
Pointers with Functions and Arrays
Pointers and Functions
In the functions module we learned about passing arguments to functions. The arguments can be

passed to functions in two ways;

1. Passing argument by value

2. Passing arguments by reference

Passing arguments by value
 By default the arguments in C++ are passed by value. In the previous module all the

examples are passed by value only. When the arguments are passed by value, the values of

arguments are copied into the function parameters. In passed by value method, any changes

made to formal arguments do not modify the actual arguments. The pass by value is suitable

many cases so it has some advantages and disadvantages.

Advantages of pass by value:

• Functions arguments passed by value can be variables, expressions, enumerators,

structures and classes.

• Functions arguments are never changed by the called function, which prevents the side

effects.

Disadvantages of pass by value:

• Copying structures and classes can result a significant performance penalty, especially if

the function is called many times.

Let us consider an example which shows the variables in modified in the called function will not

modify variables in the calling function. In the below example we are calling swap function from

main () function and in the swap function we are swapping the arguments and displaying on the

console.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Figure1: Example program for Pass by value

Figure2: Result of the program

Passing arguments by reference
 The pass by value has the following limitations which will affect the performance. When

passing a large structure or class to a function using pass by value will make a copy of the

argument into the function parameter and it has the only way to return a value back to the calling

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

function is using functions return value. These problems will be overcome in pass by reference,

in which the actual value is not passed instead of this the reference of arguments passed to the

function. In the example program two integer variables are declared and those integer values are

passed to swap function by reference. When the function is called the variables are reference to

the arguments ‘a’ and ‘b’ in the main function. Here the reference to the variable is treated

exactly same as the variable itself, any changes made to the reference variables that will modify

the actual arguments.

Figure3: Example program for pass by reference

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Figure4: Result of the program

Advantages of pass by reference:

• The pass by reference allows a function to change the value of the argument. This will be

useful sometime but not good. We can use const reference to guarantee the function

won’t change the arguments if needed.

• It is fast because the copy of argument is not made even when used with large structures

and classes.

• References must be initialized, so there is no problem about null values.

• References can be used to return multiple values from a function.

Disadvantages of pass by reference:

• It is impossible to tell from the function call whether the argument may modify or not.

We can only know that an argument is passed by value or passed by reference by seeing

at function declaration.

 There is another method to pass arguments to functions and that is passing an argument by

address. In this method the address of variable is passed during the function call rather than

variable itself, because the argument is an address, so the function parameter must be pointer.

The function can then dereference the pointer to access the value being pointed. Let us consider

an example program which increments integer values by passing address of variables ‘a’ and ‘b’.

Here passing the address of variables ‘a’ and address of variable ‘b’ in the function call, so the

receiving formal arguments in the function definition should be declared of pointer type.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 Whenever the function ‘ref ()’ is called the two pointers to integer variable ‘p’ and ‘q’ are

created and they are initialized with the address of variables ‘a’ and ‘b’. By dereferencing the

pointers variables ‘p’ and ‘q’, we will able to access the variables ‘a’ and ‘b’. Before the ‘ref ()’

function the values of ‘a’ and ‘b’ are ‘7’.

 The values of actual arguments are copied into pointer variables ‘p’ and ‘q’ and here the

actual arguments are addresses of variables ‘a’ and ‘b’. Since ‘p’ contain address of variable ‘a’

and ‘q’ contain the address of variable ‘b’ inside the ‘ref ()’ function. In the function the

variables ‘p’ and ‘q’ are incremented and the values are displayed on the console and come back

into main function. Here we can observe that the values of variables ‘a’ and ‘b’ are changed.

Finally we can say the by the passing arguments through reference and by address it will modify

the actual arguments also.

Figure5: Example program for pass by address

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Figure6: Result of the program

Advantages of pass by address:

• The pass by address allows a function to change the value of the argument.

• It is fast because the copy of argument is not made even when used with large structures

and classes.

• It can be used to return multiple values from a function.

Disadvantages of pass by address:

• Pointer arguments must be normal variables because the literals and expressions do not

have addresses.

• Accessing arguments passed by address is slower than the accessing arguments passed by

value because the dereferencing pointer is slower than accessing a value directly.

• All values must be checked to see whether they are null, because trying to dereference a

null value crash the program.

 Use ‘passing arguments by value’ for fundamental data types and enumerators.

 Use ‘passing arguments by reference’ when you need to modify an argument and passing

classes and structures.

 Use ‘passing arguments by addresses’ for passing arrays.

 The returning values from a called function to calling function by value and reference or

address works almost same way as passing arguments to a function. Each of these methods has

their own advantages and disadvantages. The more common problem is returning local variables

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

declared in the functions, because the local variables declared in a function will go out of scope

when the function returns.

Returning by value
 Return by value is the simplest return type to use. When the values are returned by the

value, a copy of that value is returned to the calling function. Using return by value we can return

only variables, literals and expressions. The advantage of return by value is that we can return

variables or expressions that involved local variables declared within the function without having

any problem about scope of the variable, because the variables are evaluated before the function

goes out of the scope and a copy of the value is returned to the calling function. So there is no

problem with scope of variables at the end of the function. The problem with return by value is

slow for structures and classes.

Return by reference
 The values returned by reference must be variables. When a variable is returned by

reference, a reference to the variable is passed back to the calling function. The calling function

then uses this reference to modify the variable, when it needed. Return by reference is also fast

and it is mostly useful when returning structures and classes. Return by reference is not used for

literals and expressions because the literals and expressions do not have addresses.

Return by address
 Returning by address involves returning the address of a variable to the calling function.

Return by address can only return the address of the variable, so it cannot be used for expressions

and literals, because return by address copies an address from the function to the calling

function. When using return by reference or address makes sure that you are not returning a

reference to or an address of a variable that will go out of the scope when the function returns.

Returning more than one value from a function
 We can return only one value from a function using return statement. By using pass by

reference we can overcome this problem and return more than one value. Let us take one

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

example to better understand this concept. Let us take a function which perform addition,

subtraction and multiplication on two integer variables and return sum, difference and

multiplication to the calling function. In the following program the variables ‘a’ and ‘b’ are

passed by value and the variables ‘sum’, ‘diff’ and ‘mul’ are passed by reference . The function

‘multiple’ knows the address of variables ‘sum’, ‘diff’ and ‘mul’, so it can access these variables

indirectly using pointers and assign the appropriate values to them.

Figure7: Example program for returning more than one value from a function

Figure8: Result of the program

The relation between pointer and an array
 The pointers and arrays are closely related. We can access array elements using pointer

expressions. By default the compiler converts the array subscript notation to pointer notation to

access the array elements. Let us consider an example program which displays the address and

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

value of each element in an array using array notation and pointer notation. In the below example

program we defined integer array of five elements.

Figure9: Example program for accessing address and value using array notation and pointer

notation

Figure10: Comparison between array notation and pointer notation

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Already we know that the name of the array holds the address of the first element in the array, so

the address of array can be known by ‘arr’ or ‘&arr[0]’ and this two points to the same memory

address location. The name of the array is a constant pointer and according to pointer arithmetic

when an integer is added to a pointer then the address of the next element is of same base type,

so ‘arr+1’ will give address of the next element.

Figure11: Result of the program

Let us consider example program to read input values from user and display on the console using

pointer notation.

Figure12: Example program to read input values from user and display on the console using

pointer notation.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Figure13: Result of the program

Array pointer
Till now we learn that a pointer is pointed to 0th element of array. We can also declare a pointer

that can point to the whole array instead of only pointing one element of array. These types of

pointers are useful when talking about multidimensional arrays.

Example:

 int (*ptr)[5];

Here ‘ptr’ is a pointer to array of five integers. The subscripts have the higher precedence than

indirection operator, so it is necessary to enclose indirection operator and pointer name in the

parentheses. The pointer that points to 0th element of array and the pointer that points to the

whole array are different. Let us consider a program which will show the difference between

this.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Figure14: Example program for array pointer

In the above, the pointer ‘ptr’ points to 0th element of array, whereas the pointer ‘ptr1’ points to

whole array. After arithmetic increment on both pointers the ‘ptr’ shifted forward only four bytes

and whereas ‘ptr1’ is shifter, forward 20 bytes since ‘ptr1’ is pointer to point array of five

elements.

Figure15: Result of the program

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

