
 Sub : MATHS - IB
 Max. Marks:75

I. Answer all the following :

 $10 \times 2=20$1. Find the ratio in which line joining $(0,0)$ and $(-2,1)$ is divided by the line $2 x+3 y=5$
2. Find the equation of the straight line parallel to the line $2 x+3 y+7=0$ and passing through the point $(5,4)$
3. Find the ratio in which YZ - plane divides the line joining $\mathrm{A}(2,4,5)$ and $B(3,5,-4)$. Also find the point of intersection.
4. Reduce the equation $x+2 y-3 z-6=0$ of the plane to the normal form
5. Find the value of $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{\left(x-\frac{\pi}{2}\right)}$
6. $f(x)=\left\{\frac{\sin 2 x}{x}\right.$ if $x \neq 0, \mathrm{f}(\mathrm{x})=2$ at $\mathrm{x}=0$, is $\mathrm{f}(\mathrm{x})$ continuous at 0 ?
7.Find the derivatives of the function $\operatorname{Cos}^{-1}\left(4 x^{3}-3 x\right)$
7. Find the derivative of $\frac{\cos x}{\sin x+\cos x}$
8. If $\mathrm{y}=x^{2}+3 x+6, x=10, \Delta x=0.01$ then find the values of $\mathrm{dy}, \Delta y$ 10.Vierfy Role's theorem for the function $\mathrm{x}^{2}-1$ on $[-1,1]$
II. Answer any five of the following: $5 \times 4=20$
9. $\mathrm{A}(5,3)$ and $\mathrm{B}(3,-2)$ are two fixed points, find the equation of Locus of P , so that area of triangle PAB is 9
10. When the axes are rotated through an angle 45° the transformed equation of a curve is $17 x^{2}-16 x y+17 y^{2}=225$.Find the original equation of curve.
11. Find the value of p, if the following lines $3 x+4 y=5,2 x+3 y=4, p x+4 y=6$ are concurrent
12. Find the value of $\lim _{x \rightarrow 0} \frac{\sin (a+b x)-\sin (a-b x)}{x}$
15.Find the derivative of function $\sqrt{x+1}$ from first principle.
13. Find angle between curves $\mathrm{x}+\mathrm{y}+2=0$ and $x^{2}+y^{2}-10 y=0$
17.For cube volume is increasing at a rate if $8 \mathrm{~cm}^{3} / \mathrm{sec}$ then find rate of increase in its total surface area when its side is 12 cm
III. Answer any five of the following :
$5 \times 7=35$
18.Find the circum center of the triangle whose vertices are $(-2,-1),(6,-1)$ and $(2,5)$
14. Show that the lines joining the origin to the points of intersection of the curve $x^{2}-x y+y^{2}+3 x+3 y-2 \Rightarrow$ and the straight line $x-y-\sqrt{z} 0$ are mutually perpendicular
15. If the second degree equation $s=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intwo variables x and y represents a pair of straight lines, then prove that
i) abc $+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$
ii) $h^{2} \geq a b, g^{2} \geq a c, f^{2} \geq b c$
21.Find the direction cosines of two lines which are connected by the relations $l-5 m+3 n=0$ and $7 l^{2}+5 m^{2}-3 n^{2}=0$.
22.If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(* \quad y)$ then prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$
23.If the tangent at any point on the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ intersects the coordinate axes in A and B, then show that the length $A B$ is a constant
16. From a rectangular sheet of dimensions $30 \mathrm{~cm} \times 80 \mathrm{~cm}$ four square of side x cm are removed at the corners and sides are turned up so as to form an open rectangular box. Find the value of x so that the volume of the box is greatest
