design DFA

for a regular grammar. A DFA can remember a finite amount of information, but a PDA can remember

an infinite amount of information.

Basically a pushdown automaton is −

 "Finite state machine" + "a stack"

A pushdown automaton has three components –

• an input tape,

• a control unit, and

• a stack with infinite size.

The stack head scans the top symbol of the stack.

A stack does two operations −

• Push − a new symbol is added at the top.

• Pop − the top symbol is read and removed.

A PDA may or may not read an input symbol, but it has to read the top of the stack in every transition.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Page 2

A PDA can be formally described as a 7-tuple (Q, ∑, S, δ, q0, I, F) −

• Q is the finite number of states

• ∑ is input alphabet

• S is stack symbols

• δ is the transition function − Q × (∑ {ε}) × S × Q × S*

• q0 is the initial state (q0 Q)

• I is the initial stack top symbol (I S)

• F is a set of accepting states (F Q)

The following diagram shows a transition in a PDA from a state q1 to state q2, labeled as a, b → c −

This means at state q1, if we encounter an input string ‘a’ and top symbol of the stack is ‘b’, then we

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Page 3

pop ‘b’, push ‘c’ on top of the stack and move to state q2.

Terminologies Related to PDA

 Instantaneous Description:

The instantaneous description (ID) of a PDA is represented by a triplet (q, w, s) where

• q is the state

• w is unconsumed input

• s is the stack contents

Turnstile Notation

The "turnstile" notation is used for connecting pairs of ID's that represent one or many moves of a

PDA. The process of transition is denoted by the turnstile symbol " ".

Consider a PDA (Q, ∑, S, δ, q0, I, F). A transition can be mathematically represented by the following

turnstile notation −

 (p, aw, Tβ) (q, w, αb)

This implies that while taking a transition from state p to state q, the input symbol ‘a’ is consumed, and

the top of the stack ‘T’ is replaced by a new string ‘α’.

Note − If we want zero or more moves of a PDA, we have to use the symbol (*) for it.

Final State Acceptability

In final state acceptability, a PDA accepts a string when, after reading the entire string, the PDA is in a

final state. From the starting state, we can make moves that end up in a final state with any stack

values. The stack values are irrelevant as long as we end up in a final state.

For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the set of final states F is −

L(PDA) = {w | (q0, w, I) * (q, ε, x), q F}

For any input stack string x.

 Empty Stack Acceptability

Here a PDA accepts a string when, after reading the entire string, the PDA has emptied its stack.

For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the empty stack is−

L(PDA) = {w | (q0, w, I) * (q, ε, ε), q Q}

Example

Construct a PDA that accepts L= {0n 1n | n ≥ 0}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Page 4

 Solution

This language accepts L = {ε, 01, 0011, 000111,}

Here, in this example, the number of ‘a’ and ‘b’ have to be same.

• Initially we put a special symbol ‘$’ into the empty stack.

• Then at state q2, if we encounter input 0 and top is Null, we push 0 into stack. This may

iterate. And if we encounter input 1 and top is 0, we pop this 0.

• Then at state q3, if we encounter input 1 and top is 0, we pop this 0. This may also iterate. And

if we encounter input 1 and top is 0, we pop the top element.

• If the special symbol ‘$’ is encountered at top of the stack, it is popped out and it finally goes

to the accepting state q4.

Example

Construct a PDA that accepts L= {ww
R
 | w = (a+b)* }

Solution

Initially we put a special symbol ‘$’ into the empty stack. At state q2, the w is being read. In state q3,

each 0 or 1 is popped when it matches the input. If any other input is given, the PDA will go to a dead

state. When we reach that special symbol ‘$’, we go to the accepting state q4.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Page 5

Equivalence of CFL and PDA:

 If a grammar G is context-free, we can build an equivalent nondeterministic PDA which accepts the

language that is produced by the context-free grammarG. A parser can be built for the grammar G.

Also, if P is a pushdown automaton, an equivalent context-free grammar G can be constructed where

 L(G) = L(P)

Algorithm to find PDA corresponding to a given CFG

Input − A CFG, G= (V, T, P, S)

Output − Equivalent PDA, P= (Q, ∑, S, δ, q0, I, F)

Step 1 Convert the productions of the CFG into GNF.

Step 2 The PDA will have only one state {q}.

Step 3 The start symbol of CFG will be the start symbol in the PDA.

Step 4 All non-terminals of the CFG will be the stack symbols of the PDA and all the

 terminals of the CFG will be the input symbols of the PDA.

Step 5 For each production in the form A → aX where a is terminal and A, X are
 combination of terminal and non-terminals, make a transition δ (q, a, A).

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

