

Unit 5 Page 1

Ambiguity in context free grammars:

In computer science, an ambiguous grammar is a context-free grammar for which there exists a string

that can have more than one leftmost derivation, while an unambiguous grammar is a context-free

grammar for which every valid string has a unique leftmost derivation. Many languages admit both

ambiguous and unambiguous grammars, while some languages admit only ambiguous grammars. Any

non-empty language admits an ambiguous grammar by taking an unambiguous grammar and

introducing a duplicate rule or synonym (the only language without ambiguous grammars is the empty

language). A language that only admits ambiguous grammars is called an inherently ambiguous

language, and there are inherently ambiguous context-free languages. Deterministic context-free

grammars are always unambiguous, and are an important subclass of unambiguous CFGs; there are

non-deterministic unambiguous CFGs, however.

For real-world programming languages, the reference CFG is often ambiguous, due to issues such as

the dangling else problem. If present, these ambiguities are generally resolved by adding precedence

rules or other context-sensitive parsing rules, so the overall phrase grammar is unambiguous.

If a context free grammar G has more than one derivation tree for some string w א L(G), it is called

an ambiguous grammar. There exist multiple right-most or left-most derivations for some string

generated from that grammar.

Problem:

Check whether the grammar G with production rules, X → X+X | X*X |X| a is ambiguous or not.

Solution:

Let’s find out the derivation tree for the string "a+a*a". It has two leftmost derivations.

Derivation 1 −

X → X+X → a +X → a+ X*X → a+a*X → a+a*a

Parse tree 1:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Unit 5 Page 2

Derivation 2 −

X → X*X → X+X*X → a+ X*X →a+a*X → a+a*a

Parse tree 2:

As there are two parse trees for a single string "a+a*a", the grammar G is ambiguous.

Trivial language

The simplest example is the following ambiguous grammar for the trivial language, which consists of

only the empty string:

A → A | ε

…meaning that a production can either be itself again, or the empty string. Thus the empty string has

leftmost derivations of length 1, 2, 3, and indeed of any length, depending on how many times the rule

A → A is used.

This language also has the unambiguous grammar, consisting of a single production rule:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Unit 5 Page 3

A → ε

…meaning that the unique production can only produce the empty string, which is the unique string in

the language.

In the same way, any grammar for a non-empty language can be made ambiguous by adding duplicates.

Unary string

The regular language of unary strings of a given character, say 'a' (the regular expression a*), has the

unambiguous grammar:

A → aA | ε

…but also has the ambiguous grammar:

A → aA | Aa | ε

These correspond to producing a right-associative tree (for the unambiguous grammar) or allowing

both left- and right- association.

Addition and Subtraction

The context free grammar

A → A + A | A − A | a

is ambiguous since there are two leftmost derivations for the string a + a + a:

 A → A + A A → A + A

 → a + A
→ A + A + A (First A is replaced by A+A. Replacement of the

second A would yield a similar derivation)

 → a + A + A → a + A + A

 → a + a + A → a + a + A

 → a + a + a → a + a + a

As another example, the grammar is ambiguous since there are two parse trees for the string a + a − a:

The language that it generates, however, is not inherently ambiguous; the following is a non-ambiguous

grammar generating the same language:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Unit 5 Page 4

A → A + a | A − a | a

Minimization of Context Free Grammars:

In formal language theory, a context-free grammar (CFG) is a formal grammar in which every

production rule is of the form

A α→

Where, A is a single nonterminal symbol, and α is a string of terminals and/or non-terminals (α can be

empty). A formal grammar is considered "context free" when its production rules can be applied

regardless of the context of a nonterminal. No matter which symbols surround it, the single nonterminal

on the left hand side can always be replaced by the right hand side. This is what distinguishes it from a

context-sensitive grammar.

Such a grammar has long lists of words, and also rules on what types of words can be added in what

order. Higher rules combine several lower rules to make a sentence. Such sentences will be

grammatically correct, but may not have any meaning. Each rule has its own symbol, which can be

replaced with symbols representing lower rules, which can be replaced with words.

Chomsky normal form:

CFG is in Chomsky Normal Form if the Productions are in the following forms −

• A → a

• A → BC

• S → ε

Where A, B, and C are non-terminals and ‘a’ is a terminal.

Algorithm to Convert into Chomsky Normal Form:

Step 1 If the start symbol S occurs on some right side, create a new start symbol S’ and a new

 production S’ → S.

Step 2 Remove Null productions. (Using the Null production removal algorithm)

Step 3 Remove unit productions. (Using the Unit production removal algorithm)

Step 4 Replace each production A → B1…Bn where n > 2 with A → B1C where C → B2

 …Bn. Repeat this step for all productions having two or more symbols in the right side.

Step 5 If the right side of any production is in the form A → aB where a is a terminal and A, B

 are non-terminal, then the production is replaced by A → XB and X → a. Repeat this

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Unit 5 Page 5

 step for every production which is in the form A → aB.

Problem:

Convert the following CFG into CNF

S → ASA | aB, A → B | S, B → b | א

Solution:

(1) Since S appears in R.H.S, we add a new state S0 and S0 → S is added to the production set and it

becomes −

 S0 → S, S → ASA | aB, A → B | S, B → b | ε

(2) Now we will remove the null productions −

 B → ε and A → ε

After removing B → ε, the production set becomes −

 S0 → S, S → ASA | aB | a, A → B | S | ε, B → b

After removing A → ε, the production set becomes −

 S0 → S, S → ASA | aB | a | AS | SA | S, A → B | S, B → b

(3) Now we will remove the unit productions.

After removing S → S, the production set becomes −

 S0 → S, S → ASA | aB | a | AS | SA, A → B | S, B → b

After removing S0 → S, the production set becomes −

 S0 → ASA | aB | a | AS | SA, S → ASA | aB | a | AS | SA

 A → B | S, B → b

After removing A → B, the production set becomes −

 S0 → ASA | aB | a | AS | SA, S → ASA | aB | a | AS | SA

 A → S | b

 B → b

After removing A → S, the production set becomes −

 S0 → ASA | aB | a | AS | SA, S → ASA | aB | a | AS | SA

 A → b |ASA | aB | a | AS | SA, B → b

(4) Now we will find out more than two variables in the R.H.S

Here, S0 → ASA, S → ASA, A → ASA violates two Non-terminals in R.H.S.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Unit 5 Page 6

Hence, we will apply step 4 and step 5 to get the following final production set which is in CNF −

 S0 → AX | aB | a | AS | SA

 S → AX | aB | a | AS | SA

 A → b |AX | aB | a | AS | SA

 B → b

 X → SA

(5) We have to change the productions S0 → aB, S → aB, A → aB

And the final production set becomes −

 S0 → AX | YB | a | AS | SA

 S → AX | YB | a | AS | SA

 A → b |AX | YB | a | AS | SA

 B → b

 X → SA

 Y → a

Greibach Normal Form:

A CFG is in Greibach Normal Form if the Productions are in the following forms −

 A → b

 A → bD1…Dn

 S → ε

Where, A, D1,...., Dn are non-terminals and b is a terminal.

Algorithm to Convert a CFG into Greibach Normal Form

Step 1 If the start symbol S occurs on some right side, create a new start symbol S’ and a new

 production S’ → S.

Step 2 Remove Null productions. (Using the Null production removal algorithm)

Step 3 Remove unit productions. (Using the Unit production removal algorithm)

Step 4 Remove all direct and indirect left-recursion.

Step 5 Do proper substitutions of productions to convert it into the proper form of GNF.

Problem

Convert the following CFG into CNF

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Unit 5 Page 7

 S → XY | Xn | p

 X → mX | m

 Y → Xn | o

Solution:

Here, S does not appear on the right side of any production and there are no unit or null productions in

the production rule set. So, we can skip Step 1 to Step 3.

 Step 4:

 Now after replacing

 X in S → XY | Xo | p

 with

 mX | m

 We obtain

 S → mXY | mY | mXo | mo | p.

 And after replacing

 X in Y → Xn | o

 with the right side of

 X → mX | m

 We obtain

 Y → mXn | mn | o.

Two new productions O → o and P → p are added to the production set and then we came to the final

GNF as the following −

 S → mXY | mY | mXC | mC | p

 X → mX | m

 Y → mXD | mD | o

 O → o

 P → p

Pumping Lemma for Context Free Languages:

Lemma

If L is a context-free language, there is a pumping length p such that any string w א L of length ≥ p can

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Unit 5 Page 8

be written as w = uvxyz, where vy ≠ ε, |vxy| ≤ p, and for all i ≥ 0, uvixyiz א L.

Applications of Pumping Lemma

Pumping lemma is used to check whether a grammar is context free or not. Let us take an example and

show how it is checked.

Problem:

Find out whether the language L= {xnynzn | n ≥1} is context free or not.

Solution:

Let L is context free. Then, L must satisfy pumping lemma.

At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n.

Break z into uvwxy, where

 |vwx| ≤ n and vx ≠ ε.

Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are at least (n+1) positions

apart. There are two cases −

Case 1 − vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would have to be in L, has n 2s,

but fewer than n 0s or 1s.

Case 2 − vwx has no 0s.

Here contradiction occurs.

Hence, L is not a context-free language.

Enumeration of properties of CFL (proofs omitted):

Context-free languages are closed under −

• Union

• Concatenation

• Kleene Star operation

Context-free languages are not closed under −

• Intersection

• Intersection with Regular Language

• Complement

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

