

Introduction:

In computer science, LR parsers are a type of bottom-up parsers that efficiently

handle deterministic context-free languages in guaranteed linear time. The LALR parsers and

the SLR parsers are common variants of LR parsers. LR parsers are often mechanically

generated from a formal grammar for the language by a parser generator tool. They are very

widely used for the processing of computer languages, more than other kinds of generated

parsers.

• The name LR is an initialism. The L means that the parser reads input text in one

direction without backing up; that direction is typically Left to right within each line,

and top to bottom across the lines of the full input file. (This is true for most parsers.)

• The R means that the parser produces a reversed Rightmost derivation; it does

a bottom-up parse, not a top-down LL parse or ad-hoc parse.

• The name LR is often followed by a numeric qualifier, as in LR(1) or sometimes LR

(k). To avoid backtracking or guessing, the LR parser is allowed to peek ahead

at k lookahead input symbols before deciding how to parse earlier symbols.

Typically k is 1 and is not mentioned.

• The name LR is often preceded by other qualifiers, as in SLR and LALR.

• LR parsers are deterministic; they produce a single correct parse without guesswork

or backtracking, in linear time. This is ideal for computer languages. But LR parsers

are not suited for human languages which need more flexible but slower methods.

• Other parser methods (CYK algorithm, Earley parser, and GLR parser) that backtrack

or yield multiple parses may take O(n2), O(n3) or even exponential time when they

guess badly.

• The above properties of L, R, and k are actually shared by all shift-reduce parsers,

including precedence parsers. But by convention, the LR name stands for the form of

parsing invented by Donald Knuth, and excludes the earlier, less powerful precedence

methods (for example Operator-precedence parser).

• LR parsers can handle a larger range of languages and grammars than precedence

parsers or top-down LL parsing. This is because the LR parser waits until it has seen

an entire instance of some grammar pattern before committing to what it has found.

• An LL parser has to decide or guess what it is seeing much sooner, when it has only

seen the leftmost input symbol of that pattern. LR is also better at error reporting. It

detects syntax errors as early in the input stream as possible.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Example

• A

p

gu

• A

th

• T

ri

• A

sh

nu

• N

nu

T

im

e:

An LR parser

arser builds

uessing or b

At every poin

he input text

Those subtree

ight end of th

At step 6 in t

haded lower

umbered 7 a

Nodes 3, 4, a

umber 2, res

The remainin

mage)

r scans and

 up the pars

backtracking

nt in this pas

that have be

es are not ye

he syntax pa

the example

r-left corner

and above ex

and 6 are th

spectively. T

ng unparsed

parses the i

se tree incre

.

ss, the parse

een already p

et joined tog

attern that wi

e parse, only

r of the pa

xist yet.

he roots of i

These three

portion of t

input text in

ementally, b

r has accum

parsed.

gether becau

ill combine t

y "A*2" has

arse tree ex

isolated subt

root nodes a

he input stre

n one forwar

bottom up, a

mulated a list

use the parse

them.

been parsed

xists. None

trees for var

are temporar

eam is "+ 1"

rd pass over

and left to r

t of subtrees

er has not ye

d, incomplet

of the pars

riable A, op

rily held in

". (Please re

the text. Th

right, withou

or phrases o

et reached th

tely. Only th

se tree node

perator *, an

a parse stack

efer the below

he

ut

of

he

he

es

nd

k.

w

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Diagram for Bottom-Up Parsing:

Shift and reduce actions:

As with other shift-reduce parsers, an LR parser works by doing some combination of Shift

steps and Reduce steps.

• A Shift step advances in the input stream by one symbol. That shifted symbol becomes a

new single-node parse tree.

• A Reduce step applies a completed grammar rule to some of the recent parse trees,

joining them together as one tree with a new root symbol.

If the input has no syntax errors, the parser continues with these steps until all of the input has

been consumed and all of the parse trees have been reduced to a single tree representing an

entire legal input.

LR parsers differ from other shift-reduce parsers in how they decide when to reduce, and how

to pick between rules with similar endings. But the final decisions and the sequence of shift

or reduce steps are the same. Much of the LR parser's efficiency is from being deterministic.

To avoid guessing, the LR parser often looks ahead (rightwards) at the next scanned symbol,

before deciding what to do with previously scanned symbols. The lexical scanner works one

or more symbols ahead of the parser. The look ahead symbols are the 'right-hand context' for

the parsing decision.

Example:

• At every parse step, the entire input text is divided into parse stack, current lookahead

symbol, and remaining unscanned text.

• The parser's next action is determined by the rightmost stack symbol(s) and the

lookahead symbol.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• The action is read from a table containing all syntactically valid combinations of stack

and lookahead symbols.

Step Parse Stack
Look

Ahead
Unscanned Parser Action

0 Empty id = B + C*2 Shift

1 Id = B + C*2 Shift

2 id = id + C*2 Shift

3 id = id + C*2 Reduce by Value ← id

4 id = Value + C*2 Reduce by Products ← Value

5 id = Products + C*2 Reduce by Sums ← Products

6 id = Sums + C*2 Shift

7 id = Sums + id *2 Shift

8 id = Sums + id * 2 Reduce by Value ← id

9 id = Sums + Value * 2 Reduce by Products ← Value

10 id = Sums + Products * 2 Shift

11 id = Sums + Products * int Eof Shift

12
id = Sums + Products

* int
eof

Reduce by Value ← int

13
id = Sums + Products *

Value
eof

Reduce by Products ← Products *

Value

14 id = Sums + Products eof

Reduce by Sums ← Sums +

Products

15 id = Sums eof Reduce by Assign ← id = Sums

16 Assign eof Done

Grammar Examples:

A grammar is the set of patterns or syntax rules for the input language. It doesn't cover all

language rules, such as the size of numbers, or the consistent use of names and their

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

definitions in the context of the whole program. Shift-reduce parsers use a context-free

grammar that deals just with local patterns of symbols.

The example grammar used here is a tiny subset of the Java or C language:

Assign ← id = Sums

Sums ← Sums + Products

Sums ← Products

Products ← Products * Value

Products ← Value

Value ← int

Value ← id

• The grammar's terminal symbols are the multi-character symbols or 'tokens' found in

the input stream by a lexical scanner. Here these include = + * and int for any integer

constant, and id for any identifier name.

• The grammar doesn't care what the int values or id spellings are, nor does it care about

blanks or line breaks. The grammar uses these terminal symbols but does not define

them. They are always at the bottom bushy end of the parse tree.

• The capitalized terms like Sums are nonterminal symbols. These are names for

concepts or patterns in the language. They are defined in the grammar and never occur

themselves in the input stream. They are always above the bottom of the parse tree.

• They only happen as a result of the parser applying some grammar rule. Some

nonterminals are defined with two or more rules; these are alternative patterns. Rules

can refer back to themselves.

• This grammar uses recursive rules to handle repeated math operators. Grammars for

complete languages use recursive rules to handle lists, parenthesized expressions and

nested statements.

• Any given computer language can be described by several different grammars. The

grammar for a shift-reduce parser must be unambiguous itself, or be augmented by tie-

breaking precedence rules.

• This means there is only one correct way to apply the grammar to a given legal

example of the language, resulting in a unique parse tree and a unique sequence of

shift/reduce actions for that example.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• A table-driven parser has all of its knowledge about the grammar encoded into

unchanging data called parser tables. The parser's program code is a simple generic

loop that applies unchanged to many grammars and languages.

• The tables may be worked out by hand for precedence methods. For LR methods, the

complex tables are mechanically derived from a grammar by some parser

generator tool like Bison.

• The parser tables are usually much larger than the grammar. In other parsers that are

not table-driven, such as recursive descent, each language construct is parsed by a

different subroutine, specialized to the syntax of that one const.

LR and LALR Parser
The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide class of

context-free grammar which makes it the most efficient syntax analysis technique. LR

parsers are also known as LR(k) parsers, where L stands for left-to-right scanning of the

input stream; R stands for the construction of right-most derivation in reverse, and k denotes

the number of lookahead symbols to make decisions.

There are three widely used algorithms available for constructing an LR parser:

• SLR(1) – Simple LR Parser:

o Works on smallest class of grammar

o Few number of states, hence very small table

o Simple and fast construction

• LR(1) – LR Parser:

o Works on complete set of LR(1) Grammar

o Generates large table and large number of states

o Slow construction

• LALR(1) – Look-Ahead LR Parser:

o Works on intermediate size of grammar

o Number of states are same as in SLR(1)

LR Parsing Algorithm

Here we describe a skeleton algorithm of an LR parser:

token = next_token()

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

repeat forever

 s = top of stack

 if action[s, token] = “shift si” then

 PUSH token

 PUSH si

 token = next_token()

 else if action[s, tpken] = “reduce A::= β“ then

 POP 2 * |β| symbols

 s = top of stack

 PUSH A

 PUSH goto[s,A]

 else if action[s, token] = “accept” then

 return

 else

 error()

LL vs. LR

LL LR

Does a leftmost derivation. Does a rightmost derivation in reverse.

Starts with the root nonterminal on the

stack.

Ends with the root nonterminal on the stack.

Ends when the stack is empty. Starts with an empty stack.

Uses the stack for designating what is still

to be expected.

Uses the stack for designating what is already

seen.

Builds the parse tree top-down. Builds the parse tree bottom-up.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Continuously pops a nonterminal off the

stack, and pushes the corresponding right

hand side.

Tries to recognize a right hand side on the

stack, pops it, and pushes the corresponding

nonterminal.

Expands the non-terminals. Reduces the non-terminals.

Reads the terminals when it pops one off

the stack.

Reads the terminals while it pushes them on

the stack.

Pre-order traversal of the parse tree. Post-order traversal of the parse tree.

Error Recovery in Parsing:
A parser should be able to detect and report any error in the program. It is expected that

when an error is encountered, the parser should be able to handle it and carry on parsing the

rest of the input. Mostly it is expected from the parser to check for errors but errors may be

encountered at various stages of the compilation process. A program may have the following

kinds of errors at various stages:

• Lexical : name of some identifier typed incorrectly

• Syntactical : missing semicolon or unbalanced parenthesis

• Semantical : incompatible value assignment

• Logical : code not reachable, infinite loop

There are four common error-recovery strategies that can be implemented in the parser to

deal with errors in the code.

Panic Mode

When a parser encounters an error anywhere in the statement, it ignores the rest of the

statement by not processing input from erroneous input to delimiter, such as semi-colon.

This is the easiest way of error-recovery and also, it prevents the parser from developing

infinite loops.

Statement Mode

When a parser encounters an error, it tries to take corrective measures so that the rest of

inputs of statement allow the parser to parse ahead. For example, inserting a missing

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

semicolon, replacing comma with a semicolon etc. Parser designers have to be careful here

because one wrong correction may lead to an infinite loop.

Error Productions

Some common errors are known to the compiler designers that may occur in the code. In

addition, the designers can create augmented grammar to be used, as productions that

generate erroneous constructs when these errors are encountered.

Global correction

The parser considers the program in hand as a whole and tries to figure out what the

program is intended to do and tries to find out a closest match for it, which is error-free.

When an erroneous input (statement) X is fed, it creates a parse tree for some closest error-

free statement Y. This may allow the parser to make minimal changes in the source code,

but due to the complexity (time and space) of this strategy, it has not been implemented in

practice yet.

Abstract Syntax Trees

Parse tree representations are not easy to be parsed by the compiler, as they contain more

details than actually needed. Take the following parse tree as an example:

If watched closely, we find most of the leaf nodes are single child to their parent nodes. This

information can be eliminated before feeding it to the next phase. By hiding extra

information, we can obtain a tree as shown below:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Abstract

ASTs ar

are more

t tree can be

re important

e compact th

represented

data structu

han a parse tr

as:

ures in a com

ree and can b

mpiler with l

be easily use

least unnece

ed by a comp

essary inform

piler.

mation. ASTTs

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

YACC:

• YACC is a computer program for the Unix operating system. It is a LALR parser

generator, generating a parser, the part of a compiler that tries to make syntactic sense

of thesource code, specifically a LALR parser, based on an analytic grammar written

in a notation similar to BNF.

• YACC itself used to be available as the default parser generator on most Unix

systems, though it has since been supplanted as the default by more recent, largely

compatible, programs.

• YACC is an acronym for "Yet Another Compiler Compiler". It is a LALR parser

generator, generating a parser, the part of a compiler that tries to make syntactic sense

of thesource code, specifically a LALR parser, based on an analytic grammar written

in a notation similar to BNF.

• It was originally developed in the early 1970s by Stephen C. Johnson at AT&T

Corporation and written in the B programming language, but soon rewritten in C. It

appeared as part of Version 3 Unix and a full description of Yacc was published in

1975.

• The input to Yacc is a grammar with snippets of C code (called "actions") attached to

its rules. Its output is a shift-reduce parser in C that executes the C snippets associated

with each rule as soon as the rule is recognized.

• Typical actions involve the construction of parse trees. Using an example from

Johnson, if the call node(label, left, right)constructs a binary parse tree node with the

specified label and children, then the rule recognizes summation expressions and

constructs nodes for them. The special identifiers $$, $1 and $3 refer to items on the

parser's stack.

expr : expr '+' expr { $$ = node('+', $1, $3); }

• Yacc and similar programs (largely reimplementations) have been very popular. Yacc

itself used to be available as the default parser generator on most Unix systems,

though it has since been supplanted as the default by more recent, largely compatible,

programs such as Berkeley Yacc, GNU bison, MKS Yacc and Abraxas PCYACC.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• An updated version of the original AT&T version is included as part

of Sun's OpenSolaris project. Each offers slight improvements and additional features

over the original Yacc, but the concept and syntax have remained the same.

• Yacc has also been rewritten for other languages, including OCaml,

Ratfor, ML, Ada, Pascal, Java, Python, Ruby,Go and Common Lisp.

• Yacc produces only a parser (phrase analyzer); for full syntactic analysis this requires

an external lexical analyzer to perform the first tokenization stage (word analysis),

which is then followed by the parsing stage proper.

• Lexical analyzer generators, such as Lex or Flex are widely available.

The IEEE POSIX P1003.2 standard defines the functionality and requirements for

both Lex and Yacc.

• Some versions of AT&T Yacc have become open source. For example, source

code (for different implementations) is available with the standard distributions

of Plan 9 andOpenSolaris.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

