## Sr. Inter Mathematics IIB Model Paper

Time: 3 Hours
Max. Marks: 75

## Section - A

## I. Very Short Answer Questions.

## Answer All Questions.

Each Question carries 'Two" marks.

1. Length of tangent drawn from $(5,4)$ to $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{ky}=0$ is 1 then find the value of k .
2. For circle $x^{2}+y^{2}-10 x-10 y+25=0$ find polar equation drawn from $(1,-2)$.
3. Find angle between circles $x^{2}+y^{2}-12 x-6 y+41=0, x^{2}+y^{2}+4 x+6 y-59=0$.
4. Find parabola equation with focus $S(1,-7)$, vertex A $(1,-2)$.
5. If the eccentricity of a hyperbola is $\frac{5}{4}$, then find the eccentricity of its conjugate hyperbola.
6. Evaluate $\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)} d x$
7. Find $\int \frac{1+\cos ^{2} x}{1-\cos 2 x} d x\{$ on $I \subset R\{n \pi: n \in Z\}$
8. Find the value of $\int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x$
9. Find the value of $\int_{0}^{2 \pi} \sin ^{2} x \cdot \cos ^{2} x \mathrm{~d} x$
10. Find order and degree of $\left[\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}\right]^{\frac{6}{5}}=6 y$.

## Section - B

## II. Short Answer Questions.

## Answer any "Five" Questions.

Each Question carries 'Four' marks.
11. Find the equation of the circle whose center lies on X -axis and passing through $(-2,3),(4,5)$.
12. Find the equation of the circle whose diameter is the common chord of the circles
$S \equiv x^{2}+y^{2}+2 x+3 y+1=0$ and $S^{\prime} \equiv x^{2}+y^{2}+4 x+3 y+2=0$.
13. For ellipse $4 x^{2}+y^{2}-8 x+2 y+1=0$ find eccentricity, length of Latus rectum, length of major axis and minor axis.
14. Find the equation of the tangents to the ellipse $2 x^{2}+y^{2}=8$ which are parallel to $x-2 y-4=0$.
15. Find the centre, eccentricity, foci, directrix and the length of the Latus rectum of the hyperbola. $4 x^{2}-9 y^{2}-8 x-32=0$.
16. Find the value of $\int x \operatorname{Tan}^{-1} x d x, x \in R$
17. Solve $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\operatorname{Tan}^{-1} x}$.

## Section-C

## III. Long Answer Questions.

## Answer any "Five" Questions.

## Each Question carries 'Seven" marks.

18. If $(2,0),(0,1),(4,5)$ and $(0, c)$ are Concyclic then find $c$.
19. Find direct common tangent equation for circles $x^{2}+y^{2}+22 x-4 y-100=0$,

$$
x^{2}+y^{2}-22 x+4 y+100=0
$$

20. Prove that area of triangle formed by three tangents drawn from $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ to parabola $y^{2}=4 a x(a>0)$ is $\frac{1}{16}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|$ square units.
21. Evaluate $\int \frac{9 \cos x-\sin x}{4 \sin x+5 \cos x} d x$
22. Evaluate $\int(3 x-2) \sqrt{2 x^{2}-x+1} d x$
23. Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x$
24. Solve $\sin ^{2} x \cdot \frac{d y}{d x}+y=\cot x$.
