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Basic Concepts of Concurrency: 
 
 A concurrent program specifies two or more sequential programs (a sequential program 
specifies sequential execution of a list of statements) that may be executed concurrently as 
parallel processes. For example, an airline reservation system that involves processing 
transactions from many terminals has a natural specifications as a concurrent program in which 
each terminal is controlled by its own sequential process. Even when processes are not 
executed simultaneously, it is often easier to structure as a collection of cooperating sequential 
processes rather than as a single sequential program. 
 
 The operating system consists of a collection of such processes which are basically two 
types: 
 
Operating system processes: Those that execute system code. 
 
User processes: Those that execute user's code. 
 
 A simple batch operating system can be viewed as 3 processes -a reader process, an 
executor process and a printer process. The reader reads cards from card reader and places 
card images in an input buffer. The executor process reads card images from input buffer and 
performs the specified computation and store the result in an output buffer. The printer process 
retrieves the data from the output buffer and writes them to a printer Concurrent processing is 
the basis of operating system which supports multiprogramming. 
 
 The operating system supports concurrent execution of a program without necessarily 
supporting elaborate form of memory and file management. This form of operation is also 
known as multitasking. Multiprogramming is a more general concept in operating system that 
supports memory management and file management features, in addition to supporting 
concurrent execution of programs. 
 
Basic Concepts of Inter-process Communication and Synchronization: 
 
 In order to cooperate, concurrently executing processes must communicate and 
synchronize. Inter-process communication is based on the use of shared Variables (variables 
that can be referenced by more than one process) or Message passing. Synchronization is 
often necessary when processes communicate. Processes are executed with unpredictable 
speeds. Yet to communicate one process must perform some action such as setting the value 
of a variable or sending a message that the other detects. This only works if the events perform 
an action or detect an action are constrained to happen in that order. Thus one can view 
synchronization as a set of constraints on the ordering of events. The programmer employs a 
synchronization mechanism to delay execution of a process in order to satisfy such constraints. 
 
 To make this concept clearer, consider the batch operating system again. A shared 
buffer is used for communication between the reader process and the executor process. These 
processes must be synchronized so that, for example, the executor process never attempts to 
read data from the input if the buffer is empty. 
 
 
 
Race Condition: 
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 Processes that are working together often share some common storage that one can 
read and write. The shared storage may be in main memory or it may be a shared file. 
Processes frequently need to communicate with other processes. When a user wants to read 
from a file, it must tell the file process what it wants, and then the file process has to inform the 
disk process to read the required block. 
 
 When a process wants to print a file, it enters the file name in a special spooler directory. 
Another process, the printer process, periodically checks to see if there are any files to be 
printed, and if there are it prints them and then removes their names from the directory. 
 
 Imagine that the spooler directory has a large number of slots, numbered 0, 1, 2,…, 
each one capable of holding a file name. Also imagine that there are two shared variables, out, 
which points to the next file to be printed, and in, which points to the next free slot in the 
directory and these are available to all processes. At a certain instant, slots 0 to 3 are empty 
and slots 4 to 6 are full. More or less simultaneously, process A and B decided to queue a file 
for printing. 
 

 
Fig 1 

 
Process A reads in and stores the value 7 in a local variable called Next free slot. Just then the 
CPU decides that process A has run long enough(Fig 1), so it switches to process B. Process B 
also reads in and also gets a 7 so stores the name of its file in slot 7 and updates in to be an 8. 
When process A runs again, starting from the place it left off, it finds a 7 in next_free_slot and 
writes its filename in slot 7, by erasing the name that process B just put there and then sets into 
8. Situations like this, where two or more processes are reading or writing some shared data 
and the final result depends on who runs precisely when, are called race conditions. 
 
Serialization (To avoid concurrency related problem): Make an operating system not to 
perform several tasks in parallel. 
 
Two strategies to serializing processes in a multitasking environment: 
 
• The Scheduler can be disabled 
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• A Protocol can be introduced 
 
The Scheduler can be disabled 
 
 Scheduler can be disabled for a short period of time, to prevent control being given to 
another process during a critical action like modifying shared data. This will be inefficient on 
multiprocessor machines, since all other processors have to be halted every time one wishes to 
execute a critical section. 
 
A Protocol can be introduced 
 
 A protocol can be introduced which all programs sharing data must obey. The protocol 
ensures that processes have to queue up to gain access to shared data. 
 
The Critical-Section Problem: 
 
 Consider a system consisting of n processes. Each process has a segment of code 
called critical section, in which the process may be changing common variables, updating a 
table, writing a file, and so on. When one process is executing in its critical section, no other 
process is to be allowed to execute in its critical section. That is, no two processes are 
executing in their critical sections at the same time. The section of code in a process that 
request permission to enter into its critical section is called entry section and the critical section 
may be followed by an exit section. The remaining code is the remainder section. When one 
process is executing in its critical section, no other process is to be executed in its critical 
section. Thus, the execution of critical sections by the processes is mutually exclusive in time. 
 
Do 
{ 
 
Entry Section - Section of code that request permission to enter its critical section. 
 
Critical Section - It is a part of code in which it is necessary to have exclusive access to shared 
data. 
 
Exit Section - Code for tasks just after exiting from the Critical section. 
 
Remainder Section – The remaining code is Remainder Section. 
 
} while (TRUE); 
 
A solution to the critical-section problem must satisfy the following three requirements: 
 
Mutual Exclusion: If process Pi is executing in its critical section, then no 
Other processes can be executing in their critical sections. 
 
 
Progress:  
  
 If no process is executing in its critical section and some Processes wish to enter their 
critical sections, then only those processes that are not executing in their remainder section can 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



Chapter3  Page 4 
 

participate in the decision on which will enter its critical section next, and this selection cannot 
be postponed indefinitely. 
 
Bounded Waiting:  
  
 There exists a bound on the number of times that other processes are allowed to enter 
their critical sections after a process has made a request to enter its critical section and before 
that request is granted. 
 
Mutual Exclusion: 
 
 Processes frequently need to communicate with other processes. When a user wants to 
read from a file, it must tell the file process what it wants, and then the file process has to inform 
the disk process to read the required block. 
 
 Processes that are working together often share some common storage that one can 
read and write. The shared storage may be in main memory or it may be a shared file. Each 
process has segment of code, called a critical section, which accesses shared memory or files. 
The key issue involving shared memory or shared files is to find way to prohibit more than one 
process from reading and writing the shared data at the same time. What we need is mutual 
exclusion - some way of making sure that if one process is executing in its critical section, the 
other processes will be excluded from doing the same thing.  
 
 An algorithm to support mutual exclusion: This is applicable for two processes only. 
 
Module Mutex 
 
var 
        P1busy, P2busy : boolean; 
 
Process P1 
begin 
            while true do 
            begin 
                 P1busy :=true; 
                 While P2busy do {keep testing}; 
                critical.-,section; 
                P1busy:=false; 
                Other_P1busy_Processing 
         end {while} 
 end; {P1} 
 
Process P2 
begin 
             while true do 
             begin 
                P2busy :=true; 
                While P1busy do {keep testing}; 
               critical.-,section; 
               P2busy:=false; 
               Other_P2busy_Processing 
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         end {while} 
end; {P2} 
 
{Parent process} 
 begin (mutex) 
 
             P1busy:=false; 
             P2busy:=false; 
             Initiate P1, P2 
      End (mutex) 
 
Program 1: Mutual Exclusion Algorithm 
  
 P1 first sets P1busy and then tests P2busy to determine what to do next. When it finds 
P2busy to be false, process P1 may safely proceed to the Critical section knowing that no 
matter how the two processes may be interleaved, process P2 is certain to find P2busy set and 
to stay away from the critical section. The single change ensures mutual exclusion. 
  
 But consider a case where P1 wishes to enter the critical section and sets P1busyto 
indicate the fact. If process P2 wishes to enter the critical section at the same time and pre-
empts process P1 just before P1 tests P2busy. 
 
 Process P2 may set P2busy and start looping while waiting for P1busy to become false. 
When control is eventually returned to Process P1, it finds P2busy set and starts looping while it 
waits for P2busy to become false. And so both processes are looping forever, each awaiting the 
other one to clear the way. In order to remove this kind of behavior, we must add another 
requirement to occur in our algorithm. When more than one process wishes to enter the critical 
section, the decision to grant entrance to one of them must be made in finite time. 
 
Synchronization Hardware: 
 
 The critical-section problem can be solved in a uniprocessor environment if we can 
forbid interrupts to occur while a shared variable is being modified. In this manner, we could be 
sure that the current sequence of instructions would be allowed to execute in order without 
preemption. No other instructions would be run, so no unexpected modifications could be made 
to the shared variable. This solution is not feasible in a multiprocessor environment. Disabling 
interrupts on a multiprocessor can be time-consuming, as the message is passed to all the 
processors. This message passing delays entry into each critical section, and system efficiency 
decreases. Many machines provide special hardware instructions that allow us either to test and 
modify the content of a word or to swap the contents of two words, atomically- as one 
uninterruptible unit. These special instructions can be used to solve the critical-section problem. 
 
The TestAndSet instruction can be defined as follows: 
 
Boolean TestAndSet (Boolean &target) 
{ 
Boolean rv = target; 
Target = true; 
Return rv; 
} 
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The important characteristic is that this instruction is executed atomically. Thus, if two 
TestAndSet instructions are executed simultaneously, each on a different CPU, they will be 
executed sequentially in some arbitrary order. If the machine supports the TestAndSet 
instruction, then we can implement mutual exclusion by declaring, a Boolean variable lock, 
initialized to false.  
 
The structure of the process is as follows: 
 
do{ 
     while (TestAndSet(lock)); 
         critical section 
        lock = false; 
       remainder section 
}while(1) 
 
The Swap instruction can be defined as follows: 
 
void Swap(Boolean &a, Boolean &b) 
{ 
          Boolean temp = a; 
          a = b; 

 b = temp; 
} 
 
It operates on the contents of two words and it is executed atomically. If the machine supports 
the Swap instruction, and then the mutual exclusion can be provided by declaring a variable 
lock and is initialized to false. In addition, each process also has a local Boolean variable key.  
 
The structure of the process is as follows: 
 
do { 

key = true; 
while (key == true) 
Swap(lock, key); 
Critical section 
lock = false; 
remainder section 
 

}while(1); 
 
These algorithms do not satisfy the bounded-waiting requirement. The following is an algorithm 
that uses the TestAndSet instruction satisfies all the critical-section requirements.  
 
The common data structures are 
 
Boolean waiting[n]; 
Boolean lock; 
 
These data structures are initialized to false. 
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do { 
waiting[i] = true; 
key = true; 
while (waiting[i] && key) 
key = TestAndSet(lock); 
waiting[i] = false; 
critical section 
j = (i+1) % n; 
while ((j != i) && !waiting[j]) 
j = (j+1) % n; 
if (j == i) 
lock = false; 
else 
waiting[j] = false; 
 
remainder section 
 

} while(1); 
 
 To prove that the mutual exclusion requirement is met, note that process Pi can enter its 
critical section only if either waiting[i] == false or key == false.  
 
 The value of key can become false only if the TestAndSet is executed. The first process 
to execute the TestAndSet will find key == false; all others must wait. 
  
 The variable waiting[i] can become false only if another process leaves its critical 
section; only one waiting[i] is set to false, maintaining the mutual exclusion requirement. 
 
 To prove the progress requirement is met, note that a process exiting the critical section 
either sets lock to false, or sets waiting[i] to false. Both allow a process that is waiting to enter its 
critical section to proceed. 
 
 To prove the bounded-waiting requirement is met, when a process leaves its Critical 
section, it scans the array waiting in the cyclic ordering (i+1, i+2… n-1, 0, 1… i-1). It designates 
the first process in this ordering that is in the entry section (waiting[j] == true) as the next one to 
enter the critical section. Any process waiting to enter its critical section will thus do so within n-
1 turns. 
 
 
Semaphores: 
 
To overcome the mutual exclusion problem, a synchronization tool called Semaphore was 
proposed by Dijkstra which gained wide acceptance and Implemented in several commercial 
operating systems through system calls or as built-in functions. 
 
A semaphore is a variable which accepts non-negative integer values and except for 
initialization may be accessed and manipulated through two primitive operations - wait and 
signal (originally defined as P and V respectively). The names come from the Dutch words 
Problem (to test) and Verogen (to increment).The two primitives take only argument as the 
semaphore variable, and may be defined as follows. 
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a.  Wait(s): 
    While S <= 0 do (keep testing) S: = S-1; wait operation decrements the value of 
 semaphore variable as soon as it would become non-negative. 
 
b.  Signal(s) S: = S+1; 
 Signal operation increments the value of semaphore variable. 
 
 Modifications to the integer value of the semaphore in the wait and signal operations are 
executed indivisibly. That is, when one process modifies the Semaphore no other process can 
simultaneously modify the same semaphore value. In addition in the case of wait(s), the testing 
of the integer value of S (S<= 0) and its possible modification (S: =S-1) must also be executed 
without any interruption. Operating systems often distinguish between counting and binary 
semaphores. The value of a counting semaphore can range over an unrestricted domain. The 
value of a binary semaphore can range only between 0 and 1. 
 
 On some systems, binary semaphores are known as mutex locks, as they are locks that 
provide mutual exclusion. 
 
 We can use binary semaphores to deal with the critical-section problem for multiple 
processes. Counting semaphores can be used to control access to a given resource consisting 
of a finite number of instances. The semaphore is initialized to the number of resources 
available. Each process that wishes to use a resource perform a wait() operation on the 
semaphore (thereby decrementing the count).When a process releases a resource, it perform a 
signal() operation (incrementing the count). When the count for the semaphore goes to 0, all 
resources are being used. After that, processes that wish to use a resource will block until the 
count becomes greater than 0. 
 
 Program 2 demonstrates the functioning of semaphores. In this program, there are 3 
processes to trying to share a common resource which is being protected by a binary 
semaphore (bsem). (A binary semaphore is a variable which contains only values of 0 and 1) by 
enforcing its use in mutually exclusive fashion. Each process ensures the integrity of its critical 
section by opening it with a WAIT operation and closing with a SIGNAL operation on the related 
semaphore, bsem in our example. 
 
 This way any number of concurrent processor might share the resource provided each 
of these process use wait and signal operation. The parent process in the program first 
initializes binary semaphore variable bsem to 1 indicating that the source is available. As shown 
in the table at timeT1 no process is active to share the resource. But at time T2 all the three 
processes become active and want to enter their critical sections to share the resource by 
running the wait operation. At T2, the bsem is decremented to 0which indicates that some 
processes has been given permission to enter the critical section. At time T3, we find that it is 
P1 which has been given some permission. One important thing is to be noted that only one 
process is allowed by semaphore at a time to the critical section. 
 
 Once P1 is given the permission, it prevents other processes P2 & P3 to read the value 
of bsem as 1 till the wait operation of P1 decrements bsem to 0. This is why wait operation is 
executed without interruption. After grabbing the control from semaphore P1 starts sharing the 
resource which is depicted at time T3. At T4, P1 executes signal operation to release the 
resource and comes out of its critical section. As shown in the table that the value of bsem 
becomes 1 since the resource is now free.  
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 The two remaining processes P2 and P3 have an equal chance to compete the 
resource. In our example, process P3 becomes the next to enter the critical section and to use 
the shared resource. At time T7, process P3 releases the resource and semaphore variable 
bsem again becomes 1. At this time, the two other processes P1 and P2 will attempt to compete 
for the resource and they have equal chance to get access.  
 
 In our example, it is P2 which gets the chance but it might happen one of the three 
processes could have never got the chance. 
 
module Sem-mutex var bsem : semaphore; {binary semaphore) 
 
process P1; 
 
Begin 
 

while true do 
wait (bsem); 
Critical_section 
Signal (bsem); 
The rest_of P1_Processing 
 

end; (P1) 
process P2; 
 

Begin 
while true do 
wait (bsem); 
Critical-section; 
signal (bsem); 
The rest of P2-Processing 
 

end; (P2) 
 
process P3; 
Begin 

while true do 
wait (bsem); 
Critical-section; 
signal (bsem); 
The rest of P3-Processing 
 

end; (P3) 
 
(Parent process) 
begin (sem-mutex) 
 

bsem:= 1; (free) 
initiate P1, P2, P3; 
 

end; (Mutux) 
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Program 2: Mutual Exclusion with Semaphore 
 

Time 
Process status/activity bsem 

1 = FREE 
0 = BUSY 

Process sharing 
resources; 
Attempting to 
enter 

P1 P2 P3 

T1 …. …. …. 1   … ; ... 
T2 wait(bsem) wait(bsem) wait(bsem) 0   ….;P1,P2,P3 

T3 
Critical 
Section Waiting Waiting 0   P1;P2,P3 

T4 Signal Waiting Waiting 1   ……;P2,P3 

T5 
Rest-P1-
Processing Waiting 

Critical 
Section 0   P3:P2 

T6 wait(bsem) Waiting 
Critical 
Section 0   P3:P2,P1 

T7 wait(bsem) Waiting Signal(bsem) 1   …….;P2,P1 

T8 wait(bsem) 
Critical 
Section 

Rest-P3 
Processing 0   P2;P1 

 
 
We also present a table showing the run time behavior of three Processes and functioning of 
semaphore. Each column of the table show the Activity of a particular process and the value of 
a semaphore after certain action has been taken on this process. 
 
 
 
 
 
Classical Problems of Synchronization: 
 
Bounded-Buffer Problem: 
 
 To avoid the occurrence of race condition, we present a solution to the bounded buffer 
problem using semaphores. The biggest advantage of this solution using semaphores is that it 
not only avoids the occurrence of race condition but also allows having size items in the buffer 
at the same time, thus, eliminating the shortcomings of the solutions using shared memory. The 
following three semaphores are used in this solution. 
 
 We assume that the pool consists of n buffers, each capable of holding one item. 
The mutex semaphore provides mutual exclusion for accesses to the buffer pool and is 
initialized to the value 1. The empty and full semaphores count the number of empty and full 
buffers. The semaphore empty is initialized to the value n; thee semaphore full if initialized to 
the value 0. 
 
The structure of the producer process 
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while (true) { 
 
// produce an item 
 
wait (empty); 
wait (mutex); 
 
// add the item to the buffer 
 
signal (mutex); 
signal (full); 
 
} 
 
The structure of the consumer process 
 
while (true) { 
wait (full); 
wait (mutex); 
 
// remove an item from buffer 
 
signal (mutex); 
signal (empty); 
 
// consume the removed item 
 
} 
 
We can interpret these codes as the producer producing full buffers for the Consumer or as the 
consumer producing empty buffers for the producer. 
Readers and Writers Problem: 
 
 Concurrently executing processes that are sharing a data object, such as a file or a 
variable, fall into two groups: readers and writers  
 
 The processes in the readers group want only to read the contents of the shared object, 
whereas, the processes in writers group want to update (read and write) the value of shared 
object. There is no problem if multiple readers access the shared object simultaneously. 
However, if a writer and some other process (either a reader or writer) access the shared object 
simultaneously, data may become inconsistent. 
 
 To ensure that such a problem does not arise, we must guarantee that when a writer is 
accessing the shared object, no reader or writer accesses that shared object. This 
synchronization problem is termed as readers-writers problem. The readers-writers problem has 
several variations. The simplest one referred to as the first reader-writer problem, requires that 
no reader will be kept waiting unless a writer has already obtained permission to use the shared 
object. In other words, no reader should wait for others readers to finish simply because a writer 
is waiting. The second readers-writers problem requires that, once a writer is ready, that writer 
performs its write as soon as possible. In other words, if a writer is waiting to access the object, 
no new readers may start reading. 
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 A solution to either problem may result in starvation. In the first case writers may starve, 
in the second case, readers may starve. 
  
 Following is a solution to the first readers-writers problem. The reader processshare the 
following data structures: 
 
semaphore mutex, wrt; 
int readcount; 
 
 The semaphore mutex and wrt are initialized to 1 and read count is initialized to 0.The 
semaphore wrt is common to both reader and writer processes. The mutex semaphore is used 
to ensure mutual exclusion when the variable read count is updated. The read count variable 
keeps track of how many processes are currently reading the object. The semaphore functions 
as a mutual-exclusion semaphore for the writers. It is also used by the first or last reader that 
enters or exists the critical section. It is not used by readers who enter or exit while other 
readers are in their critical section. 
 
 If a writer is in the critical section and n readers are waiting, then one reader is queued 
on wrt, and n-1 readers are queued on mutex. Also, observe that, when a writer executes signal 
(wrt), we may resume the execution of either the waiting readers or a single waiting writer. 
 
The structure of a writer process 
 
while (true) { 
 

wait (wrt) ; 
 
// writing is performed 
 

signal (wrt) ; 
 
} 
 
The structure of a reader process 
 
while (true) { 

wait (mutex) ; 
readcount ++ ; 
if (readercount == 1) wait (wrt) ; 
signal (mutex) 
 

// reading is performed 
 

wait (mutex) ; 
readcount - - ; 
if (redacount == 0) signal (wrt) ; 
signal (mutex) ; 
 

} 
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Monitors 
 
 A monitor is a programming language construct which is also used to provide mutually 
exclusive access to critical sections. The programmer defines monitor type which consists of 
declaration of shared data (or variables), procedures or functions that access these variables, 
and initialization code. The general syntax of declaring syntax of declaring a monitor type is as 
follows: 
 
monitor <monitor-name> 
 
{ 
 
// shared data (or variable) declarations 

data type <variable-name>; 
… 

// function (or procedure) declarations 
 
return_type <function_name> (parameters) 
 
{ 
 
// body of function 
 
} 
. 
. 
monitor-name() 
 
{ 
 
// initialization 
 
} 
 
} 
 
 
 The variables defined inside a monitor can only be accessed by the functions defined 
within the monitor, and it is not feasible for any process to access these variables. Thus, if any 
process has to access these variables, it is only possible through the execution of the functions 
defined inside the monitor. Further, the monitor construct checks that only one process may be 
executing within the monitor at a given moment. But if a process is executing within the monitor, 
then other requesting processes are blocked and placed on an entry queue. 
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                             Fig 2 

 
 However, the monitor construct, as defined so far, is not sufficiently powerful for 
modeling some synchronization schemes. For this purpose, we need to define additional 
synchronization mechanisms. These mechanisms are provided by the condition construct. We 
can define a mechanism by defining variables of condition type on which only two operations 
can be invoked: wait and signal. Suppose, programmer defines a variable C of condition type, 
then execution of the operation C.wait() by a process Pi, suspends the execution of Pi, and 
places it on a queue associated with the condition variable C. On the other hand, the execution 
of the operation C.signal() by a process Pi, resumes the execution of exactly one suspended 
process Pj, if any. It means that the execution of the signal operation by Pi allows other 
suspended process Pj to execute within the monitor. However, only one process is allowed to 
execute within the monitor at one time. Thus, monitor construct prevents Pj from resuming until 
Pi is executing (Fig 2) in the monitor. There are following possibilities to handle this situation. 
 

• The process Pi must be suspended to allow Pj to resume and wait until Pj leaves the 
monitor. 

• The process Pj must remain suspended until Pi leaves the monitor. 
• The process Pi must execute the signal operation as its last statement in the monitor so 

that Pj can resume immediately. 
 
The solution to the dining-philosophers problem is as follows: 
 
 The distribution of the chopsticks is controlled by the monitor dp. Each philosopher, 
before starting to eat, must invoke the operation pickup(). This may result in the suspension of 
the philosopher process. After the successful completion of the operation, the philosopher may 
eat. Following this, the philosopher invokes the putdown() operation. Thus, philosopher i must 
invoke the operations pickup() and putdown() in the following sequence: 
 
dp.pickup(i); 
… 
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eat 
 
… 
 
dp.putdown(i); 
 
monitor DP 
 
{ 
 

enum { THINKING; HUNGRY, EATING) state [5] ; 
condition self [5]; 
void pickup (int i) { 
state[i] = HUNGRY; 
test(i); 
 

if (state[i] != EATING) 
self [i].wait; 
 
} 
 
 
void putdown (int i) { 
 
state[i] = THINKING; 
 
// test left and right neighbors 
 

test((i + 4) % 5); 
test((i + 1) % 5); 

} 
 
void test (int i) { 
 

if ( (state[(i + 4) % 5] != EATING) && 
(state[i] == HUNGRY) && 
(state[(i + 1) % 5] != EATING) ) 
 

{ 
 

state[i] = EATING ; 
self[i].signal () ; 

} 
 
} 
 
initialization_code() { 
 

for (int i = 0; i < 5; i++) 
state[i] = THINKING; 
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} 
} 
 
 After eating is finished, each philosopher invokes putdown() operation before start 
thinking. This operation changes the state of philosopher process to thinking and then invoke 
test((i + 4) % 5) and test((i + 1) % 5) operation for philosophers on his left and right side (one 
by one). This verifies whether the philosopher feels hungry, and if so then allows him to eat in 
case philosophers on his left and right side are not eating. 
 
Peterson’s Solutions: 
 
 A solution to the mutual exclusion problem that does not require strict alternation, but still 
uses the idea of lock (and warning) variables together with the concept of taking turns is 
described in (Dijkstra, 1965). In fact the original idea came from a Dutch mathematician (T. 
Dekker). This was the first time the mutual exclusion problem had been solved using a software 
solution. (Peterson, 1981), came up with a much simpler solution. 
 
The solution consists of two procedures, shown here in a C style syntax. 
 
int No_Of_Processes; // Number of processes 
int turn; // Whose turn is it? 
int interested[No_Of_Processes]; // All values initially FALSE 
void enter_region(int process) { 
int other; // number of the other process 
other = 1 - process; // the opposite process 
interested[process] = TRUE; // this process is interested 
turn = process; // set flag 
while(turn == process && interested[other] == TRUE); // wait 
} 
void leave_region(int process) { 
interested[process] = FALSE; // process leaves critical region 
} 
 
 A process that is about to enter its critical region has to call enter_region. At the end of 
its critical region it calls leave_region. 
  
 Initially, both processes are not in their critical region and the array interested has all 
(both in the above example) its elements set to false. 
 
 Assume that process 0 calls enter_region. The variable other is set to one (the other 
process number) and it indicates its interest by setting the relevant element of interested. Next it 
sets the turn variable, before coming across the while loop. In this instance, the process will be 
allowed to enter its critical region, as process 1 is not interested in running. 
 
 Now process 1 could call enter_region. It will be forced to wait as the other process (0) is 
still interested. Process 1 will only be allowed to continue wheninterested[0] is set to false which 
can only come about from process 0 calling leave_region. 
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 If we ever arrive at the situation where both processes call enter region at the same 
time, one of the processes will set the turn variable, but it will be immediately overwritten. 
 
 Assume that process 0 sets turn to zero and then process 1 immediately sets it to 1. 
Under these conditions process 0 will be allowed to enter its critical region and process 1 will be 
forced to wait. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om


