
Chapter 5 Page 1

Symbol Tables

Symbol Table:

 In computer science, a symbol table is a data structure used by a language translator such as

a compiler or interpreter, where each identifier in a program's source code is associated with

information relating to its declaration or appearance in the source.

 A data structure used by a compiler to keep track of semantics of variables. Variables mainly

classified with the representation on data types and scope of things. It is a data structure used by

compiler to keep track of semantics of names.

 After syntax tree have been constructed, we must check whether the input program is type-correct

(called type checking and part of the semantic analysis). During type checking, a compiler checks

whether the use of names (such as variables, functions, type names) is consistent with their

definition in the program.

 Consequently, it is necessary to remember declarations so that we can detect inconsistencies and

misuses during type checking. This is the task of a symbol table.

 First, any symbol table can define what is the data type and scope where it needs to be stored.

These all the statges we need to consider for the representation part. Please refer the below diagram

(Fig 1)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 5 Page 2

Fig 1

Tree Structures:

 Mostly tree structrure is the best way to implement and using the symbol tables, hash tables.

 This is the most efficient approach to building symbol table in memory database. You can use

various in-memory databases as modern computer provide ample amount of memory.

Relational database:

 In database, we have used relational database as to describe and define the all tables relation in

MYSQL and SQL.

 In this relational database representation, it provides important advantages due to better visibility

and ability to manipulate the database using SQL. That greatly simplifies debugging.

Scope Rules:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 5 Page 3

 Scope rules require a more complicated symbol table organization than simply a list of associations

between names and attributes. That's why many experimental languages and also in the past such

languages as Perl use flat "global" namespace.

 The simplest approach of to use multiple symbol tables, one for each active block, such as the block

that the compiler is currently in. The other is to use block prefix to denote the "real" name of the

variable. You can also use nesting depth as part of the name. In this case a triple {procedure name,

nesting depth, variable name} uniquely identifies all variables. organization for block structures

languages:

 A block consists of a sequence of statements and/ or blocks, preceded by declarations of variables.

Variables declared at the head of a block are visible throughout the block and any nested blocks,

unless a variable of the same name is declared at the head of an inner block.

 Mainly the declaration are happening like inner block, outer block-structured, based on this block

we are mainly declare the veriables, block of code and methods, classes and objects which are

described in the block of code.

 The concept of block structure was introduced in the Algol family of languages, and block-

structured languages are sometimes described as Algol-like. The concept of nested scopes implicit

in block structure contrasts with FORTRAN, where variables are either local to a program unit

(subroutine) or global to several program units if declared to be common. Both of these contrast

with COBOL, where all data items are visible throughout the entire program. Please refer the below

fig (2)

Fig (2)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 5 Page 4

Example:

Public Class

{

Int a =10;

Int b=20;

int c=a+b;

public static void main (“Addition”+c);

}

Hashing:

 Most of the programming languages we have suppose to use for writing and developing the projects

and products in that also, we are maintaining the concept as programming with security.

 Some of the banking side domains we are frequently used for transaction of money, let us imagine

if we dont have security then easily hackers will hack the data so to override this problem we

preferred as hashing.

 Producing hash values for accessing data or for security. A hash value (or simply hash), also called

a message digest, is a number generated from a string of text.

 The hash is substantially smaller than the text itself, and is generated by a formula in such a way

that it is extremely unlikely that some other text will produce the same hash value.

Hash Function:

 A hash function maps a big number or string to a small integer that can be used as index in hash

table.

 Properties:

o Efficiently computable.

o Should uniformly distribute the keys (Each table position equally likely for each key)

Hash Table:

 An array that stores pointers to records corresponding to a given phone number. An entry in hash

table is NIL if no existing phone number has hash function value equal to the index for the entry.

(fig 3)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 5 Page 5

Fig 3

Tree Structures Representation of Scope Information:

 A tree structure or tree diagram is a way of representing the hierarchical nature of a structure in a

graphical form. It is named a "tree structure" because the classic representation resembles a tree,

even though the chart is generally upside down compared to an actual tree, with the "root" at the

top and the "leaves" at the bottom.

 A tree structure is conceptual, and appears in several forms. For a discussion of tree structures in

specific fields, see Tree (data structure) for computer science: insofar as it relates to graph theory,

see tree (graph theory), or also tree (set theory). Other related pages are listed below.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 5 Page 6

Fig 4

 A compiler maintains two types of symbol tables: a global symbol table, which can be accessed by

all the procedures, and scope symbol tables that are created for each scope in the program Fig 4.

 To determine the scope of a name, symbol tables are arranged in hierarchical structure as shown in

the example below:

 . . .

 int value=10;

 void pro_one()

 {

 int one_1;

 int one_2;

 { \

 int one_3; |_ inner scope 1

 int one_4; |

 } /

 int one_5;

 { \

 int one_6; |_ inner scope 2

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 5 Page 7

 int one_7; |

 } /

 }

 void pro_two()

 {

 int two_1;

 int two_2;

 { \

 int two_3; |_ inner scope 3

 int two_4; |

 } /

 int two_5;

 }

. . .

Block Structures and Non-Block Structure Storage Allocation:

 Mainly the structures in programming language has defined in two ways that is block-structured

and non block-structured. While executing the programs this type of structures will play main role

like retrieving the values for input and out put results and using of data types, arrays, looping,

conditional and structured statements etc.... In order to represent the looping and conditional

statements with block-structured only.

Static Storage Allocation

 In a static storage-allocation strategy, it is necessary to be able to decide at compile time exactly

where each data object will reside at run time. In java, you see "static variables", "static methods",

"static classes" and "static blocks".

 Static variables, static methods and static classes are known to everyone but what is this "static

block". Let’s see what, where and how these static blocks are used.

 However, before going into "static block", lets refresh what other static stuff are. Now "static

variables" are class variables i.e., there will be only one copy for each class and not one copy for

each object of the class and these variables will be accessed without instantiating the class.

 Then what are static methods. Again they are class methods i.e., they can be accessed without

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 5 Page 8

creating an instance of the class and like static variables; static methods will be accessed without

instantiating the class.

 Note that static methods cannot access instance variables. They can access only static variables.

 Next, what are static classes? You cannot declare a top-level class as a static class. Java will throw a

compilation error. Only inner classes that are member classes can be declared as static.

 If we declare member classes as static, we can use it as a top-level class outside the context of top-

level class.

 One catch here is "The static keyword does not do to a class declaration what it does to a variable

or a method declaration." - what it means is say for example you have a static variable, then to

access that static variable you will use the notation.

Runtime stack and heap storage allocation:

 Stacks in computing architectures are regions of memory where data is added or removed in a last-

in-first-out (LIFO) manner.

 In most modern computer systems, each thread has a reserved region of memory referred to as its

stack. When a function executes, it may add some of its state data to the top of the stack; when the

function exits it is responsible for removing that data from the stack.

 At a minimum, a thread's stack is used to store the location of function calls in order to allow return

statements to return to the correct location, but programmers may further choose to explicitly use

the stack. If a region of memory lies on the thread's stack, that memory is said to have been

allocated on the stack.

 Because the data is added and removed in a last-in-first-out manner, stack-based memory allocation

is very simple and typically faster than heap-based memory allocation (also known as dynamic

memory allocation).

 Another feature is that memory on the stack is automatically, and very efficiently, reclaimed when

the function exits, which can be convenient for the programmer if the data is no longer required. If

however, the data needs to be kept in some form, then it must be copied from the stack before the

function exits. Therefore, stack based allocation is suitable for temporary data or data which is no

longer required after the creating function exits.

 A thread's assigned stack size can be as small as only a few bytes on some small CPU's. Allocating

more memory on the stack than is available can result in a crash due to stack overflow.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 5 Page 9

 Some processor families, such as the x86, have special instructions for manipulating the stack of

the currently executing thread. Other processor families, including PowerPC and MIPS, do not have

explicit stack support, but instead rely on convention and delegate stack management to the

operating system's application binary interface (ABI). Refer below fig 5

Fig 5

Storage Allocation for Arrays, Strings and Records:

 In computer programming, a string is traditionally a sequence of characters, either as a literal

constant or as some kind of variable. The latter may allow its elements to be mutated and the length

changed, or it may be fixed (after creation).

 A string is generally understood as a data type and is often implemented as an array of bytes (or

words) that stores a sequence of elements, typically characters, using some character encoding. A

string may also denote more general arrays or other sequence (or list) data types and structures.

 Depending on programming language and precise data type used, a variable declared to be a string

may either cause storage in memory to be statically allocated for a predetermined maximum length

or employ dynamic allocation to allow it to hold variable number of elements.

 When a string appears literally in source code, it is known as a string literal or an anonymous string.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 5 Page 10

 In formal languages, which are used in mathematical logic and theoretical computer science, a

string is a finite sequence of symbols that are chosen from a set called an alphabet. An array is a

systematic arrangement of similar objects, usually in rows and columns.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

