
Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 1

Nondeterministic Finite Automata (NFA):

 Nondeterministic Finite Automata (NFA) states of an automaton of this kind

may or may not have a transition for each symbol in the alphabet, or can even have multiple

transitions for a symbol. The automaton accepts a word if there exists at least one path from

q0 to a state in F labeled with the input word. If a transition is undefined, so that the

automaton does not know how to keep on reading the input, the word is rejected.

Formulas:

An NFA is represented formally by a 5-tuple, (Q, Σ, Δ, q0, F), consisting of

• a finite set of states Q

• a finite set of input symbols Σ

• a transition function Δ : Q × Σ → P(Q).

• an initial (or start) state q0 א Q

• a set of states F distinguished as accepting (or final) states F ك Q.

 Here, P(Q) denotes the power set of Q. Let w = a1a2 ... an be a word over the alphabet

Σ. The automaton M accepts the word w if a sequence of states, r0,r1, ..., rn, exists in Q with

the following conditions:

1. r0 = q0

2. ri+1 א Δ(ri, ai+1), for i = 0, ..., n−1

3. rn א F

 In words, the first condition says that the machine starts in the start state q0. The

second condition says that given each character of string w, the machine will transition from

state to state according to the transition function Δ.

 The last condition says that the machine accepts w if the last input of w causes the

machine to halt in one of the accepting states. In order for w being accepted by M it is not

required that every state sequence ends in an accepting state, it is sufficient if one does.

Otherwise, i.e. if it is impossible at all to get from q0 to a state from F by following w, it is

said that the automaton rejects the string. The set of strings M accepts is

the language recognized by M and this language is denoted by L(M).

We can also define L(M) in terms of Δ*: Q × Σ* → P(Q) such that:

1. Δ*(r, ε)= {r} where ε is the empty string, and

2. If x א Σ*, a א Σ, and Δ*(r, x)={r1, r2,..., rk} then Δ*(r, xa)= Δ(r1, a)׫...׫Δ(rk, a).

Now L(M) = {w | Δ*(q0, w) ∩ F ≠ ׎}.

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 2

 Note that there is a single initial state, which is not necessary. Sometimes, NFAs are

defined with a set of initial states. There is an easy construction that translates a NFA with

multiple initial states to a NFA with single initial state, which provides a convenient notation.

For a more elementary introduction of the formal definition see automata theory

Q = { 0, 1, 2 }, = { a, b }, A = { 2 }, the initial state is 0 and is as shown in the

following table.

 Note that for each state there are two rows in the table for corresponding to

the symbols a and b. A state transition diagram for this finite automaton is given below.

Regular Expression to NFA:

 It is proven (Kleene’s Theorem) that RE and FA are equivalent language

definition methods. Based on this theoretical result practical algorithms have been developed

enabling us actually to construct FA’s from RE’s and simulate the FA with a computer

program using Transition Tables. In following this progression an NFA is constructed first

from a regular expression, then the NFA is reconstructed to a DFA, and finally a Transition

Table is built.

 The Thompson’s Construction Algorithm is one of the algorithms that can be

used to build a Nondeterministic Finite Automaton (NFA) from RE, and Subset construction

Algorithm can be applied to convert the NFA into a Deterministic Finite Automaton (DFA).

State (q) Input (a) Next State ((q, a))

0 A { 1 , 2 }

0 B

1 A

1 B { 2 }

2 A

2 B

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 3

 The last step is to generate a transition table. We need a finite state machine

that is a deterministic finite automaton (DFA) so that each state has one unique edge for an

input alphabet element. So that for code generation there is no ambiguity. But a

nondeterministic finite automaton (NFA) with more than one edge for an input alphabet

element is easier to construct using a general algorithm - Thompson’s construction. Then

following a standard procedure, we convert the NFA to a DFA for coding.

Regular expression

Consider the regular expression

 r = (a|b)*abb, that matches {abb, aabb, babb, aaabb, bbabb, ababb, aababb,……}

 To construct a NFA from this, use Thompson’s construction. This method

constructs a regular expression from its components using ε-transitions. The ε transitions act

as “glue or mortar” for the subcomponent NFA’s. An ε-transition adds nothing since

concatenation with the empty string leaves a regular expression unchanged (concatenation

with ε is the identity operation).

Parse the regular expression into its subexpressions involving alphabet symbols a and b and

ε: ε, a, b, a|b, ()*, ab, abb

These describe

• a regular expression for single characters ε, a, b

• alternation between a and b representing the union of the sets: L(a) U L(b)

• Kleene star ()*

• concatenation of a and b: ab, and also abb

 Subexpressions of these kinds have their own Nondeterministic Finite

Automata from which the overall NFA is constructed. Each component NFA has its own start

and end accepting states. A Nondeterministic Finite Automata (NFA) has a transition

diagram with possibly more than one edge for a symbol (character of the alphabet) that has a

start state and an accepting state. The NFA definitely provides an accepting state for the

symbol.

Converting a regular expression to a NFA - Thompson's Algorithm

We will use the rules which defined a regular expression as a basis for the construction:

www.sa
ks

hie
du

ca
tio

n.c
om

Nondete
Aut
tab

Chapter 1

1. T

2. If

3. T

b

4. C

5. T

in

Converti

 T

automato

“Convert

than one

requires t

revisit hi

erministic Finit
tomata (DFA)C
blesRegister A

en

1 partII

The N

f the regular

The union op

e

Concatenation

The Kleene c

nput;

ing NFA to

This section s

on (NFA) i

t → Convert

path from in

The V

that a progra

s programs o

te Automata (N
Converting an
AllocationLexic
vironmentsInt

NFA r

r expression

perator is rep

n simply i

closure must

DFA:

specifically d

nto a deter

t to DFA” m

nitial state an

Von Neuma

am has to be

often during

NFA)Converti
n NFA to a DFA
cal analysis in
ermediate cod

representing

n is just a ch

presented by

r

involves co

allow for ta

describes ho

rministic au

menu option

nd associate

ann principl

e primary me

g its evolutio

ng a regular e
AFunction Ca

n detailparsing
de generationM

the

haracter, eg.

y a choice of

represented

onnecting o

aking zero or

thus a* look

ow one may

utomaton (D

n. For any str

d with x.

le for the d

emory reside

on. However

expression to a
llsLL(1) Parsin
syntax-directe
Memory Mana

empty

 a, then the

f transitions

one NFA t

r more instan

ks

transform an

DFA) by us

ring x, there

design and

ent to execut

, due to the

an NFA Determ
ngSLR Parsing
ed translationR
agement

y stri

correspondi

from a node

to the othe

nces of the l

ny nondeterm

sing the too

e may exist

operation o

te. Also, a us

fact that prim

ministic Finite
gSymbol
Runtime

Page

ing is

ing NFA is

e; thus a|b ca

as

er; eg. ab is

etter from th

like

ministic fini

ols under th

none or mor

of computer

ser requires t

mary memor

 4

s:

:

an

s:

s:

he

e:

te

he

re

rs

to

ry

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 5

is volatile, a user needs to store his program in some non-volatile store. All computers

provide a non-volatile secondary memory available as an online storage.

 Programs and files may be disk resident and downloaded whenever their

execution is required. Therefore, some form of memory management is needed at both

primary and secondary memory levels. Secondary memory may store program scripts,

executable process images and data files. It may store applications, as well as, system

programs.

 In fact, a good part of all OS, the system programs which provide services (the

utilities for instance) are stored in the secondary memory. These are requisitioned as needed.

The main motivation for management of main memory comes from the support for

multiprogramming.

 Several executables processes reside in main memory at any given time. In

other words, there are several programs using the main memory as their address space.

Also, programs move into, and out of, the main memory as they terminate, or get suspended

for some IO, or new executables are required to be loaded in main memory. So, the OS has to

have some strategy for main memory management. In this chapter we shall discuss the

management issues and strategies for both main memory and secondary memory.

Main Memory Management

Let us begin by examining the issues that prompt the main memory management.

Allocation: First of all the processes that are scheduled to run must be resident in the

memory. These processes must be allocated space in main memory.

Swapping, fragmentation and compaction: If a program is moved out or terminates, it

creates a hole, (i.e. a contiguous unused area) in main memory. When a new process is to be

moved in, it may be allocated one of the available holes. It is quite possible that main

memory has far too many small holes at a certain time. In such a situation none of these holes

is really large enough to be allocated to a new process that may be moving in. The main

memory is too Operating Systems/Memory management Lecture Notes PCP Bhatt/IISc,

Bangalore M4/V1/June 04/2 fragmented. It is, therefore, essential to attempt compaction.

Compaction means OS re-allocates the existing programs in contiguous regions and creates a

large enough free area for allocation to a new process.

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 6

Garbage collection: Some programs use dynamic data structures. These programs

dynamically use and discard memory space. Technically, the deleted data items (from a

dynamic data structure) release memory locations. However, in practice the OS does not

collect such free space immediately for allocation. This is because that affects performance.

Such areas, therefore, are called garbage. When such garbage exceeds a certain threshold, the

OS would not have enough memory available for any further allocation. This entails

compaction (or garbage collection), without severely affecting performance.

Protection: With many programs residing in main memory it can happen that due to a

programming error (or with malice) some process writes into data or instruction area of some

other process. The OS ensures that each process accesses only to its own allocated area, i.e.

each process is protected from other processes.

Virtual memory: Often a processor sees a large logical storage space (a virtual storage

space) though the actual main memory may not be that large. So some facility needs to be

provided to translate a logical address available to a processor into a physical address to

access the desired data or instruction.

IO support: Most of the block-oriented devices are recognized as specialized files. Their

buffers need to be managed within main memory alongside the other processes. The

considerations stated above motivate the study of main memory management. One of the

important considerations in locating an executable program is that it should be possible to

relocate it any where in the main memory. We shall dwell upon the concept of relocation

next.

Code Generation:

 In computing, code generation is the process by which a compiler's code

generator converts some intermediate representation of source code into a form

(e.g., machine code) that can be readily executed by a machine. The input to the code

generator typically consists of a parse tree or an abstract syntax tree. The tree is converted

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 7

into a linear sequence of instructions, usually in an intermediate language such as three-

address code.

 Further stages of compilation may or may not be referred to as "code

generation", depending on whether they involve a significant change in the representation of

the program. (For example, a peephole optimization pass would not likely be called "code

generation", although a code generator might incorporate a peephole optimization pass.)

 A code generator is expected to have an understanding of the target machine’s

runtime environment and its instruction set. The code generator should take the following

things into consideration to generate the code:

Target language: The code generator has to be aware of the nature of the target language for

which the code is to be transformed. That language may facilitate some machine-specific

instructions to help the compiler generate the code in a more convenient way. The target

machine can have either CISC or RISC processor architecture.

IR Type: Intermediate representation has various forms. It can be in Abstract Syntax Tree

AST structure, Reverse Polish Notation, or 3-address code. Selection of instruction : The

code generator takes Intermediate Representation as input and converts maps it into target

machine’s instruction set. One representation can have many ways instructions to convert it,

so it becomes the responsibility of the code generator to choose the appropriate instructions

wisely.

Register allocation: A program has a number of values to be maintained during the

execution. The target machine’s architecture may not allow all of the values to be kept in the

CPU memory or registers. Code generator decides what values to keep in the registers. Also,

it decides the registers to be used to keep these values. Ordering of instructions : At last, the

code generator decides the order in which the instruction will be executed. It creates

schedules for instructions to execute them.

Descriptors: The code generator has to track both the registers foravailability and addresses

locationofvalues while generating the code. For both of them, the following two descriptors

are used:

• Register descriptor: Register descriptor is used to inform the code generator

 about the availability of registers. Register descriptor keeps track of values

 stored in each register. Whenever a new register is required during code

 generation, this descriptor is consulted for register availability.

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 8

• Address descriptor: Values of the names identifiers used in the program

 might be stored at different locations while in execution. Address descriptors

 are used to keep track of memory locations where the values of identifiers are

 stored. These locations may include CPU registers, heaps, stacks, memory or a

 combination of the mentioned locations. Code generator keeps both the

 descriptor updated in real-time.

For a load statement, LD R1, x, the code generator: updates the Register Descriptor R1 that

has value of x and updates the Address Descriptor x to show that one instance of x is in R1.

 Basic blocks comprise of a sequence of three-address instructions. Code

generator takes these sequence of instructions as input. Note : If the value of a name is found

at more than one place register, cache, ormemory, the register’s value will be preferred over

the cache and main memory. Likewise cache’s value will be preferred over the main memory.

Main memory is barely given any preference.

getReg: Code generator uses getReg function to determine the status of available registers

and the location of name values.

getReg works as follows: If variable Y is already in register R, it uses that register. Else if

some register R is available, it uses that register. Else if both the above options are not

possible, it chooses a register that requires minimal number of load and store instructions. For

an instruction x = y OP z, the code generator may perform the following actions.

• Let us assume that L is the location preferablyregister where the output of y OP z is to

be saved: Call function getReg, to decide the location of L.

• Determine the present location registerormemory of y by consulting the Address

Descriptor of y. If y is not presently in register L, then generate the following

instruction to copy the value of y to L: MOV y’, L where y’ represents the copied

value of y.

• Determine the present location of z using the same method used in step 2 for y and

generate the following instruction: OP z’, L where z’ represents the copied value of z.

• Now L contains the value of y OP z, that is intended to be assigned to x. So, if L is a

register, update its descriptor to indicate that it contains the value of x.

• Update the descriptor of x to indicate that it is stored at location L. If y and z has no

further use, they can be given back to the system.

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 9

Deterministic Finite Automaton (DFA)

In DFA, for each input symbol, one can determine the state to which the machine will move.

Hence, it is called Deterministic Automaton. As it has a finite number of states, the machine

is called Deterministic Finite Machineor Deterministic Finite Automaton.

Formal Definition of a DFA

A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where −

• Q is a finite set of states.

• ∑ is a finite set of symbols called the alphabet.

• δ is the transition function where δ: Q × ∑ → Q

• q0 is the initial state from where any input is processed (q0 א Q).

• F is a set of final state/states of Q (F ك Q).

Graphical Representation of a DFA

A DFA is represented by digraphs called state diagram.

• The vertices represent the states.

• The arcs labeled with an input alphabet show the transitions.

• The initial state is denoted by an empty single incoming arc.

• The final state is indicated by double circles.

Example

Let a deterministic finite automaton be →

• Q = {a, b, c},

• ∑ = {0, 1},

• q0={a},

• F={c}, and

• Transition function δ as shown by the following table –

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 10

Present State Next State for Input 0 Next State for Input 1

A A b

B C a

C B c

Its graphical representation would be as follows −

Problem Statement

Let X = (Qx, ∑, δx, q0, Fx) be an NDFA which accepts the language L(X). We have to design

an equivalent DFA Y = (Qy, ∑, δy, q0, Fy) such that L(Y) = L(X). The following procedure

converts the NDFA to its equivalent DFA −

Algorithm

Input: An NDFA

Output: equivalent DFA

Step 1 Create state table from the given NDFA.

Step 2 Create a blank state table under possible input alphabets for the equivalent DFA.

Step 3 Mark the start state of the DFA by q0 (Same as the NDFA).

Step 4 Find out the combination of States {Q0, Q1,... , Qn} for each possible input

alphabet.

Step 5 Each time we generate a new DFA state under the input alphabet columns, we

have to apply step 4 again, otherwise go to step 6.

Step 6 The states which contain any of the final states of the NDFA are the final states of

the equivalent DFA.

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 11

Example

The NDFA table is as follows −

q δ(q,0) δ(q,1)

a {a,b,c,d,e} {d,e}

b {c} {e}

c ׎ {b}

d {e} ׎

e ׎ ׎

Let us consider the NDFA shown in the figure below.

Using above algorithm, we find its equivalent DFA. The state table of the DFA is shown in

below.

Q δ(q,0) δ(q,1)

A {a,b,c,d,e} {d,e}

{a,b,c,d,e} {a,b,c,d,e} {b,d,e}

{d,e} E D

{b,d,e} {c,e} E

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 12

E ׎ ׎

D E ׎

{c,e} ׎ B

B C E

C ׎ B

The state diagram of the DFA is as follows −

Runtime Environment:

• Before code generation static source text of a program needs to be related to the

actions that must occur at runtime to implement the program.

• As execution proceeds same name in the source text can denote different data objects

in the target machine.

• The allocation and de allocation of data objects is managed by the runtime support

package.

www.sa
ks

hie
du

ca
tio

n.c
om

Nondeterministic Finite Automata (NFA)Converting a regular expression to an NFA Deterministic Finite
Automata (DFA)Converting an NFA to a DFAFunction CallsLL(1) ParsingSLR ParsingSymbol
tablesRegister AllocationLexical analysis in detailparsingsyntax-directed translationRuntime

environmentsIntermediate code generationMemory Management

Chapter 1 partII Page 13

• Each execution of a function is referred to as an activation of the procedure/function

• If the function is recursive several of its activations may be alive at the same time

• A procedure is activated when called

• The lifetime of an activation of a procedure is the sequence of steps between the first

and last steps in the execution of the procedure body

• A procedure is recursive if a new activation can begin before an earlier activation of

the same procedure has ended

www.sa
ks

hie
du

ca
tio

n.c
om

