## Sr. Inter Mathematics IIA Model Paper

## Time: 3 Hours

Max. Marks: 75

## Section-A

## I. Very Short Answer Questions. Answer all Questions. Each Question carries 'Two' marks $10 \times 2=20 \mathrm{M}$

1. Find the multiplicative inverse of $7+24 i$.
2. Find the square root of $3+4 i$.
3. If the point P denotes complex number $\mathrm{z}=\mathrm{x}+$ iy in the Argand plane and if $\frac{z-i}{z-1}$ is a purely imaginary number then find the locus of P .
4. Form quadratic equation whose roots are: $\frac{p-q}{p+q},-\left(\frac{p+q}{p-q}\right)(p \neq \pm q)$
5. Find the algebraic equation whose roots are 3 times the roots of $x^{3}+2 x^{2}-4 x+1=0$.
6. Find the number of 5 -digit numbers that can be formed using the digits, $0,1,2,3,4,5$ if each digit can be used any number of times.
7. If ${ }^{9} \mathrm{C}_{3}+{ }^{9} \mathrm{C}_{5}={ }^{10} \mathrm{C}_{\mathrm{r}}$ find 'r'.
8. Find the term independent of $x$ in the expansion of $\left(\frac{x^{\frac{1}{2}}}{3}-\frac{4}{x^{2}}\right)^{10}$
9. Find the mean deviation about the mean for the following data $3,6,10,4,9,10$.
10. A Poisson variable satisfies $P(X=1)=P(X=2)$, find $P(X=5)$.

## Section - B

II. Short Answer Questions. Answer any 'Five' Questions. Each Question carries 'Four' marks. $5 \times 4=20 \mathrm{M}$
11. If $x+i y=\frac{1}{1+\cos \theta+i \sin \theta}$ then prove that $4 \mathrm{x}^{2}-1=0$.
12. If $x$ is real, prove that $\frac{x}{x^{2}-5 x+9}$ lies between $\frac{-1}{11}$ and 1 .
13. Find the number of 4 letter words that can be formed using the letters of the word MIXTURE which
i) Contain the letter $X$
ii) Do not contain the letter X
14. Find the number of ways of selecting 11 members cricket team from 7 batsman, 6 bowlers and 2 wicket keepers so that the team contains 2 wicket keepers and at least 4 bowlers.
15. Divide $\frac{x^{2}}{(x-1)(x-2)}$ into partial fractions
16. A, B, C are three horses in a race. The probability of A to win the race is twice that of $B$, and probability of B is twice that of C . What are the probabilities of $\mathrm{A}, \mathrm{B}$ and C to win the race?
17. A Bag contains 12 two rupee coins, 7 one rupee coins, 4 half rupee coins, if three coins are selected at random then, find probability that
i) The sum of three coins is maximum
ii) Each coin is of different value

## Section - C

## III. Long Answer Questions. Answer any 'Five' Questions. Each Question carries 'Seven' marks. $5 \times 7=35 \mathrm{M}$

18. Prove that $\left(\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right)^{\frac{8}{3}}=-1$
19. Solve $6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0$.
20. If the coefficients of $\mathrm{r}^{\text {th }},(\mathrm{r}+1)^{\text {th }}$ and $(\mathrm{r}+2)^{\text {nd }}$ terms in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$ are in A.P. then show that $\mathrm{n}^{2}$ $-(4 r+1) n+4 r^{2}-2=0$
21. If $x=\frac{1}{5}+\frac{1.3}{5.10}+\frac{1.3 .5}{5 \cdot 10.15}+\ldots \ldots \infty$, then find $3 \mathrm{x}^{2}+6 \mathrm{x}$.
22. Calculate the variance and standard deviation of the following continuous frequency distribution

| Class interval | Frequency |
| :---: | :---: |
| $30-40$ | 3 |
| $40-50$ | 7 |
| $50-60$ | 12 |
| $60-70$ | 15 |
| $70-80$ | 8 |
| $80-90$ | 3 |
| $90-100$ | 2 |

23. State and prove Addition theorem on probability.
24. The range of random variable $X$ is $\{0,1,2\}$, given that $P(X=0)=3 c^{3}, P(X=1)=4 c-10 c^{2}$, $\mathrm{P}(\mathrm{X}=2)=5 \mathrm{c}-1$.
i) Find the value of c
ii) $\mathrm{P}(\mathrm{X}<1), \mathrm{P}(1<\mathrm{X} \leq 2)$ and $\mathrm{P}(0<\mathrm{X} \leq 3)$.
