
Chapter 4 Page 1

Intermediate forms of source Programs – abstract syntax tree

 In computer science, an abstract syntax tree (AST), or just syntax tree, is

a tree representation of theabstract syntactic structure of source code written in

a programming language.

 Each node of the tree denotes a construct occurring in the source code. The syntax is

"abstract" in not representing every detail appearing in the real syntax. For instance,

grouping parentheses are implicit in the tree structure, and a syntactic construct like an if-

condition-then expression may be denoted by means of a single node with three branches.

 This distinguishes abstract syntax trees from concrete syntax trees, traditionally

designated parse trees, which are often built by a parser during the source code translation

and compiling process. Once built, additional information is added to the AST by means

of subsequent processing, e.g., contextual analysis. Please refer the below fig.

 ASTs represent the syntactic structure of the some code. The trees of programming

constructs such as expressions, flow control statements, etc - grouped into operators

(interior nodes) and operands (leaves). For example, the syntax tree for the expression i +

9 would have the operator + as root, the variable i as the operator's left child, and the

number 9 as the right child.

 The difference here is that nonterminals and terminals don't play a role, as ASTs don't

deal with grammars and string generation, but programming constructs, and thus they

represent relationships between such constructs, and not the ways they are generated by a

grammar.

 Note that the operators themselves are programming constructs in a given language, and

don't have to be actual computational operators (like + is): for loops would also be treated

in this way. For example, you could have a syntax tree such as for [expr, expr, expr,

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Directed_tree
https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Bracket#Parentheses
https://en.wikipedia.org/wiki/Concrete_syntax_tree
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Semantic_analysis_(compilers)

Chapter 4 Page 2

stmnt] (represented inline), where for is an operator, and the elements inside the square

brackets are its children (representing C's for syntax) - also composed out of operators

etc.

 ASTs are usually generated by compilers in the syntax analysis (parsing) phase as well,

and are used later for semantic analysis, intermediate representation, code generation, etc.

Here's a graphical representation of an AST:

 Parse trees tell us exactly how a string was parsed. Parse trees contain more information

than we need ie., we only need the basic shape of the tree, not where every non-terminal

is – Non-terminals are necessary for parsing, not for meaning.

 An Abstract Syntax Tree is a simplifed version of a parse tree – basically a parse tree

without non-terminals.

Polish Notation and Three Address Code:

Polish Notation (PN):

 Polish notation (PN), also known as normal Polish

notation (NPN), Łukasiewicz notation, Warsaw notation, Polish prefix notation or

simplyprefix notation, is a form of notation for logic, arithmetic, and algebra.

 Its distinguishing feature is that it places operators to the left of their operands. If

the arity of the operators is fixed, the result is a syntax lacking parentheses or other

brackets that can still be parsed without ambiguity.

 The Polishlogician Jan Łukasiewicz invented this notation in 1924 in order to

simplify sentential logic.

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

https://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz
https://en.wikipedia.org/wiki/Warsaw
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Operator_(mathematics)
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Arity
https://en.wikipedia.org/wiki/Poland
https://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz
https://en.wikipedia.org/wiki/Propositional_calculus

Chapter 4 Page 3

 The term Polish notation is sometimes taken (as the opposite of infix notation) to also

include Polish postfix notation, or reverse Polish notation (RPN), in which the operator is

placed after the operands.

 When Polish notation is used as a syntax for mathematical expressions by programming

language interpreters, it is readily parsed into abstract syntax trees and can, in fact, define

a one-to-one representation for the same. Because of this, Lisp (see below) and related

programming languages define their entire syntax in terms of prefix notation (and others

use postfix notation).

Three Address Code (TAC):

 In computer science, three-address code (often abbreviated to TAC or 3AC) is

an intermediate code used by optimizing compilers to aid in the implementation of code-

improving transformations.

 Each TAC instruction has at most three operands and is typically a combination of

assignment and a binary operator. For example, t1 := t2 + t3 . The name derives from the

use of three operands in these statements even though instructions with fewer operands

may occur.

 Since three-address code is used as an intermediate language within compilers, the

operands will most likely not be concrete memory addresses or processor registers, but

rather symbolic addresses that will be translated into actual addresses during register

allocation.

 It is also not uncommon that operand names are numbered sequentially since three-

address code is typically generated by the compiler. A refinement of three-address code

is static single assignment form (SSA).

 In three-address code, this would be broken down into several separate instructions.

These instructions translate more easily to assembly language. It is also easier to detect

common sub-expressions for shortening the code. In the following example, one

calculation is composed of several smaller ones:

Example:

Calculate one solution to the [[quadratic equation]].

 x = (-b + sqrt(b^2 - 4*a*c)) / (2*a)

 t1 := b * b

 t2 := 4 * a

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Polish_notation#Computer_programming
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Intermediate_language
https://en.wikipedia.org/wiki/Optimizing_compiler
https://en.wikipedia.org/wiki/Code-improving_transformation
https://en.wikipedia.org/wiki/Code-improving_transformation
https://en.wikipedia.org/wiki/Processor_registers
https://en.wikipedia.org/wiki/Register_allocation
https://en.wikipedia.org/wiki/Register_allocation
https://en.wikipedia.org/wiki/Register_allocation
https://en.wikipedia.org/wiki/Static_single_assignment_form

Chapter 4 Page 4

 t3 := t2 * c

 t4 := t1 - t3

 t5 := sqrt(t4)

 t6 := 0 - b

 t7 := t5 + t6

 t8 := 2 * a

 t9 := t7 / t8

 x := t9

 Three-address code may have conditional and unconditional jumps and methods of

accessing memory. It may also have methods of calling functions, or it may reduce these

to jumps. In this way, three-address code may be useful in control-flow analysis. In the

following C-like example, a loop stores the squares of the numbers between 0 and 9:

 ...

 for (i = 0; i < 10; ++i) {

 b[i] = i*i;

 }

 ...

 t1 := 0 ; initialize i

 L1: if t1 >= 10 goto L2 ; conditional jump

 t2 := t1 * t1 ; square of i

 t3 := t1 * 4 ; word-align address

 t4 := b + t3 ; address to store i*i

 *t4 := t2 ; store through pointer

 t1 := t1 + 1 ; increase i

 goto L1 ; repeat loop

 L2:

Attribute Grammer:

 An attribute grammar is a formal way to define attributes for the productions of

a formal grammar, associating these attributes to values. The evaluation occurs in the

nodes of the abstract syntax tree, when the language is processed by

some parser or compiler.

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Compiler

Chapter 4 Page 5

 The attributes are divided into two groups: synthesized attributes and inherited attributes.

o The synthesized attributes are the result of the attribute evaluation rules, and may

also use the values of the inherited attributes.

o The inherited attributes are passed down from parent nodes.

o In some approaches, synthesized attributes are used to pass semantic information

up the parse tree, while inherited attributes help pass semantic information down

and across it.

o For instance, when constructing a language translation tool, such as a compiler, it

may be used to assign semantic values to syntax constructions.

o Also, it is possible to validate semantic checks associated with a grammar,

representing the rules of a language not explicitly imparted by the syntax

definition.

 Attribute grammars can also be used to translate the syntax tree directly into code for

some specific machine, or into some intermediate language.

 One strength of attribute grammars is that they can transport information from anywhere

in the abstract syntax tree to anywhere else, in a controlled and formal way. Please check

the below image.

Syntax Directed Translation:

 Syntax-directed translation refers to a method of compiler implementation where the

source language translation is completely driven by the parser.

 A common method of Syntax-directed translation is translating a string into a sequence

of actions by attaching one such action to each rule of a grammar. Thus, parsing a string

of the grammar produces a sequence of rule applications. SDT provides a simple way to

attach semantics to any such syntax.

 The Principle of Syntax Directed Translation states that the meaning of an input sentence

is related to its syntactic structure, i.e., to its Parse-Tree.

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

https://en.wikipedia.org/wiki/Intermediate_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Grammar
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Syntax

Chapter 4 Page 6

 By Syntax Directed Translations we indicate those formalisms for specifying translations

for programming language constructs guided by context-free grammars.

 We associate Attributes to the grammar symbols representing the language constructs.

Values for attributes are computed by Semantic Rules associated with grammar

productions.

 Evaluation of Semantic Rules may:

o Generate Code

o Insert information into the Symbol Table

o Perform Semantic Check

o Issue error messages etc.

 There are two notations for attaching semantic rules:

1. Syntax Directed Definitions. High-level specification hiding many implementation

details (also called Attribute Grammars).

2. Translation Schemes. More implementation oriented: Indicate the order in which

semantic rules are to be evaluated.

 The construction of parse tree is as show in the figure.

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Chapter 4 Page 7

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Chapter 4 Page 8

Previous GATE Questions:

1. Question

o (a)

o (b)

o (c)

o (d)

2. Question

o (a)

o (b)

o (c)

o (d)

3. Question

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Chapter 4 Page 9

o (a)

o (b)

o (c)

o (d)

4. Question

o (a)

o (b)

o (c)

o (d)

5. Question

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Chapter 4 Page 10

o (a)

o (b)

o (c)

o (d)

6. Question

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Chapter 4 Page 11

o (a)

o (b)

o (c)

o (d)

7. Question

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Chapter 4 Page 12

o (a)

o (b)

o (c)

o (d)

8. Question

o (a)

o (b)

o (c)

o (d)

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Chapter 4 Page 13

9. Question

o (a)

o (b)

o (c)

o (d)

10. Question

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Chapter 4 Page 14

o (a)

o (b)

o (c)

o (d)

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

