
Chapter 1: Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite
automaton model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Chapter 1 Page 1

Introduction:

Computer Science is a cluster of related scientific and engineering disciplines

concerned with the study and application of computations. These disciplines range from the

pure and basic scientific discipline concerned with the foundations (or theory) of computer

science (or of computation) to engineering disciplines concerned with specific applications.

The foundations (or theory) of computer science can be partitioned into two sub-

disciplines: one concerned with the Theory of Computation, and the other concerned with the

Theory of Programming.

The theory of computation aims at understanding the nature of computation, and

specifically the inherent possibilities and limitations of efficient computations. The Theory of

Programming is concerned with the actual task of implementing computations (i.e., writing

computer programs).

Strings, Alphabet, Language, Operations:

In computer science, in the area of formal language theory, frequent use is made of a

variety of string functions; however, the notation used is different from that used oncomputer

programming, and some commonly used functions in the theoretical realm are rarely used

when programming. This article defines some of these basic terms.

Alphabets

 Any finite set of symbols {0,1} is a set of binary alphabets,

{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is a set of Hexadecimal alphabets, {a-z, A-Z} is a set of

English language alphabets.

Strings

 Any finite sequence of alphabets is called a string. Length of the string is the total

number of occurrence of alphabets, e.g., the length of the string tutorialspoint is 14 and is

denoted by |tutorialspoint| = 14. A string having no alphabets, i.e. a string of zero length is

known as an empty string and is denoted by ε (epsilon).

 The classical theory of computation traditionally deals with processing an input string

of symbols into an output string of symbols. Note that in the special case where the set of

possible output strings is just {‘yes’, ‘no’}, (often abbreviated {T, F} or {1, 0}), then we can

think of the string processing as string (pattern) recognition.

 We should start with a few definitions. The first step is to avoid defining the term

‘symbol’ – this leaves an open slot to connect the abstract theory to the world . . .

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 1: Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite
automaton model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Chapter 1 Page 2

Special Symbols

A typical high-level language contains the following symbols:-

Arithmetic Symbols
Addition(+), Subtraction(-), Modulo(%), Multiplication(*),

Division(/)

Punctuation Comma(,), Semicolon(;), Dot(.), Arrow(->)

Assignment =

Special Assignment +=, /=, *=, -=

Comparison ==, !=, <, <=, >, >=

Preprocessor #

Location Specifier &

Logical &, &&, |, ||, !

Shift Operator >>, >>>, <<, <<<

Language

 The language is considered as a finite set of strings over some finite set of alphabets.

Computer languages are considered as finite sets, and mathematically set operations can be

performed on them. Finite languages can be described by means of regular expressions.

Operations

The various operations on languages are:

• Union of two languages L and M is written as

L U M = {s | s is in L or s is in M}

• Concatenation of two languages L and M is written as

LM = {st | s is in L and t is in M}

• The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

Notations

If r and s are regular expressions denoting the languages L(r) and L(s), then

• Union : (r)|(s) is a regular expression denoting L(r) U L(s)

• Concatenation : (r)(s) is a regular expression denoting L(r)L(s)

• Kleene closure : (r)* is a regular expression denoting (L(r))*

• (r) is a regular expression denoting L(r)

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 1: Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite
automaton model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Chapter 1 Page 3

 An alphabet is a finite set of symbols. A string over an alphabet A is a finite ordered

sequence of symbols from A. Note that repetitions are allowed. The length of a string is the

number of symbols in the string, with repetitions counted. (e.g., |aabbcc| = 6).

 The empty string, denoted by, is the (unique) string of length zero. Note that the

empty string is not the same as the empty set ׎. If S and T are sets of strings, then ST = {xy|

x א S and y א T}.

 Given an alphabet A, we define A 0 = {} A n+1 = AAn A כ = [∞ n=0 A n 6. A

language L over an alphabet A is a subset of Aכ . That is, L ؿ Aכ . We can define the natural

numbers, N, as follows: We let 0 = {{׎} ,׎} = 2 {׎} = 1 ׎ and in general n + 1 = {0, 1, 2, . .

. , n}. Then N = {0, 1, 2, . . .}.

Sizes of Sets and Countability:

1. Given two sets S and T, we say that they are the same size (|S| = |T|) if there is a one-to-one

onto function f : S → T.

2. We write |S| ≤ |T| if there is a one-to-one (not necessarily onto) function f : S → T.

3. We write |S| < |T| if there is a one-to-one function f : S → T, but there does not exist any

such onto function.

4. We call a set S (a) Finite if |S| < |N| (b) Countable if |S| ≤ |N| (c) Countably infinite if |S| =

|N| (d) Uncountable if |N| < |S|.

Finite State Machine

 A finite-state machine (FSM) or finite-state automaton (plural: automata), or simply

a state machine, is a mathematicalmodel of computation used to design both computer

programs and sequential logic circuits. It is conceived as an abstract machine that can be in

one of a finite number of states. The machine is in only one state at a time; the state it is in at

any given time is called the current state. It can change from one state to another when

initiated by a triggering event or condition; this is called a transition.

 A particular FSM is defined by a list of its states, and the triggering condition for each

transition. The behaviour of state machines can be observed in many devices in modern

society that perform a predetermined sequence of actions depending on a sequence of events

with which they are presented.

 Simple examples are vending machines, which dispense products when the proper

combination of coins is deposited, elevators, which drop riders off at upper floors before

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 1: Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite
automaton model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Chapter 1 Page 4

going down, traffic lights, which change sequence when cars are waiting, and combination

locks, which require the input of combination numbers in the proper order.

 Finite-state machines provide a simple computational model with many applications.

Recall the definition of a Turing machine: a finite-state controller with a movable read/write

head on an unbounded storage tape. If we restrict the head to move in only one direction, we

have the general case of a finite-state machine.

 The sequence of symbols being read can be thought to constitute the input, while the

sequence of symbols being written could be thought to constitute the output. We can also

derive output by looking at the internal state of the controller after the input has been read.

 Finite-state machines, also called finite-state automata (singular: automaton) or just

finite automata are much more restrictive in their capabilities than Turing machines. For

example, we can show that it is not possible for a finite-state machine to determine whether

the input consists of a prime number of symbols.

 Much simpler languages, such as the sequences of well-balanced parenthesis strings,

also cannot be recognized by finite-state machines. Still there are the following applications:

• Simple forms of pattern matching (precisely the patterns definable by "regular expressions”,

as we shall see).

• Models for sequential logic circuits, of the kind on which every present-day computer and

many device controllers is based.

 • An intimate relationship with directed graphs having arcs labeled with symbols from the

input alphabet. Even though each of these models can be depicted in a different setting, they

have a common mathematical basis. The following diagram shows the context of finite-state

machines among other models we have studied or will study.

The interrelationship of various models with respect to computational or

representational power. The arrows move in the direction of restricting power. The bi-

directional arrows show equivalences.

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 1: Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite
automaton model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Chapter 1 Page 5

Automata Theory:

 Automata Theory is an exciting, theoretical branch of computer science. It established

its roots during the 20th Century, as mathematicians began developing - both theoretically

and literally - machines which imitated certain features of man, completing calculations more

quickly and reliably. The word automaton itself, closely related to the word "automation",

denotes automatic processes carrying out the production of specific processes. Simply stated,

automata theory deals with the logic of computation with respect to simple machines, referred

to as automata.

 Through automata, computer scientists are able to understand how machines compute

functions and solve problems and more importantly, what it means for a function to be

defined as computable or for a question to be described as decidable.

 Automatons are abstract models of machines that perform computations on an input

by moving through a series of states or configurations. At each state of the computation, a

transition function determines the next configuration on the basis of a finite portion of the

present configuration. As a result, once the computation reaches an accepting configuration,

it accepts that input. The most general and powerful automata is the Turing machine.

 The major objective of automata theory is to develop methods by which computer

scientists can describe and analyze the dynamic behavior of discrete systems, in which

signals are sampled periodically. The behavior of these discrete systems is determined by the

way that the system is constructed from storage and combinational elements. Characteristics

of such machines include:

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 1: Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite
automaton model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Chapter 1 Page 6

 Inputs: assumed to be sequences of symbols selected from a finite set I of input

signals. Namely, set I is the set {x1, x,2, x3... xk} where k is the number of inputs.

 Outputs: sequences of symbols selected from a finite set Z. Namely, set Z is the set

{y1, y2, y3 ... ym} where m is the number of outputs.

 States: finite set Q, whose definition depends on the type of automaton.

There are four major families of automaton:

 Finite-state machine

 Pushdown automata

 Linear-bounded automata

 Turing machine

The families of automata above can be interpreted in a hierarchal form, where the finite-state

machine is the simplest automata and the Turing machine is the most complex. The focus of

this project is on the finite-state machine and the Turing machine. A Turing machine is a

finite-state machine yet the inverse is not true.

Finite State Machines

 The finite-state machines, the Mealy machine and the Moore machine, are named in

recognition of their work. While the Mealy machine determines its outputs through the

current state and the input, the Moore machine's output is based upon the current state alone.

An automaton in which the state set Q contains only a finite number of elements is called

a Finite-State Machine (FSM).

 FSMs are abstract machines, consisting of a set of states (set Q), set of input events

(set I), a set of output events (set Z) and a state transition function. The state transition

function takes the current state and an input event and returns the new set of output events

and the next state. Therefore, it can be seen as a function which maps an ordered sequence of

input events into a corresponding sequence, or set, of output events.

State transition function: I → Z

 Finite-state machines are ideal computation models for a small amount of memory,

and do not maintain memory. This mathematical model of a machine can only reach a finite

number of states and transitions between these states. Its main application is in mathematical

problem analysis. Finite-machines are also used for purposes aside from general

computations, such as to recognize regular languages.

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 1: Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite
automaton model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Chapter 1 Page 7

In order to fully understand conceptually a finite-state machine, consider an analogy to an

elevator:

 An elevator is a mechanism that does not remember all previous requests for service

but the current floor, the direction of motion (up or down) and the collection of not-yet

satisfied requests for services. Therefore, at any given moment in time, an elevator in

operated would be defined by the following mathematical terms:

 States: finite set of states to reflect the past history of the customers' requests.

 Inputs: finite set of input, depending on the number of floors the elevator is able to

access. We can use the set I, whose size is the number of floors in the building.

 Outputs: finite set of output, depending on the need for the elevator to go up or

down, according to customers' needs.

A finite-state machine is formally defined as a 5-tuple (Q, I, Z, ∂, W) such that:

 Q = finite set of states

 I = finite set of input symbols

 Z = finite set of output symbols

 ∂ = mapping of I x Q into Q called the state transition function, i.e. I x Q → Q

 W = mapping W of I x Q onto Z, called the output function

 A = set of accept states where F is a subset of Q

From the mathematical interpretation above, it can be said that a finite-state machine contains

a finite number of states. Each state accepts a finite number of inputs, and each state has rules

that describe the action of the machine for ever input, represented in the state transition

mapping function. At the same time, an input may cause the machine to change states. For

every input symbol, there is exactly one transition out of each state. In addition, any 5-tuple

set that is accepted by nondeterministic finite automata is also accepted by deterministic

finite automata.

 When considering finite-state machines, it is important to keep in mind that the

mechanical process inside the automata that leads to the calculation of outputs and change of

states is not emphasized or delved into detail; it is instead considered a "black box", as

illustrated below:

 Having finite, constant amounts of memory, the internal states of an FSM carry no

further structure. They can easily be represented using state diagrams, as seen below:

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 1
auto

Chapter 1

The stat

by nodes

outputs a

initial sta

arrows al

There ex

categorie

 a

 re

 tr

Applicati

language

types of

vectors o

Finite St

 T

only very

a finite-s

The follo

Turing m

 Im

Therefore

: Fundamenta
omaton model,

determin

1

te diagram

s of graphs, t

are denoted b

ate of the m

long the side

xist several t

es:

cceptors: ei

ecognizers:

ransducers:

ions of finite

es with a fini

trees, and i

of a fixed siz

tate vs. Turi

The simplest

y primitive f

tate machine

owing is an

machine:

magine a M

e, there are a

als : Strings, A
, acceptance o
istic finite auto

illustrates

transitions b

by symbols.

machine. Mo

es of individ

types of fin

ther accept t

either recog

 generate ou

e-state mach

ite number o

in hardware

ze.

ing Machin

t automata u

functions; th

e's inability t

example to

Modern CPU.

a finite numb

Alphabet, Lang
of strings, and
omaton, transi

the operati

by the arrow

 The arrow

oves that do

dual nodes. T

nite-state ma

the input or d

gnize the inp

utput from gi

hines are fou

of words (sta

e circuits, w

es

used for com

erefore, it is

to generalize

illustrate the

. Every bit i

ber of possib

uage, Operati
 languages, d
tion diagrams

ion of an

ws or branch

entering fro

o not involv

These arrows

achines, wh

do not

ut or do not

iven input

und in a vari

andard case),

where the inp

mputation is

s not an adeq

e computatio

e difference

in a machin

ble states. In

ions, Finite sta
eterministic fin
 and Languag

automaton.

es, and the

m the left in

e changes o

s are known

hich can be

iety of subje

, an infinite n

put, the stat

s a finite au

quate compu

ons hinders i

between a f

e can only b

n addition, w

ate machine, d
nite automaton
ge recognizers

States are

correspondin

nto q0 shows

of states are

as self-loops

divided int

ects. They c

number of w

te and the o

utomaton. It

utation mode

its power.

finite-state m

be in two st

when conside

definitions, fini
n and non

s.

Page

e represente

ng inputs an

s that q0 is th

 indicated b

s .

to three mai

an operate o

words, variou

output are b

can compu

el. In addition

machine and

tates (0 or 1

ering the par

te

 8

ed

nd

he

by

in

on

us

bit

te

n,

a

1).

rts

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 1: Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite
automaton model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Chapter 1 Page 9

of a computer a CPU interacts with, there are a finite number of possible inputs from the

computer's mouse, keyboard, hard disk, different slot cards, etc. As a result, one can conclude

that a CPU can be modeled as a finite-state machine.

 Now, consider a computer. Although every bit in a machine can only be in two

different states (0 or 1), there are an infinite number of interactions within the computer as a

whole. It becomes exceeding difficult to model the workings of a computer within the

constraints of a finite-state machine. However, higher-level, infinite and more powerful

automata would be capable of carrying out this task.

 World-renowned computer scientist Alan Turing conceived the first "infinite" (or

unbounded) model of computation: the Turing machine, in 1936, to solve

theEntscheindungsproblem. The Turing machine can be thought of as a finite automaton or

control unit equipped with an infinite storage (memory). Its "memory" consists of an infinite

number of one-dimensional array of cells. Turing's machine is essentially an abstract model

of modern-day computer execution and storage, developed in order to provide a precise

mathematical definition of an algorithm or mechanical procedure.

 While an automaton is called finite if its model consists of a finite number of states

and functions with finite strings of input and output, infinite automata have an "accessory" -

either a stack or a tape that can be moved to the right or left, and can meet the same demands

made on a machine.

A Turing machine is formally defined by the set [Q, Σ, Γ, δ, q0, B, F] where

 Q = finite set of states, of which one state q0 is the initial state

 Σ = a subset of Γ not including B, is the set of input symbols

 Γ = finite set of allowable tape symbols

 δ = the next move function , a mapping function from Q x Γ to Q x Γ x {L,R}, where

L and R denote the directions left and right respectively

 q0 = in set Q as the start state

 B = a symbol of Γ, as the blank

 F ك Q the set of final states

Therefore, the major difference between a Turing machine and two-way finite automata

(FSM) lies in the fact that the Turing machine is capable of changing symbols on its tape and

simulating computer execution and storage. For this reason, it can be said that the Turing

Machine has the power to model all computations that can be calculated today through

modern computers.

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 1: Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite
automaton model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Chapter 1 Page 10

Regular Languages

• A Regular Language is a set of Strings.

• Two ways to describe sets of strings S – Enumerate the strings: S = {s1, s2, s3, …} – Write

a predicate – p: p(x)=True if x is in the set S.

• Problems – Enumeration is hard if set is infinite – Writing predicate varies depending upon

how the set S is described (RegExp, DFA, NFA, etc) Enumeration.

• Enumeration is easy to write.

www.sa
ks

hie
du

ca
tio

n.c
om

