Part-III
 MATHEMATICS
 Paper II (B)
 (English Version)

Time: 3 Hours
Max. Marks: 75
Note: This paper consists of three sections A, B, C.

SECTION A

I. Very short answer type questions:
i) Answer ALL questions
ii) Each question carries TWO marks.

1. Find the value ' a ' if $2 x^{2}+a y^{2}-3 x+2 y-1=0$ represents a circle and also find its radius.
2. If the length of a tangent from $(5,4)$ to the circle $x^{2}+y^{2}+2 k y=0$ is ' 1 ', then find ' k '.
3. Find the equation of the common chord of the circles:
$(x-a)^{2}+(y-b)^{2}=c^{2},(x-b)^{2}+(y-a)^{2}=c^{2},(a \neq b)$.
4. Find the co-ordinates of the points on the parabola:
$y^{2}=2 x \quad$ whose focal distance is $5 / 2$.
5. Define rectangular hyperbola and find its eccentricity.
6. Find: $\int \frac{e^{x}(1+x \log x)}{x} d x$
7. Find: $\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x, x \in R$
8. Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin ^{5} x \cos ^{4} x d x$
9. Evaluate: $\int_{0}^{2}|1-x| d x$
10. Form the differential equation corresponding to $y=A \cos 3 x+B \sin 3 x$, where A and B are parameters.

SECTION B

II. Short answer type questions:
i) Attempt ANY FIVE questions.
ii) Each question carries FOUR marks.
11. Find the equation of circle whose centre lies on the x-axis and passing through $(-2,3)$ and $(4,5)$.
12. If $x+y=3$ is the equation of the chord $A B$ of the circle:
$x^{2}+y^{2}-2 x+4 y-8=0$, find the equation of the circle having $A B$ as diameter.
13. Find the equation of tangent and normal to the ellipse $9 x^{2}+16 y^{2}=144$
14. Find the value of ' k ' if:
$4 x+y+k=0$ is a tangent to the ellipse $x^{2}+3 y^{2}=3$.
15. Find the eqautions of the tangents to the hyperbola:
$3 x^{2}-4 y^{2}=12$, which are:
i) Parallel and
ii) Perpendicular to the line: $\mathrm{y}=\mathrm{x}-7$.
16. Find: $\int_{0}^{\frac{\pi}{2}} \frac{d x}{4+5 \cos x} d x$
17. Solve the differential equation:
$\left(x y^{2}+x\right) d x+\left(y x^{2}+y\right) d y=0$

SECTION C

III. Long answer type questions:
i) Attempt ANY FIVE questions
ii) Each question carries SEVEN marks.
18. If $(2,0),(0,1),(4,5)$ and $(0, C)$ are concyclics then find ' C '.
19. Find the transverse common tangents of the circles:
$x^{2}+y^{2}-4 x-10 y+28=0$ and $x^{2}+y^{2}+4 x-6 y+4=0$
20. Evaluate:

$$
\int \frac{2 \cos x+3 \sin x}{4 \cos x+5 \sin x} d x
$$

21. Obtain reduction formula:

$$
\int \tan ^{n} x d x
$$

for integer $\mathrm{n} \geq 2$ and evaluate:

$$
\int \tan ^{6} x d x
$$

22. Derive the standard form of the parabola.
23. Evaluate:

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x
$$

24. Solve:

$$
\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y
$$

