
Kernel configuration

The kernel configuration and build system is based on multiple Make files. All Makefiles

inside the sub directories in kernel source interacts with the main Makefile which is present in

the top directory of the kernel source tree. Interaction between all make files takes place using

the make tool, which parses the Makefile, through various targets, defining which action should

be done like configuration, compilation, installation, etc. The kernel contains thousands of device

drivers, network protocols, file systems, other configurable devices and thousands of options are

available that are used to selectively compile parts of the kernel source code. The kernel

configuration is the process of defining the set of options with which you can compile your own

kernel source. The configuration for the specific target is stored in the .config file at the root of

kernel source.

The .config file looks like as shown in below

Automatically generated file; DO NOT EDIT.

Linux/arm 3.8.0-rc4 Kernel Configuration

CONFIG_ARM=y

CONFIG_ARM_RUNTIME_PATCH=y

CONFIG_SYS_SUPPORTS_APM_EMULATION=y

CONFIG_GENERIC_GPIO=y

CONFIG_HAVE_PROC_CPU=y

CONFIG_NO_IOPORT=y

CONFIG_STACKTRACE_SUPPORT=y

CONFIG_HAVE_LATENCYTOP_SUPPORT=y

CONFIG_LOCKDEP_SUPPORT=y

CONFIG_TRACE_IRQFLAGS_SUPPORT=y

CONFIG_RWSEM_GENERIC_SPINLOCK=y

CONFIG_ARCH_HAS_CPUFREQ=y

CONFIG_GENERIC_HWEIGHT=y

CONFIG_GENERIC_CALIBRATE_DELAY=y

CONFIG_NEED_DMA_MAP_STATE=y

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

CONFIG_VECTORS_BASE=0xffff0000

CONFIG_ARM_PATCH_PHYS_VIRT=y

CONFIG_ARM_RUNTIME_PATCH_TEST=y

CONFIG_GENERIC_BUG=y

CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config"

CONFIG_HAVE_IRQ_WORK=y

CONFIG_BUILDTIME_EXTABLE_SORT=y

General setup

CONFIG_EXPERIMENTAL is not set

CONFIG_BROKEN_ON_SMP=y

CONFIG_INIT_ENV_ARG_LIMIT=32

CONFIG_CROSS_COMPILE=""

CONFIG_LOCALVERSION=""

CONFIG_LOCALVERSION_AUTO=y

CONFIG_HAVE_KERNEL_GZIP=y

CONFIG_HAVE_KERNEL_LZMA=y

CONFIG_HAVE_KERNEL_XZ=y

CONFIG_HAVE_KERNEL_LZO=y

CONFIG_KERNEL_GZIP=y

CONFIG_KERNEL_LZMA is not set

CONFIG_KERNEL_XZ is not set

CONFIG_KERNEL_LZO is not set

CONFIG_DEFAULT_HOSTNAME="(none)"

CONFIG_SWAP=y

CONFIG_SYSVIPC is not set

CONFIG_FHANDLE is not set

CONFIG_HAVE_GENERIC_HARDIRQS=y

Multiple platform selection

CPU Core family selection

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

CONFIG_ARCH_MULTI_V6 is not set

CONFIG_ARCH_MULTI_V7=y

CONFIG_ARCH_MULTI_V6_V7=y

CONFIG_ARCH_MULTI_CPU_AUTO is not set

CONFIG_ARCH_MVEBU is not set

CONFIG_ARCH_BCM is not set

CONFIG_KEYBOARD_GPIO_POLLED is not set

CONFIG_ARCH_HIGHBANK is not set

CONFIG_ARCH_MXC is not set

CONFIG_ARCH_SOCFPGA is not set

CONFIG_ARCH_SUNXI is not set

CONFIG_ARCH_VEXPRESS=y

Versatile Express platform type

CONFIG_ARCH_VEXPRESS_CORTEX_A5_A9_ERRATA=y

CONFIG_ARCH_VEXPRESS_CA9X4 is not set

CONFIG_PLAT_VERSATILE_CLCD=y

CONFIG_PLAT_VERSATILE_SCHED_CLOCK=y

CONFIG_ARCH_VT8500 is not set

CONFIG_ARCH_ZYNQ is not set

CONFIG_PLAT_VERSATILE=y

CONFIG_ARM_TIMER_SP804=y

CONFIG_ARCH_FLATMEM_ENABLE=y

CONFIG_ARCH_DISCONTIGMEM_ENABLE=y

Processor Type

CONFIG_CPU_V7=y

CONFIG_CPU_32v6K=y

CONFIG_CPU_32v7=y

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

CONFIG_CPU_ABRT_EV7=y

CONFIG_CPU_PABRT_V7=y

CONFIG_CPU_CACHE_V7=y

CONFIG_CPU_CACHE_VIPT=y

CONFIG_CPU_COPY_V6=y

CONFIG_CPU_TLB_V7=y

CONFIG_CPU_HAS_ASID=y

CONFIG_CPU_CP15=y

CONFIG_CPU_CP15_MMU=y

Boot options

CONFIG_S3C_BOOT_WATCHDOG is not set

CONFIG_S3C_BOOT_ERROR_RESET is not set

CONFIG_S3C_BOOT_UART_FORCE_FIFO=y

CONFIG_S3C_LOWLEVEL_UART_PORT=2

CONFIG_SAMSUNG_CLKSRC=y

CONFIG_SAMSUNG_IRQ_VIC_TIMER=y

CONFIG_SAMSUNG_IRQ_UART=y

CONFIG_SAMSUNG_GPIOLIB_4BIT=y

CONFIG_S3C_GPIO_CFG_S3C24XX=y

CONFIG_S3C_GPIO_CFG_S3C64XX=y

CONFIG_S3C_GPIO_PULL_UPDOWN=y

CONFIG_S5P_GPIO_DRVSTR=y

CONFIG_SAMSUNG_GPIO_EXTRA=0

CONFIG_S3C_GPIO_SPACE=0

CONFIG_S3C_GPIO_TRACK=y

CONFIG_S3C_ADC=y

CONFIG_S3C_DEV_ADC=y

CONFIG_S3C_DEV_ADC1 is not set

CONFIG_S3C_DEV_HSMMC2=y

CONFIG_S3C_DEV_HSMMC3=y

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

CONFIG_S5P_DEV_MSHC is not set

CONFIG_S3C_DEV_HWMON=y

CONFIG_S3C_DEV_I2C1=y

CONFIG_S3C_DEV_I2C2=y

CONFIG_S3C_DEV_I2C3=y

CONFIG_S3C_DEV_I2C4=y

CONFIG_S3C_DEV_I2C5=y

CONFIG_S3C_DEV_I2C7=y

CONFIG_EXYNOS_DEV_SS_UDC=y

CONFIG_S3C_DEV_WDT=y

CONFIG_S3C_DEV_RTC=y

CONFIG_SAMSUNG_DEV_ADC=y

CONFIG_SAMSUNG_DEV_PWM=y

CONFIG_SAMSUNG_DEV_BACKLIGHT=y

CONFIG_S3C24XX_PWM=y

CONFIG_S3C_PL330_DMA=y

CONFIG_DMA_M2M_TEST is not set

MMC/SD slot setup

SELECT SYNOPSYS CONTROLLER INTERFACE DRIVER

CONFIG_EXYNOS5_DEV_DWMCI2=y

Use 8-bit bus width

CONFIG_EXYNOS4_SDHCI_CH2_8BIT is not set

CONFIG_EXYNOS5250_ABB_WA=y

The kernel image is a single file, resulting from the linking of all the object files that

correspond to features enabled in the configuration. This is the file loaded in memory by the

bootloader and all included features are available as soon as kernel starts when there is no root

file system exists. Some features can be compiled as modules like device drivers and file

systems. These modules can be loaded or unloaded dynamically at run time to add or remove

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

features to the kernel. Each module is stored as a separate file in the file system therefore access

to file system is mandatory to use modules. This is not possible in the early boot procedure of the

kernel, because at that time no file system is available.

There are different types of kernel options to select different features in the kernel image.

• bool option – it tells

o true – include the feature in the kernel image

o false – exclude the feature in the kernel image

• tristate option – it tells

o true – include the feature in the kernel image

o module – include the feature as kernel module

o false – exclude the feature in the kernel image

• int option – to specify integer values

• hex option – to specify hexadecimal values

• string option – to specify string values

There are dependencies between kernels options like if want enable a network driver requires the

network stack to be enabled.

Two types dependencies.

1. Depend on dependencies – feature A depends on feature B, in this until feature B

enable the feature A not visible.

2. Select dependencies – feature A depends on feature B, in this if feature A enabled the

feature B is automatically enabled.

These options typically never edited by hand but through graphical or text interfaces.

• Text interfaces

o Make menuconfig

o Make nconfig

o Make config

• Graphical interfaces

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

o Make xconfig

o Make gconfig

Make menuconfig - Text based with colored menus and radio lists. This option allows

developers to save their progress. This is useful when no graphics are available. This type

interfaces available for Buildroot and busybox. To run this we need to install ncurses package

(sudo apt-get install libncurses5-dev).

Make nconfig - Text based with colored menus and user friendly. To run this we need to install

libncurses package (sudo apt-get install libcdk5-dev).

Make config - Plain text interface.

Make xconfig - It is graphical interface to configure the kernel. Easier to load configuration files

and search interface option is available to look parameters. To run this we need to install librt-

dev package and g++ and libqt3-mt-dev package for older kernel releases.

Make gconfig - GTK based graphical configuration interface. It is similar to xconfig but lacking

of searching functionality. To run this we need to install libglade2-dev package.

Make oldconfig - Plain-text interface that updates a .config file to be compatible with the newer

kernel source code. Issues warnings for configuration parameters that are no longer exist in the

new kernel. Asks for values for new parameters, where as in xconfig and menuconfig set default

values foe new parameters.

Make silentoldconfig - The silentoldconfig is the same as oldconfig except the questions

answered by the .config file will not be shown.

Make olddefconfig - The olddefconfig is like silentoldconfig except some questions are

answered by their defaults.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Make defconfig - The defconfig option creates a .config file that uses default settings based on

the current system architecture.

Before making changes to kernel configuration settings try to take back up the old configuration

file because after changing several parameters the kernel no longer works, if something goes

wrong then we can use this back up config file to run the kernel.

$ cp .config .config.old

Compiling and installing the kernel for the host system

 Make

• Make command given in the main kernel source directory. If you want run multiple jobs

at a time then give make –j4 – which uses four CPU cores to compile the kernel. It speed

up the compilation process.

• It generates the following files

o Vmlinx – the raw uncompressed kernel image in the ELF format, useful for

debugging purposes but it cannot be booted.

o zImage, Image, bzImage, vmImage.gz images are generated in arch/arm//boot

directory.

 zImage – for ARM architecture

 Image – uncompressed image format

 bzImage – for x86 architecture.

 vmImage.gz for blackfin.

o The device tree files are generated in arch/arm//boot/dtb directory for some

architecture.

o All kernel modules spread over the kernel source tree as .ko files.

 Make install

o It will install for the host system by default. Generally it is not used when compiling

for an embedded device, as it installs files on development workstation.

o Installs:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 Arch/boot/vmlinuz -- compressed kernel image.

 arch/boot/System.map – stores kernel symbol addresses.

 /boot/config – kernel configuration

 Make modules_install

o It will install for the host system by default.

o Install all modules in /lib/modules

o Kernel/ -- kernel object modules as .ko files

o Modules.alias – for module loading utilities.

o Module.dep – module dependencies.

o Modules.symbols – which module a given symbol belongs to.

 Make clean – It removes all the generated files while compilation.

 Make mrproper – It also removes all generated files and also removes your .config file also.

It is useful when switching from one architecture to other architecture.

 Make distclean – It also removes all generated files as well as backup and patch reject files.

Cross compiling the kernel
To make the difference between native compilers, cross-compiler executables are

prefixed by name of the target board and architecture. The CPU architecture and cross compiler

prefix are defined through the ARCH and CROSS_COMPILE variables in the top level

makefile.

• ARCH is the name of the architecture. It is defined by the name of the subdirectory in arch/

folder in the kernel sources.

o Example: for ARM – ARCH=arm

• CROSS_COMPIE is the prefix of the cross compilation tool chain.

o Example: for ARM – CROSS_COMPILE=arm-linux-gcc

• Two solutions to define ARCH and CROSS_COMPILE

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

o Pass ARCH and CROSS_COMPILE on the make command line while compiling the

kernel.

 Example: make ARCH=arm CROSS_COMPILE=arm-linux-gcc

 Problem with this is we will forget to pass these variables when you run any make

command.

o Define ARCH and CROSS_COMPILE as environment variable.

 Export ARCH=arm

 CROSS_COMPILE=arm-linux-gcc

 Problem with this it works inside the current shell or command line terminal. You can

overcome by this putting this settings in a file that your source every time you start

working on the project. If you work on a single architecture with always same tool

chain then place this settings in. /bashrc file to make them permanent and visible for

any terminal.

Predefined configuration files
 Default configuration files are available for every architecture or CPU family in

arch/<arch>/configs as .config files. Run make help to find if one is available for your platform.

To load default configuration file just run make old_defconfig. This will overwrite your existing

.config file.

Device Tree

Many embedded architectures have a lot of non discoverable hardware. Depending on the

architecture such hardware is either described using C code directly with in the kernel or using a

special hardware description language in a device tree. ARM, power PC, ARC, Micro blaze are

the examples of architecture using device tree. The Device Tree is a data structure for describing

hardware, rather than hard coding every detail of a device into an operating system, many aspect

of the hardware can be described in a data structure that is passed to the operating system at boot

time. A device tree is written by kernel developers and is compiled into a binary device tree blob

passed at boot time to the kernel. There are different device tree for each board or platform

supported by the kernel. It will be there arch/arm/boot.dts/board.dtb. The boot loader must load

both kernel image and device tree blob in memory before starting the kernel.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Building and installing the kernel

• Make

o This command creates kernel images in /arch/<arch>/boot/ (can uImage,

zImage,vmlinux,bzImage) and copy this kernel image onto target board.

o Make dtbs creates the device tree blob in arch/<arch>/boot/dts/ and copy this file

also onto target board.

• Make install

o It is rarely used in embedded development, as kernel image is a single file.

• Make modules_install

o It installs many modules and description files.

Booting with U-Boot

• Latest versions of u-boot can boot the zImage binary file where as older version of u-boot

require special kernel image format uImage.

• uImage is generated from zImage using mkimage tool and it also done by automatically

by the kernel make uImage target.

• On some ARM platforms make uImage requires passing a LOADADDR environment

variable, which indicates at which physical memory address the kernel will be executed.

• U-Boot also needs to pass a device tree blob to the kernel.

o Load zImage or uImage at address X in memory.

o Load board.dtb at address Y in memory

o Start the kernel with bootz X – Y or bootm X – Y. The – in the middile indicates

no initramfs.

Kernel Command line

• The kernel behavior can be adjusted with no recompilation using the kernel command

line.

• This kernel command line is passed by boot loader. In u-boot the contents of bootargs

environment variable is automatically passed to the kernel.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• Built into the kernel using the CONFIG_CMDLINE option.

• The kernel command line is string that defines various arguments to the kernel.

o It is very important for system configuration.

o root – for root filesystem

o Console – to print kernel messages.

Using kernel modules

• Modules are useful to keep the kernel image size is to minimum.

• Modules make it easy to develop drivers without rebooting and reduce boot time. That is

at boot time it will not initialize devices and kernel features, this will be done later.

• Some kernel modules can depend on other kernel modules which need to be loaded first.

o Dependencies are described in /lib/modules/<kernel-version>/modules.dep. this

files are generated when we run make modules_install

o Example: usb-storage module depends on the scsi_mod, libusual and usbcore

modules.

Kernel log

When a new module is loaded the related information is available in the kernel log. The

kernel keeps its messages in a circular buffer. Kernel messages are available through the

“dmesg” command. Kernel log messages also displayed in the system console and can filtered

using “loglevel” kernel parameter or completely disabled with “quit” kernel parameter.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

