
Chapter2 Page 1

Process Management

What is a process?

Essentially, a process is what a program becomes when it is loaded into memory from a
secondary storage medium like a hard disk drive or an optical drive. Each process has
its own address space, which typically contains both program instructions and data.
Despite the fact that an individual processor or processor core can only execute one
program instruction at a time, a large number of processes can be executed over a
relatively short period of time by briefly assigning each process to the processor in turn.
While a process is executing it has complete control of the processor, but at some point
the operating system needs to regain control, such as when it must assign the
processor to the next process. Execution of a particular process will be suspended if
that process requests an I/O operation, if an interrupt occurs, or if the process times out.

When a user starts an application program, the operating system's high-level scheduler
(HLS) loads all or part of the program code from secondary storage into memory. It then
creates a data structure in memory called a process control block (PCB) that will be
used to hold information about the process, such as its current status and where in
memory it is located. The operating system also maintains a separate process table in
memory that lists all the user processes currently loaded. When a new process is
created, it is given a unique process identification number (PID) and a new record is
created for it in the process table which includes the address of the process control
block in memory. As well as allocating memory space, loading the process, and creating
the necessary data structures, the operating system must also allocate resources such
as access to I/O devices and disk space if the process requires them. Information about
the resources allocated to a process is also held within the process control block. The
operating system's low-level scheduler (LLS) is responsible for allocating CPU time to
each process in turn.

Process Concept

A question that arises in discussing operating systems involves what to call all
the CPU activities. A batch system executes jobs, whereas a timeshared system has
user programs or tasks. Even on a single user system such as Microsoft Windows, a
user may be able to run several programs at one time: a word processor, a
web browser and an e-mail package. And even if the user can execute only one
program at a time, the operating system may need to support its own internal
programmed activities, such as memory management. In many respects, all these
activities are similar, so we call all of them processes.

The terms Job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operat1ng-system theory and
terminology was developed during a time when the major activity of operating systems
was job processing. It would be misleading to avoid the use of commonly accepted

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 2

terms that include the word job (such as job scheduling) simply because process has
superseded job.

The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section. It also
includes the current activity, as represented by the value of the program counter and the
contents of the processor's registers. A process generally also includes the process
stack, which contains temporary data (such as function parameters, return addresses,
and local variables), and a data section, which contains global variables. A process may
also include a heap, which is memory that is dynamically allocated during process run
time. (Fig 1)

We emphasize that a program by itself is not a process; a program is
a passive entity, such as a file containing a list of instructions stored on disk (often
called an executable file), whereas a process is an active entity, with a program counter
specifying the next instruction to execute and a set of associated resources. A program
becomes a process when an executable file is loaded into memory. Two common
techniques for loading executable files are double-clicking an icon representing the
executable file and entering the name of the executable file on the command line.

Fig 1

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 3

Process State

As a process executes, it changes state. The state of a process is defined in part by the
current activity of that process. Each process may be in one of the following states (Fig
2)

New: The process is being created.

Running: Instructions are being executed.

Waiting: The process is waiting for some event to occur (such as an I/O Completion or
reception of a signal).

Ready. The process is waiting to be assigned to a processor.

Terminated: The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating systems also
more finely delineate process states. It is important to realize that only one process can
be running on any processor at any instant. Many processes may
be ready and waiting, however.

Fig 2

Process Control Block

Each process is represented in the operating system by a process control block
(PCB) - also called a task control block. It contains many pieces of information
associated with a specific process, including these: (Fig 3)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 4

Fig 3

 Process state: The state may be new, ready running, waiting, halted, and so on.

 Program counter: The counter indicates the address of the next instruction to be
executed for this process.

 CPU registers: The registers vary in number and type, depending on the

computer architecture. They include accumulators, index registers, stack
pointers, and general-purpose registers, plus any condition-code information.
Along with the program counter, this state information must be saved when an
interrupt occurs, to allow the process to be continued correctly afterward.

 CPU-scheduling information: This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.

 Memory-management information: This information may include such

information as the value of the base and limit registers, the page tables, or the
segment tables, depending on the memory system used by the operating
system.

 Accounting information: This information includes the amount of CPU and real

time used, time limits, account numbers, job or process numbers, and so on.

 I/O status information: This information includes the list of I/O devices allocated
to the process, a list of open files, and so on.

In brief the PCB simply serves as the repository for any information that may vary from
process to process.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 5

Threads

The process model discussed so far has implied that a process is a program that
performs a single thread of execution. For example, when a process is running a word-
processor program, a single thread of instructions is being executed. This single thread
of control allows the process to perform only one task at one time. The user cannot
simultaneously type in characters and run the spell checker within the same process, for
example. Many modern operating systems have extended the process concept to allow
a process to have multiple threads of execution and thus to perform more than one task
at a time. On a system that supports threads, the PCB is expanded to include
information for each thread. Other changes throughout the system are also needed to
support threads.

Fig 4

Scheduling Criteria

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 6

 Different CPU-scheduling algorithms have different properties, and the choice of
a particular algorithm may favor one class of processes over another. In choosing which
algorithm to use in a particular situation, we must consider the properties of the various
algorithms. Many criteria’s have been suggested for comparing CPU-scheduling
algorithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the following: (Fig
4)

 CPU utilization. We want to keep the CPU as busy as possible. Conceptually,
CPU utilization can range from 0 to 100 percent. In a real system, it should range
from 40 percent (for a lightly loaded system) to 90 percent (for a heavily used
system).

 Throughput: If the CPU is busy executing processes, then work is being done.

One measure of work is the number of processes that are completed per time
unit, called throughput. For long processes, this rate may be one process per
hour; for short transactions, it may be ten processes per second.

 Turnaround time: From the point of view of a particular process, the important

criterion is how long it takes to execute that process. The interval from the time of
submission of a process to the time of completion is the turnaround
time. Turnaround time is the sum of the periods spent waiting to get into memory,
waiting in the ready queue, executing on the CPU, and doing I/O.

 Waiting time: The CPU-scheduling algorithm does not affect the amount of time

during which a process executes or does I/O; it affects only the amount of time
that a process spends waiting in the ready queue. Waiting time is the sum of the
periods spent waiting in the ready queue.

 Response time: In an interactive system, turnaround time may not be the best

criterion. Often, a process can produce some output fairly early and can continue
computing new results while previous results are being output to the user. Thus,
another measure is the time from the submission of a request until the first
response is produced. This measure, called response time, is the time it takes to
start responding, not the time it takes to output the response. The turnaround
time is generally limited by the speed of the output device.

It is desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize the
average measure. However, under some circumstances, it is desirable to optimize the
minimum or maximum values rather than the average. For example, to guarantee that
all users get good service, we may want to minimize the maximum response time.

Investigators have suggested that, for interactive systems (such as timesharing
systems), it is more important to minimize the variance in the response time than to
minimize the average response time. A system with reasonable

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 7

and predictable response time may be considered more desirable than a system that is
faster on the average but is highly variable. However, little work has been done on
CPU-scheduling algorithms that minimize variance.

Scheduling Algorithms

 CPU scheduling deals with the problem of deciding which of the processes in
the ready queue is to be allocated the CPU. There are many different CPU-scheduling
algorithms. In this section, we describe several of them.

 First-Come, First-Served Scheduling

 By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the CPU first
is allocated the CPU first. The implementation of the FCFS policy is easily managed
with a FIFO queue. When a process enters the ready queue, its PCB is linked onto the
tail of the queue. When the CPU is free, it is allocated to the process at the head of the
queue. The running process is then removed from the queue. The code for FCFS
scheduling is simple to write and understand.

 On the negative side, the average waiting time under the FCFS policy is often
quite long. Consider the following set of processes that arrive at time 0, with the length
of the CPU burst given in milliseconds:

 Process Burst Time

 P1 24

 P2 3

 P3 3

If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get
the result shown in the following Gantt chart, which is a bar chart that illustrates a
particular schedule, including the start and finish times of each of the participating
processes:

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, and
27 milliseconds for process P3. Thus, the average waiting time is (0 + 24 + 27)/3 = 17
milliseconds. If the processes arrive in the order P2, P3, P1, however, the results will be
as shown in the following Gantt chart:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 8

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is
substantial. Thus, the average waiting time under an FCFS policy is generally not
minimal and may vary substantially if the processes CPU burst times vary greatly.

In addition, consider the performance of FCFS scheduling in a dynamic situation.
Assume we have one CPU-bound process and many I/O-bound processes. As the
processes flow around the system, the following scenario may result. The CPU-bound
process will get and hold the CPU. During this time, all the other processes will finish
their I/O and will move into the ready queue, waiting for the CPU. While the processes
wait in the ready queue, the I/O devices are idle. Eventually, the CPU-bound process
finishes its CPU burst and moves to an I/O device. All the I/O-bound processes, which
have short CPU bursts, execute quickly and move back to the I/O queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready queue and
be allocated the CPU. Again, all the I/O processes end up waiting in the ready queue
until the CPU-bound process is done. There is a convoy effect as all the other
processes wait for the one big process to get off the CPU. This effect results in lower
CPU and device utilization than might be possible if the shorter processes were allowed
to go first.

Note also that the FCFS scheduling algorithm is non-preemptive. Once the CPU
has been allocated to a process, that process keeps the CPU until it releases the CPU
either by terminating or by requesting I/O. The FCFS algorithm is thus particularly
troublesome for time-sharing systems, where it is important that each user get a share
of the CPU at regular intervals. It would be disastrous to allow one process to keep the
CPU for an extended period.

Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) scheduling
algorithm. This algorithm associates with each process the length of the process's next
CPU burst. When the CPU is available, it is assigned to the process that has the
smallest next CPU burst. If the next CPU bursts of two processes are the same, FCFS
scheduling is used to break the tie. Note that a more appropriate term for this
scheduling method would be the shortest-next-CPU-burst algorithm, because
scheduling depends on the length of the next CPU burst of a process, rather than its
total length. We use the term SJF because m.ost people and textbooks use this term to
refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes, with
the length of the CPU burst given in milliseconds:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 9

 Process Burst Time

 P1 6

 P2 8

 P3 7

 P3 3

Using SJF scheduling, we would schedule these processes according to the following
Gantt chart:

 0 3 9 16 24

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2,
9 milliseconds for process P3, and 0 milliseconds for process P4. Thus, the average
waiting time is (3 + 16 + 9 + 0) /4 = 7 milliseconds. By comparison, if we were using the
FCFS scheduling scheme, the average waiting time would be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the minimum
average waiting time for a given set of processes. Moving a short process before long
one decrease the waiting time of the short process more than it increases the waiting
time of the long process. Consequently, the average waiting time decreases.

The real difficulty with the SJF algorithm is, knowing the length of the next CPU
request. For long-term (job) scheduling in a batch system, we can use as the length the
process time limit that a user specifies when he submits the job. Thus, users are
motivated to estimate the process time limit accurately, since a lower value may mean
faster response. (Too low a value will cause a time-limit-exceeded error and require
resubmission.) SJF scheduling is used frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level of
short-term CPU scheduling. With short-term scheduling, there is no way to know the
length of the next CPU burst. One approach is to try to approximate SJF scheduling.
We may not know the length of the next CPU burst, but we may be able to predict its
value. We expect that the next CPU burst will be similar in length to the previous ones.
By computing an approximation of the length of the next CPU burst, we can pick the
process with the shortest predicted CPU burst.

The next CPU burst is generally predicted as an exponential average of the
measured lengths of previous CPU bursts. We can define the exponential average with

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 10

the following formula. Let tn be the length of the nth CPU burst, and let Tn+1 be our
predicted value for the next CPU burst. Then, for α, 0 ≤ α ≤ 1, define

Tn+1= α tn+(1- α)Tn

The value of tn contains our most recent information; Tn stores the past history.
The parameter α controls the relative weight of recent and past history in our prediction.
If α = 0, then Tn+l = Tn, and recent history has no effect (current conditions are assumed
to be transient). If α=1, then Tn+l = tn ,and only the most recent CPU burst matters
(history is assumed to be old and irrelevant).

Fig 5: Prediction of the Length of the Next CPU Burst

More commonly, α= 1/2, so recent history and past history are equally weighted. The
initial T0 can be defined as a constant or as an overall system average. Figure 5 shows
an exponential average with α=1/2 and T0= 10.

To understand the behavior of the exponential average, we can expand the
formula for Tn+l by substituting for Tn , to find,

Tn+1= αtn+(1- α) αtn-1+….+(1- α)j αtn-j+…+(1- α)n+1T0

Since both α and (1- α) are less than or equal to 1, each successive term has less
weight than its predecessor.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 11

The SJF algorithm can be either preemptive or non-preemptive. The choice
arises when a new process arrives at the ready queue while a previous process is still
executing. The next CPU burst of the newly arrived process may be shorter than what is
left of the currently executing process. A preemptive SJF algorithm will preempt the
currently executing process, whereas a non-preemptive SJF algorithm will allow the
currently running process to finish its CPU burst. Preemptive SJF scheduling is
sometimes called shortest-remaining-time-first scheduling.

As an example, consider the following four processes, with the length of the CPU
burst given in milliseconds:

 Process Arrival Time Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

If the processes arrive at the ready queue at the times shown and need the indicated
burst times, then the resulting preemptive SJF schedule is as depicted in the following
Gantt chart:

Process P1 is started at time 0, since it is the only process in the queue.
Process P2 arrives at time 1. The remaining time for process P1 (7 milliseconds) is
larger than the time required by processP2 (4 milliseconds), so process P1 is
preempted, and process P2 is scheduled. The average waiting time for this example is
[(10- 1) + (1 - 1) + (17- 2) + (5-3)]/ 4 = 26/4 = 6.5 milliseconds. Non-preemptive SJF
scheduling would result in an average waiting time of 7.75 milliseconds.

 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm.
A priority is associated with each process, and the CPU is allocated to the process with
the highest priority. Equal-priority processes are scheduled in FCFS order. An SJF
algorithm is simply a priority algorithm where the priority (p) is the inverse of the
(predicted) next CPU burst. The larger the CPU burst, the lower the priority, and vice
versa.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 12

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0 to 7 or 0 to
4,095. However, there is no general agreement on whether 0 is the highest or lowest
priority. Some systems use low numbers to represent low priority; others use low
numbers for high priority. This difference can lead to confusion. In this text, we assume
that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have arrived
at time 0 in the order P1, P2 … P5, with the length of the CPU burst given in
milliseconds:

 Process Burst Time Arrival

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

 0 1 6 16 18 19

The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or externally. Internally defined priorities
use some measurable quantity or quantities to compute the priority of a process. For
example, time limits, memory requirements, the number of open files, and the ratio of
average I/O burst to average CPU burst have been used in computing priorities.
External priorities are set by criteria outside the operating system, such as the
importance of the process, the type and amount of funds being paid for computer use,
the department sponsoring the work, and other, often political factors.

Priority scheduling can be either preemptive or non-preemptive. When a process
arrives at the ready queue, its priority is compared with the priority of the currently
running process. A preemptive priority scheduling algorithm will preempt the CPU if the

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 13

priority of the newly arrived process is higher than the priority of the currently running
process. A non-preemptive priority scheduling algorithm will simply put the new process
at the head of the ready queue.

A major problem with priority scheduling algorithms is indefinite blocking, or
starvation. A process that is ready to run but waiting for the CPU can be considered
blocked. A priority scheduling algorithm can leave some low priority processes waiting
indefinitely. In a heavily loaded computer system, a steady stream of higher-priority
processes can prevent a low-priority process from ever getting the CPU. Generally, one
of two things will happen. Either the process will eventually be run (at 2 A.M. Sunday,
when the system is finally lightly loaded), or the computer system will eventually crash
and lose all unfinished low-priority processes.

A solution to the problem of indefinite blockage of low-priority processes is aging.
Aging is a technique of gradually increasing the priority of processes that wait in the
system for a long time. For example, if priorities range from 127 (low) to 0 (high), we
could increase the priority of a waiting process by 1 every 15 minutes. Eventually, even
a process with an initial priority of 127 would have the highest priority in the system and
would be executed. In fact, it would take no more than 32 hours for a priority-127
process to age to a priority-0 process.

Robin round Scheduling

The round-robin (RR) scheduling algorithm is designed especially for timesharing
systems. It is similar to FCFS scheduling, but preemption is added to enable the system
to switch between processes. A small unit of time, called a time quantum or time slice,
is defined. A time quantum is generally from 10 to 100 milliseconds in length. The ready
queue is treated as a circular queue. The CPU scheduler goes around the ready queue,
allocating the CPU to each process for a time interval of up to 1 time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of
processes. New processes are added to the tail of the ready queue. The CPU scheduler
picks the first process from the ready queue, sets a timer to interrupt after 1 time
quantum, and dispatches the process.

 One of two things will then happen. The process may have a CPU burst of less
than 1 time quantum. In this case, the process itself will release the CPU voluntarily.
The scheduler will then proceed to the next process in the ready queue. Otherwise, if
the CPU burst of the currently running process is longer than 1 time quantum, the timer
will go off and will cause an interrupt to the operating system. A context switch will be
executed, and the process will be put at the tail o£ the ready queue. The CPU scheduler
will then select the next process in the ready queue.

 The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CPU burst given in
milliseconds:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 14

 Process Burst Time

 P1 24

 P2 3

 P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4
milliseconds. Since it requires another 20 milliseconds, it is preempted after the first
time quantum, and the CPU is given to the next process in the queue,
process P2. Process P2 does not need 4 milliseconds, so it quits before its time
quantum expires. The CPU is then given to the next process, process P3. Once each
process has received 1 time quantum, the CPU is returned to process P1 for an
additional time quantum. The resulting RR schedule is as follows:

Let's calculate the average waiting time for the above schedule. P1 waits for 6
milliseconds (10- 4), P2 waits for 4 milliseconds, and P3 waits for 7 milliseconds. Thus,
the average waiting time is 17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more than 1
time quantum in a row (unless it is the only runnable process). If a process's CPU burst
exceeds 1 time quantum, that process is preempted and is put back in the ready queue.
The RR scheduling algorithm is thus preemptive.

If there are n. processes in the ready queue and the time quantum is q, then
each process gets 1/n of the CPU time in chunks of at most q time units. Each process
must wait no longer than (n - 1) x q time units until its next time quantum. For example,
with five processes and a time quantum of 20 milliseconds, each process will get up to
20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the time
quantum. At one extreme, if the time quantum is extremely large, the RR policy is the
same as the FCFS policy. In contrast, if the time quantum is extremely small (say, 1
millisecond), the RR approach is called processor sharing and (in theory) creates the
appearance that each of n processes has its own processor running at 1/n the speed of
the real processor. This approach was used in Control Data Corporation (CDC)
hardware to implement ten peripheral processors with only one set of hardware and ten
sets of registers. The hardware executes one instruction for one set of registers, then
goes on to the next. This cycle continues, resulting in ten slow processors rather than
one fast one. (Actually, since the processor was much faster than memory and each

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 15

instruction referenced memory, the processors were not much slower than ten real
processors would have been).

In software, we need also to consider the effect of context switching on the
performance of RR scheduling. Assume, for example, that we have only one process of
10 time units. If the quantum is 12 time units, the process finishes in. less than 1 time
quantum, with no overhead. If the quantum is 6 time units, however, the process
requires 2 quanta, resulting in a context switch. If the time quantum is 1 time unit, then
nine context switches will occur, slowing the execution of the process accordingly
(Figure 6).

Thus, we want the time quantum to be large with respect to the context switch
time. If the context-switch time is approximately 10 percent of the time quantum, then
about 10 percent of the CPU time will be spent in context switching. In practice, most
modern systems have time quanta ranging from 10 to 100 milliseconds. The time
required for a context switch is typically less than 10 microseconds; thus, the context-
switch time is a small fraction of the time quantum.

Fig 6

Multilevel Queue Scheduling

 Another class of scheduling algorithms has been created for situations in which
processes are easily classified into different groups. For example, a common division is
made between foreground (interactive) processes and background (batch) processes.
These two types of processes have different response-time requirements and so may
have different scheduling needs. In addition, foreground processes may have priority
(externally defined) over background processes.

 A multilevel queue scheduling algorithm partitions the ready queue into several
separate queues (Fig 7). The processes are permanently assigned to one queue,

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 16

generally based on some property of the process, such as memory size, process
priority, or process type. Each queue has its own scheduling algorithm. For example,
separate queues might be used for foreground and background processes. The
foreground queue might be scheduled by an RR algorithm, while the background queue
is scheduled by an FCFS algorithm.

Fig 7

In addition, there must be scheduling among the queues, which is commonly
implemented as fixed-priority preemptive scheduling. For example, the foreground
queue may have absolute priority over the background queue.

 Let's look at an example of a multilevel queue scheduling algorithm with five
queues, listed below in order of priority:

1. System processes
2. Interactive processes
3. Interactive editing processes
4. Batch processes
5. Student processes

Each queue has absolute priority over lower-priority queues. No process in the batch
queue, for example, could run unless the queues for system processes, interactive
processes, and interactive editing processes were all empty. If an interactive editing
process entered the ready queue while a batch process was running, the batch process
would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets a
certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground-background queue example, the foreground
queue can be given 80 percent of the CPU time for RR scheduling among its

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 17

processes, whereas the background queue receives 20 percent of the CPU to give to its
processes on an FCFS basis.

 Multilevel Feedback Queue Scheduling

 Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there are separate
queues for foreground and background processes, for example, processes do not move
from one queue to the other, since processes do not change their foreground or
background nature. This setup has the advantage of low scheduling overhead, but it is
inflexible.

 The multilevel feedback queue scheduling algorithm, in contrast, allows a
process to move between queues. The idea is to separate processes according to the
characteristics of their CPU bursts. If a process uses too much CPU time, it will be
moved to a lower-priority queue. This scheme leaves I/O-bound and interactive
processes in the higher-priority queues. In addition, a process that waits too long in a
lower-priority queue may be moved to a higher-priority queue. This form of aging
prevents starvation.

 For example, consider a multilevel feedback queue scheduler with three queues,
numbered from 0 to 2 (Figure 8). The scheduler first executes all processes in queue 0.
Only when queue 0 is empty will it execute processes in queue 1. Similarly, processes
in queue 2 will only be executed if queues 0 and 1 are empty. A process that arrives for
queue 1 will preempt a process in queue 2. A process in queue 1 will in turn be
preempted by a process arriving for queue 0.

 A process entering the ready queue is put in queue 0. A process in queue 0 is
given a time quantum of 8 milliseconds. If it does not finish within this time, it is moved
to the tail of queue 1. If queue 0 is empty, the process at the head of queue 1 is given a
quantum of 16 milliseconds. If it does not complete, it is preempted and is put into
queue 2. Processes in queue 2 are run on an FCFS basis but are run only when queues
0 and 1 are empty.

 This scheduling algorithm gives highest priority to any process with a CPU burst
of 8 milliseconds or less. Such a process will quickly get the CPU, finish its CPU burst,
and go off to its next I/O burst. Processes that need more than 8 but less than 24
milliseconds are also served quickly, although with lower priority than shorter
processes. Long processes automatically sink to queue 2 and are served in FCFS order
with any CPU cycles left over from queues 0 and 1.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter2 Page 18

Fig 8

In general, a multilevel feedback queue scheduler is defined by the following
parameters:

 The number of queues
 The scheduling algorithm for each queue
 The method used to determine when to upgrade a process to a higher priority

queue
 The method used to determine when to demote a process to a lower priority

queue
 The method used to determine which queue a process will enter when that

process needs service.

The definition of a multilevel feedback queue scheduler makes it the most general
CPU-scheduling algorithm. It can be configured to match a specific system under
design. Unfortunately, it is also the most complex algorithm, since defining the best
scheduler requires some means by which to select values for all the parameters.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

