www.sakshieducation.com

Constructors and Destructors

Constructors are the special type of class functions which initializes the object automatically
when the object is created, the compiler identifies that the given member function is a
constructor by its name and return type. The constructor has the same name as the class and it
does not have any return type. Constructor initializes the values to object members after the
memory is allocated to the object. The constructors are always public and they are used to make
initializations at the time of object creation. The objects constructor is automatically called

whenever the object is created statically or dynamically.

Example for Constructor inside the class:

class student
{
private:
string name;
int rolIno;
public:
student() // constructor defined inside the class

{

// body of the constructor

3
Constructor can defined either inside the class or outside the class using class hame and scope

resolution “::” operator.

Example for Constructor outside the class:

class student

www.sakshieducation.com

www.sakshieducation.com

{

Private:
string name;
int rolIno;
public:

student(); // constructor declaration inside the class
Y
student :: student() // constructor defined outside the class

{

// body of the constructor

Actually the compiler has a default constructor then why do we need to define a constructor for a

given class and some other important points related to constructor are as follows.

e We define a constructor when we want to initialize the data members of the class with
some default values or with some arguments passed to the class or when we want to carry
out any work when an object is created.

e As soon as we define a constructor the default constructor created by compiler is
destroyed, so while defining a constructor make sure that the default constructor also
defined.

e |If we do not specify any constructor the compiler will create a default constructor with no
arguments and empty body loop.

e Constructors have no return type.

e Constructors function name is same as that of class name.

The following examples show default constructor and explicit used defined constructor. If the
class does not have any used defined explicit constructor, then the compiler will automatically
create an empty default constructor which does not initialize any of the class member variables,

www.sakshieducation.com

www.sakshieducation.com

if we use it to allocate an object of a class, then the member variables of the class will not
initialized and they will hold garbage values. It’s good to provide at least one constructor in the
class which will prevent compiler from creating an empty default constructor and ensuring that
users don’t have to instantiate objects of the class that have uninitialized members.

Example with default constructor:

“Value

S#include <iostream:
#include <string>

using namespace std;
.

| G:ECPF"'-.C-::unsrtruc...l =N |Hh]

-lclass Value

1 —858993468 .
private: Pressz any key to continue
int
public:
= int get walue
1
return x;
} £l by default constructor
- S Walue() ¢ with explict constructor
1
® o= B3
] ._."
b
—lint main()
1
Value a;
cout << a.get_walue() << endl;
system(“pause™);
return @3
¥

Figurel: Example with default constructor which holds garbage value

Example with explicit constructor:

www.sakshieducation.com

www.sakshieducation.com

“i§Value

—#include <iostream:
#include <string>

using namespace std;

[] G:\CF‘P‘-.mnsrtrun:t-:ur...| = =) |ﬁ‘

—-lclass Value

{ 5]
private: Press any key to continue .
int x;
public:
- int get_ua!ueEi \
1
return x;
}
= Value{) // with explict constructer
1
x = 8;
h
Is
-lint main()
1
Value a;
cout << a.get value() << endl;
system("pause”);
return 8;
h

Figure2: Example with explicit constructor with initialized values

Types of constructors

The constructors are classified into three types and they are

1. Default constructor
2. Parameterized constructor

3. Copy constructor

Default constructor

www.sakshieducation.com

www.sakshieducation.com

The default constructor does not take any arguments. The default constructor is so
important for initialization of object members and even if we do not define any constructor

explicitly, the compile will provide the default constructor.

Parameterized constructor

The parameterized constructor is used to provide different values to data members of

different objects by passing the appropriate values as arguments.

Copy constructor

Copy constructors are the special type of constructors which takes an object as argument

and are used to copy the values of data members of one object into the other object.

Example:

int main ()

{

student s1, s2, s3;

student s4(s3); or student s4 = s3; // it copies the content of s3 to s4

Example program for all constructors:

The following example program shows all the three types of constructors.

#include <iostream>
#include <string>

using namespace std;
class Value

{

private:
int x;

public:

www.sakshieducation.com

www.sakshieducation.com

int get_value()

{
return Xx;
}
Value() // default constructor
{
X = 10;
}
Value(int i) // parameterized constructor
{
X = 1ij;
}
Value(Value &) // copy constructor
{
X = b.x;
}
}s
int main()
{
Value a; // default constructor set value of x_to 10

Value b (22); // parameterized constructor set value of x to 22

Value c = b; // copy constructor will copy the values of constructor b to
constructor c

cout << a.get_value() << endl; // print the value -- 10

cout << b.get_value() << endl; // print the value -- 22

cout << c.get_value() << endl ;// print the value -- 22

system("pause");

return 0;

ss any key to continue . . .

Figure3: Output of the program

Constructor Overloading

The constructors can be overloaded like function overloading. The overloaded

constructors have the same name of the class but different number of arguments passed.

www.sakshieducation.com

www.sakshieducation.com

Depending upon the number and type of argument passed the specific constructor is called. Since
the constructor is called when object is created, so argument to the constructor also passed while

creating object.

Example program for constructor overloading:

The following program shows the constructor without arguments and with different number of

arguments.

#tinclude <iostream>
#include <string>

using namespace std;

class student{

private:
string name;
int roll_no;
public:
student () // Constructor without argument
{
name = "studentl";
cout << "Name: " << name << endl;
roll no = 7;
cout << "Roll no: " << roll no << endl;
}
student (string x, int y) // Constructor with two arguments
{
name = X;
cout << "Name: " << name << endl;
roll no = y;
cout << "Roll no: " << roll_no << endl;
}
student (string x, int y, int z) // Constructor with three arguments
{
int marks;
name = X;
cout << "Name: " << name << endl;
roll no = y;
cout << "Roll no: " << roll _no << endl;
marks = z;
cout << "Marks are: " << marks << endl;
}
s

www.sakshieducation.com

www.sakshieducation.com

int main()

{

student s1; // no arguments

student s2("student2", 77); // two arguments
student s3("student3",777, 545); // three arguments
system("pause");

return 0;

In the above program the object s1 has no arguments, so here the constructor with no
argument is invoked which initializes the member name to “student1” and roll_no to “7”. For the
object s2 we passed two arguments, so it will call the constructor with two arguments which
initializes the member name to “student2” and roll_no to “77”. Similarly for object s3 we passed
three arguments so it will call the constructor with three arguments which initializes the member

name “student3”, roll_no to “777” and marks to “555” as shown in the below output screen.

Mame: studentl
Roll_no: ¥
Mame: student?2
Roll_no: 7/
Mame: student3
Roll_no: /Y

Marks are: 545
Press any kev to continue . . .

Figure4: Output of the program

Destructors

The destructor is a special type of class function which destroys the object as soon as the
scope of the object ends. The destructor is called automatically by the compiler when the object

goes out of the scope. The destructor is looks like similar to constructor. For destructor the class

www.sakshieducation.com

www.sakshieducation.com

name is used for the name of destructor with a tilde ‘~* symbol as prefix to it. The destructors

will never have any arguments and no return type.

Syntax:

class student

public:

~student(); // Destructor

};

Important points about destructor:

e The destructor function is called automatically when object goes out of the scope:
0 When the function call ends.
0 When the program ends.
0 When a block containing local variables ends.
0 When a delete operator is called.

e There is only one destructor in a class with class name preceded by ‘~’ tilde operator with
no arguments and return type.

e If we do not create user defined destructor in class then the compiler creates a default
destructor. This works fine unless we have dynamically allocated memory or pointer in
class. When a class contains a pointer to memory allocated in class then we should create
a destructor to release memory before the instance is destroyed otherwise it create

memory leak.

Example program for destructor:

#include <iostream>

using namespace std;

www.sakshieducation.com

www.sakshieducation.com

class destructor

{
public:
destructor()
{
cout << "Constructor is called" << endl;
}
~destructor()
{
cout << "Destructor is called" << endl;
}
}s
int main()
{
destructor tempil; // constructor is called
int x;
cout << "enter input: ";
cin >> x;

if(x == true)
{

destructor temp2; // constructor is called
} // destructor is called for temp2

system("pause");
return 0;

} // destructor is called for templ

Constructor 1is called
nter input: 1
Constructor is called

Destructor 1s called
Press any key to continue . . .

Figure5: Output of the program

www.sakshieducation.com

