Sr. Inter Mathematics IIB Model Paper

Time: 3 Hours

Max. Marks: 75

Section – A

I. Very Short Answer Questions.

Answer All Questions.

Each Question carries "Two" marks.

 $10 \times 2 = 20 \mathrm{M}$

- 1. Length of tangent drawn from (5, 4) to $x^2 + y^2 + 2ky = 0$ is 1 then find the value of k.
- 2. For circle $x^2 + y^2 10x 10y + 25 = 0$ find polar equation drawn from (1, -2).
- 3. Find angle between circles $x^2 + y^2 12x 6y + 41 = 0$, $x^2 + y^2 + 4x + 6y 59 = 0$.
- 4. Find parabola equation with focus S (1, -7), vertex A (1, -2).
- 5. If the eccentricity of a hyperbola is $\frac{5}{4}$, then find the eccentricity of its conjugate hyperbola.

6. Evaluate
$$\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx$$

7. Find
$$\int \frac{1+\cos^2 x}{1-\cos 2x} dx \{ on \ I \subset R \{ n\pi : n \in Z \} \}$$

8. Find the value of $\int_{0}^{3} \frac{x}{\sqrt{x^2 + 16}} dx$

9. Find the value of $\int_{1}^{2\pi} \sin^2 x \cdot \cos^2 x \, dx$

10. Find order and degree of
$$\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^3\right]^{\frac{1}{5}} = 6y$$
.

Section – B

II. Short Answer Questions.

Answer any "Five" Questions.

Each Question carries "Four" marks.

$5 \times 4 = 20 \text{ M}$

11. Find the equation of the circle whose center lies on X-axis and passing through (-2, 3), (4, 5).

12. Find the equation of the circle whose diameter is the common chord of the circles $S \equiv x^2 + y^2 + 2x + 3y + 1 = 0$ and $S' \equiv x^2 + y^2 + 4x + 3y + 2 = 0$.

www.sakshieducation.com

www.sakshieducation.com

13. For ellipse $4x^2 + y^2 - 8x + 2y + 1 = 0$ find eccentricity, length of Latus rectum, length of major axis and minor axis.

14. Find the equation of the tangents to the ellipse $2x^2 + y^2 = 8$ which are parallel to x - 2y - 4 = 0.

15. Find the centre, eccentricity, foci, directrix and the length of the Latus rectum of the hyperbola. $4x^2 - 9y^2 - 8x - 32 = 0.$

16. Find the value of $\int x Tan^{-1}x \, dx, x \in R$

17. Solve $(1+x^2)\frac{dy}{dx} + y = e^{\operatorname{Tan}^{-1}x}$.

Section – C

 $5 \times 7 = 35$ M

III. Long Answer Questions.

Answer any "Five" Questions.

Each Question carries "Seven" marks.

18. If (2, 0), (0, 1), (4, 5) and (0, c) are Concyclic then find c.

19. Find direct common tangent equation for circles $x^2 + y^2 + 22x - 4y - 100 = 0$,

$$x^2 + y^2 - 22x + 4y + 100 = 0.$$

20. Prove that area of triangle formed by three tangents drawn from (x_1, y_1) , (x_2, y_2) , (x_3, y_3) to parabola

$$y^2 = 4ax (a > 0) is \frac{1}{16} |(y_1 - y_2)(y_2 - y_3)(y_3 - y_1)|$$
 square units.

21. Evaluate $\int \frac{9\cos x - \sin x}{4\sin x + 5\cos x} dx$

22. Evaluate $\int (3x-2)\sqrt{2x^2-x+1} \, dx$

23. Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16\sin 2x} dx$

24. Solve $\sin^2 x \cdot \frac{dy}{dx} + y = \cot x$.