In computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack.
Pushdown automata are used in theories about what can be computed by machines. They are more capable than finite-state machines but less capable than Turing machines. Deterministic pushdown automata can recognize all deterministic context-free languages while nondeterministic ones can recognize all context-free languages. Mainly the former are used in parser design.
The term "pushdown" refers to the fact that the stack can be regarded as being "pushed down" like a tray dispenser at a cafeteria, since the operations never work on elements other than the top element. A stack automaton, by contrast, does allow access to and operations on deeper elements. Stack automata can recognize a strictly larger set of languages than pushdown automata. A nested stack automaton allows full access, and also allows stacked values to be entire sub-stacks rather than just single finite symbols.
Here, it describes the nondeterministic pushdown automaton.

Basic Structure of PDA

A pushdown automaton is a way to implement a context-free grammar in a similar way we design DFA for a regular grammar. A DFA can remember a finite amount of information, but a PDA can remember an infinite amount of information.

Basically a pushdown automaton is -
"Finite state machine" + "a stack"
A pushdown automaton has three components -

- an input tape,
- a control unit, and
- a stack with infinite size.

The stack head scans the top symbol of the stack.
A stack does two operations -

- Push - a new symbol is added at the top.
- Pop - the top symbol is read and removed.

A PDA may or may not read an input symbol, but it has to read the top of the stack in every transition.

A PDA can be formally described as a 7 -tuple $\left(\mathrm{Q}, \sum, \mathrm{S}, \delta, \mathrm{q}_{0}, \mathrm{I}, \mathrm{F}\right)$

- Q is the finite number of states
- $\quad \sum$ is input alphabet
- $\quad \mathrm{S}$ is stack symbols
- δ is the transition function $-\mathrm{Q} \times\left(\sum \cup\{\varepsilon\}\right) \times \mathrm{S} \times \mathrm{Q} \times \mathrm{S}^{*}$
- q_{0} is the initial state $\left(\mathrm{q}_{0} \in \mathrm{Q}\right)$
- I is the initial stack top symbol $(I \in S)$
- $\quad F$ is a set of accepting states $(F \in Q)$

The following diagram shows a transition in a PDA from a state q_{1} to state q_{2}, labeled as $\mathrm{a}, \mathrm{b} \rightarrow \mathrm{c}-$

This means at state q_{1}, if we encounter an input string ' a ' and top symbol of the stack is ' b ', then we
pop ' b ', push ' c ' on top of the stack and move to state q_{2}.

Terminologies Related to PDA

Instantaneous Description:

The instantaneous description (ID) of a PDA is represented by a triplet (q, w, s) where

- q is the state
- w is unconsumed input
- s is the stack contents

Turnstile Notation

The "turnstile" notation is used for connecting pairs of ID's that represent one or many moves of a PDA. The process of transition is denoted by the turnstile symbol " \vdash ".

Consider a PDA $\left(\mathrm{Q}, \Sigma, \mathrm{S}, \delta, \mathrm{q}_{0}, \mathrm{I}, \mathrm{F}\right)$. A transition can be mathematically represented by the following turnstile notation -

$$
(\mathrm{p}, \mathrm{aw}, \mathrm{~T} \beta) \vdash(\mathrm{q}, \mathrm{w}, \alpha \mathrm{~b})
$$

This implies that while taking a transition from state p to state q , the input symbol ' a ' is consumed, and the top of the stack ' T ' is replaced by a new string ' α '.

Note - If we want zero or more moves of a PDA, we have to use the symbol $\left(\vdash^{*}\right)$ for it.

Final State Acceptability

In final state acceptability, a PDA accepts a string when, after reading the entire string, the PDA is in a final state. From the starting state, we can make moves that end up in a final state with any stack values. The stack values are irrelevant as long as we end up in a final state.
For a PDA $\left(\mathrm{Q}, \Sigma, \mathrm{S}, \delta, \mathrm{q}_{0}, \mathrm{I}, \mathrm{F}\right)$, the language accepted by the set of final states F is -
$L(P D A)=\left\{w \mid\left(q_{0}, w, I\right) \vdash^{*}(q, \varepsilon, x), q \in F\right\}$
For any input stack string x.

Empty Stack Acceptability

Here a PDA accepts a string when, after reading the entire string, the PDA has emptied its stack.
For a PDA $\left(\mathrm{Q}, \Sigma, \mathrm{S}, \delta, \mathrm{q}_{0}, \mathrm{I}, \mathrm{F}\right)$, the language accepted by the empty stack is-
$\mathrm{L}(\mathrm{PDA})=\left\{\mathrm{w} \mid\left(\mathrm{q}_{0}, \mathrm{w}, \mathrm{I}\right) \vdash^{*}(\mathrm{q}, \varepsilon, \varepsilon), \mathrm{q} \in \mathrm{Q}\right\}$

Example

Construct a PDA that accepts $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$

Solution

PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

This language accepts $\mathrm{L}=\{\varepsilon, 01,0011,000111, \ldots \ldots .$.
Here, in this example, the number of ' a ' and ' b ' have to be same.

- Initially we put a special symbol '\$' into the empty stack.
- Then at state q_{2}, if we encounter input 0 and top is Null, we push 0 into stack. This may iterate. And if we encounter input 1 and top is 0 , we pop this 0 .
- Then at state q_{3}, if we encounter input 1 and top is 0 , we pop this 0 . This may also iterate. And if we encounter input 1 and top is 0 , we pop the top element.
- If the special symbol ' $\$$ ' is encountered at top of the stack, it is popped out and it finally goes to the accepting state q_{4}.

Example

Construct a PDA that accepts $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} / \mathrm{w}=(\mathrm{a}+\mathrm{b})^{*}\right\}$

Solution

$$
\text { PDA for } L=\left\{w^{R} \mid w=(a+b)^{*}\right\}
$$

Initially we put a special symbol ' $\$$ ' into the empty stack. At state q_{2}, the w is being read. In state q_{3}, each 0 or 1 is popped when it matches the input. If any other input is given, the PDA will go to a dead state. When we reach that special symbol ' $\$$ ', we go to the accepting state q_{4}.

Equivalence of CFL and PDA:

If a grammar \mathbf{G} is context-free, we can build an equivalent nondeterministic PDA which accepts the language that is produced by the context-free grammarG. A parser can be built for the grammar \mathbf{G}.
Also, if P is a pushdown automaton, an equivalent context-free grammar G can be constructed where

$$
\mathbf{L}(\mathbf{G})=\mathbf{L}(\mathbf{P})
$$

Algorithm to find PDA corresponding to a given CFG

Input $\quad-\quad$ A CFG, $G=(V, T, P, S)$
Output - Equivalent $\mathrm{PDA}, \mathrm{P}=(\mathrm{Q}, \mathrm{\Sigma}, \mathrm{~S}, \delta, \mathrm{q} 0, \mathrm{I}, \mathrm{F})$
Step 1 Convert the productions of the CFG into GNF.
Step $2 \quad$ The PDA will have only one state $\{q\}$.
Step 3 The start symbol of CFG will be the start symbol in the PDA.
Step 4
All non-terminals of the CFG will be the stack symbols of the PDA and all the terminals of the CFG will be the input symbols of the PDA.

Step $5 \quad$ For each production in the form $\mathrm{A} \rightarrow \mathrm{aX}$ where a is terminal and A, X are combination of terminal and non-terminals, make a transition $\delta(\mathrm{q}, \mathrm{a}, \mathrm{A})$.

