-1	
-1	0
	10

Booklet Code : I

Note:	(1)	Answer all	questions
-------	-----	------------	-----------

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Answer Sheet provided separately by Completely shading with Ball Point Pen (Black) only.
- (4) The OMR Answer Sheet will be invalidated if the circle is shaded using Pencil or if more than one circle is shaded against each question.

		more than one circle is shaded a	igainst ea	ach question.
		Section A : Ele	ctronic	s Engineering
1.		h the signal generator frequency of a 8 when Capacitance C = 147 pF. The	Q meter	set to 1.25 MHz, the Q of a coil is measured il inductance and resistance would be
	(1)	112 nH, 12 Ω	(2)	982 nH, 10 Ω
	(3)	110 μΗ, 8.8 Ω	(4)	320 μΗ, 6.2 Ω
2.	A pr	ulse waveform with a 3.3 k Ω source	resistano	e is to be displayed on an oscilloscope with the pulse shown on the scope is measured as
	(1),	49.5 ns (2) 54.45 ns	(3)	113.85 ns (4) 109.0 ns
3.	Hay	bridge is used to measure	100	
	(1)	very low resistances	(2)	inductance of a coil
	(3)	capacitance of a capacitor	(4)	impedance of a circuit
4.	VTV	/M.stands for	4	
	UH	Vacuum Tube Voltmeter	(2)	Valve type Variable Meter
	(3)	Volt Temperature Virtual Meter	(4)	Virtual Type Voltmeter
5.	Wav	elength of the visible light extends f	rom	
	(1)	0.8 to 1.0 nm	(2)	400 to 750 nm
	(3)	200 to 350 nm	(4)	25 nm to 75 nm
6.	Whi	ch one of the following light sensors	s produce	es largest output current?
1	(1)	PIN photodiode	(2)	Photovoltaic diode
	(3).	Avalanche Photodiode	(4)	Zener diode

1	
١	
1	

7.	The	type of lasers th	at use	organic dyes	enclosed	in glass tube	for an act	ive medium is	
	(1)	plasma lasers			(2)	liquid lasers			0
	(3)	ruby lasers			(4)	neon lasers			
8.		t is the duration MHz without a			n 8086 ba	ased microco	mputer, if	the clock frequen	icy
	(1)	83 ns	(2)	581 ns	95	332 ns	(4)	249 ns	
9.	How	many interrup	reque	st lines are ava	ailable in	programmab	le interru	pt controller 8259	A
	(an)	8	(2)	1042	(3)	4	(4)	16	
10.	In a	DMA write ope	ration	the data is trai	nsferred	10			
	(1)	from I/O to m	emory		4(2)	from memo	ry to I/O		
	(3)	from memory	to me	mory	4	from I/O to	I/O		
11.	825	l IC is a			00	7			
	(1) UART					USART			
	(3)	Programmabl	e Inter	rupt controlle	(4)	Programma	ble interv	al timer/counter	
12.	Hov	v many bits are	used a	s conditional	flags in th	ne flag regist	er of 8086	5?	
		16 -	(2)		0.000	11	(4)	The state of the s	
13.	Hoy	v many hardwa	re inter	rupts are then	e in 8086	?			
		12	(2)		L(3)	2 ·	(4)	8	
14.	Wh	ich one of the f	ollowi	ng ICs is a tri-	state buf	fer?			
	(1)	74LS121			(2)	74LS90			
	(3)	74LS138			(4)	74LS244			
15.	Hoy	w many bytes o	f bit ac	ldressable me	mory is p	present in 805	1 based r	nicrocontrollers?	
	(1)					32 bytes			
-	(3)	16 bytes				128 bytes			
Vision 1					-				

16.	In T	elecommunica	ation Net	tworks, the u	nit of traff	fic intensity is					
	(1)	Baud	(2).	Erlang	(3)	Power/Hz	(4)	Users/Wa	tt		
(7 <u>)</u>	Slot	Interchange nnels is (Assur	switch we that o	with a single one speech sa	input an	for the data and d single outputering every 12	t trunk 5 µs or	multiplex the line) _	ing 2500		
	(1)	25 μs	(2)	25 ns	(3)	5 ms	(4)	5 sec			
18.	0.2	second for esta	ablishing	and deleasin	g connect	ing nodes. Each	ly. If th				
	(1)	5.0 sec	(2)	0.2 sec	(3)	2.2 sec	(4)	10.0 sec			
19.		ommon chann	0.770	ling SS7 fra	me forma	t, the number o	f bits t	hat are used	d in error		
	(1)	8 bits	(2)	16 bits	(3)	32 bits	(4)	24 bits	1		
<i>2</i> 0.	In c	ellular mobile 824-849 MF		nications, the	e forward	channel freque	ncy ba	nd of AMP	S system		
٠.	(3)	1750-1925			7 (4)	869-894 MHz					
21,	Nyc	uist stability	criterion	is used to de	termine						
1.	41	both open lo	op and c	losed loop st	tability						
	(2)	only open lo		The second second							
	(3) neither open loop nor closed loop stability										
	(4)	only closed	loop stat	ouity							
22.	The rad/	open loop tra	usfer fur he Nyqu	ist plot inters	stem is Go	(s) H(s) = 10 s (- ve real axis is	s+0.25	s). The free	quency in		
		2.5	J2Y	00	(3)	0	(4)	4			
23.	If th	ne system has	multiple	poles on the	'jω' axis,	the system is					
	(1)	stable			(2)	conditionally	stable				
1	(3)	marginally s	table	11/10	(4)	unstable	4		*		
(EC	E)				5-D			*	P.T.O.		

24.	Sine wave can be conv	erted	into square w	ave using	4		
/	(1) monostable			(2)	schmitt trigge	r	-
	(3) clamping circuit			(4)	astable multiv	ibrator	0
25.	The rise time of low p	ass R	C circuit is g	iven by			
-	(1) 2.2 RC	(2)	30.2 RC	(3)	10 RC	(4)	20.2 RC
26.	In RC integrator circu	it the	output is tak	en across		/	1
	(1) resistor	(2)	transistor	(3)	diode	(4)	capacitor
27.	The part which conve	rts alt	ernating volt	age to a d	irect voltage in	a DC m	achine is
	(1) commutator			(2)	armature		
	(3) poles			(4)	brushes		
28.	Which of the followi	ng is 1	not a static c	haracteris			
	(1) drift			(2)	dead zone	,	41.5
	(3) sensitivity			(4)	fidelity		
<i>2</i> 9.	Parameter defined as measured is	the ne	earness of the	indicated	l value to the tr	ue value	of the quantity being
	(1) accuracy			(2)	resolution		
	(3) reproducibility		0	(4)	static error		
30.	Deflection sensitivit	y of a	CRO is exp	ressed in	terms of		
/	(1) V/cm		cm/V	(3)	V/cm ²	(4)	. V.cm
31.	A planar graph has to	otal nu	mber of brar	iches b = 7	7. Number of m	eshes =	4. The dual graph wi
	have total number of	node	s given by	2	Dr.	·	-
	(1) 2	(2)		(3)	\4	(4)	3
32	. Three equal resistar	nce of	3 ohm are c	onnected	in star. What i	s the res	sistance of one arm
34	equivalent delta?				1		1.5
	(1) 1 ohm	(2)	3 ohm	(3)	9 ohm	(4)	27 ohm
-			357				

33.	In a series RLC circuit, if C is increase	d what hap	
	(1) It increases	(2)	It decreases
	(3) It remains same	(4)	It depends upon the value of R
34.	Which meter has the highest accuracy	in prescrib	ed limit of frequency range?
	(1) PMMC	(2)	moving iron
1	(3) electrodynamometer	(4)	rectifier
35.	When the pointer of an indicating inst	trument con	mes to rest in the final deflected position
	(1) only controlling torque act		
,	(2) only deflecting torque act		. 0
	(3) both controlling and deflecting t	torque act	
	(4) only damping torque act		
36.	The yoke of d.c. machine is made of		
S 78891 L	(1) silicon steel	(2)	soft iron
#	(3) aluminium	LAT	cast steel
37.	If the field current of a dc shunt motor	or is change	d, then
3. 7	(1) the torque remains constant but		
	(2) the output power remains const	ant but torq	ue will change
_	(3) both the torque and output power		
	(4) both the torque and output power	er will rema	ain constant
38.	The back e.m.f in a d.c. motor		
	(1) oppose the applied voltage	(2)	
	(3) aids the armature current	(4)	oppose the armature current
39.	The ripple factor of power supply is	a measure	of
10000	(1) its filter efficiency	(2)	diode rating
	(3) its voltage regulation	(4)	purity of DC power output
40	is defined as the difference h	etween the	largest and smallest reading of instrument.
40.	(1) span (2) range	(3)	dead space (4) resolution

- 41. A circuit contains a dependent voltage source and two resistors. If Thevenin's equivalent is to be found across one of the resistors, the resulting Thevenin's equivalent has
 - (1) a voltage source and a resistor only
 - (2) a current source and a resistor only
 - (3) a resistor only
 - (4) either voltage source or current source only
- A2. The transformation of Y_{22}/Δ y into one of the z-parameters is

(H) Z11

(2) z₁₂

(3) z_{21}

(4) z_{22}

43. In an RLC network when all are connected in parallel, the driving point impedance of the network is given by $Z(s) = \frac{0.2s}{[s^2 + 0.1s + 2]}$. The component values are

(1) $L = 5 H, R = 0.5 \Omega, C = 0.1 F$

(2) $L = 0.1 \text{ H}, R = 0.5 \Omega, C = 5 \text{ F}$

(3) $L = 5 H, R = 2 \Omega, C = 0.1 F$

(4) $L = 0.1 \text{ H}, R = 2 \Omega, C = 5 \text{ F}$

44. The maximum percentage error in the sum of two voltage measurements when $V_1 = 100 \text{ V} \pm 1\%$ and $V_2 = 80 \text{ V} \pm 5\%$ is

(1) 180 V ± 6.0%

(2) 180 V ± 4.0%

(3) 180 V ± 2.8%

- (4) 180 V ± 3.6%
- A resistance strain gauge with a gauge factor of 2 is cemented to a steel member, which is subjected to a strain of 10^{-6} . If the original resistance value of the gauge is 130Ω , the change in the resistance would be _____

(1) 135 μΩ

 $(2)^{\sim} 260 \,\mu\Omega$

(3) 120 μΩ

- (4) $320 \mu\Omega$
- 46. Which one of the following materials does not produce an emf, when they are placed under stress?

(1) Quartz

(2) Rochelle salt

(3) Barium titanate

(4) Aluminum

Booklet Code : D

17	In the measurement of pH value, 10 ⁻¹¹ i	moles of h	vdrogen ions in	n 1 liter of	liquid equals to	
47.		(3)	2 pH	(4) 31	рН	
1						
48.	Thermocouple made of cond	luctors ha	s lowest temper	ature sens	ing range	0
Total Land	(1) Nickel Chromium / Constantan	(2)	Iron / Constant	tan		
	(3) Copper/Constantan	(4)	Nicrosil / Nis		20	
49.	A full wave rectifier with a centre-tapper resistance of 20Ω . The secondary resistance of 0.5Ω . What are rms values	tance of It	ansformer is 1	each half	of the secondary as	700
1	well as dc power supplied to the load?		23.9 V and 2	7	2=10 12 = 0.5d	
	(1) 2.39 V and 0.2 Watts					
	(3) 0.239 V and 20 Watts	(4)	2.39 V and 2	watts		
	Unit of thermal resistance that is used	in the des	ion of heat sink	s (for pow	ver amplifiers) is	
50.	(2) 90	(3)	°C / Ohms	(4)	C / Watt	
<u>.</u>	(1) Ohms (2) °C					
(51.	If the emitter diffusion capacitance an are 100 pF and 50 mA/V respectively, emitter current gain attains unit magni	then the f	requency at whi	ransistor a	ort-circuit commo	n
		/ / / / / /	79.57 MHz			
	(3) 55.28 MHz	1,48(4)				
52	A JFET has got the following specific V_{GS} is one fourth of the $V_{GS(OFF)}$ to the	ations: Vo	$_{\rm GS(OFF)} = -2V$, $I_{\rm D}$ en the drain cur	$_{OSS} = 4 \text{ mA}$. When the applied the device would be	d
	(1) 2.25 mA (2) 4 mA	(3)	0.25 mA	(4)	1.0 mA	
	. A voltage divider bias circuit uses n	ohonnel	IFFT as its act	ive device	with $V_{DD} = 25$	V.
53	To have minimum $V_{DS} = 10 \text{ V & } I_D$ (if $R_S = 2.25 \text{ k}\Omega$)	$p_{\text{max}} = 3 \text{ n}$	A, the value of	of the drain	n resistance will	be
	(1) $1.2 \text{ k}\Omega$ (2) $3.9 \text{ k}\Omega$	J3	2.75 kΩ	(4)	270 Ω	
54	In RC-phase shift oscillator circuit us	sing BJT	feedba	ack is emp	loyed.	
1	(1) voltage series	12	voltage shu	nt)		
	(3) current series	(4) current shur	nt		
	Current series	5.0			- 12	
					2 200	

55. The output voltage of circuit shown below is

- (1) -10 V
- (2) 5 V
- (3) -5 V
- (4) 0.5 V

OP-AMP, we need to cascade two second order prototypes. Then the voltage gains of the two second order systems would be (respectively):

(1) 2.235, 1.152

(2) 1.0, 1.586

(3) 1.586, 1.586

(4) 1.0, 1.0

57. The Boolean expression x'y + xy' + xy is equivalent to

- (1) (x+y)'
- (2) x'y
- (3) x+y
- (4) xy

58. If the input to T-flip-flop is 100 Hz signal, the final output of the three T-flip-flops that are connected in cascade is

- (1) 1000 Hz
- (2) 500 Hz
- (3) 333 Hz
- (A) 12.5 Hz

59. Which of following consume minimum power?

- (1) TTL
- (2) CMOS
- (3) DTL
- (4) RTL

The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input A is greater than the 2-bit input B. The number of combinations for which the output is logic 1, is

- (1) 4
- (2) 6
- (3) 8
- (4) 10

(ECE)

10-F

In a collector couple state of the circuit is (1) 2.3 RC In a D/A converte	(2) 2	.2 RC	nues is	1.38 RC		69 RC	
(1) 2.3 RC	(2) 2	.2 RC		1.38 RC	(4) 0.	69 RC	
	177		(3)	1.50 RC	1	Section of the sectio	
In a D/A converte						V 50	1
(1) as the resistation from time to obtaining state (3) the LSB resistant (4) the finite gain the two input voltages (1) 16 V	settle ble and prostance con in of the O ain of op-a ages are 20 (2)	ecise resistant from the resistant too many is 4000 pV and 176 mV	ors with a lanch of cureases ina and value 160 µV res (3)	ant bits become arge spread in the rent and power couracies of CMRR is pectively, will 64 mV	their valuer 150. Its out the (4)	tput voltage	t takes ifficult e, when
impulse response	of the cas	caded syste	(2)	sum of h ₁ (t)	and h ₂ (t)		Overan
convolution	of h ₁ (t) a	nd h ₂ (t)	(4)	subtraction	of h ₁ (t) and		
TI To doctor	form of re	ctangular	oulse of wi	dth 't' sec and	having un	it magnitud	eis
		July 1	(2)	τ sinc (πfτ)			
and the same of th		10					
. The maximum	and min	imum valu	ies of aut	ocorrelation	function	of a binar	y signal
$ \begin{array}{ccc} 1, 1, 1, -1, -1, 1 \\ (1) & 14, 7 \end{array} $, -1 are:	_	100				
The - transform	of a seque	ence u[n] -	u[n-2] is				
. The z-transform	Tot a scqu	1-z-1	(3)	z/(z-1)	(4)	$1 + z^{-1}$	
(1) 1+z	(2)						
	/odulation	1,		nsmitted pow	er is used	for carrying	g message
	convolution The Fourier trans (1) τ sinc (ωτ) (3) the LSB resi (4) the finite gain The differential gain the two input volt (1) 16 V Two systems with impulse response (1) product of h (2) convolution The Fourier trans (1) τ sinc (ωτ) (3) - sinc (ωτ) The maximum 1, 1, 1, -1, -1, 1 (1) 14, 7	obtaining stable and precision (3) the LSB resistance condition (4) the finite gain of the Office the two input voltages are 20 (1) 16 V (2) Two systems with impulse reimpulse response of the case (1) product of h ₁ (t) and h ₂ convolution of h ₁ (t) and h ₃ (2) The Fourier transform of reference (1) t sinc (ort) (3) sinc (ort) The maximum and minut (1, 1, 1, -1, -1, 1, -1 are: (1) 14, 7 (2)	obtaining stable and precise resists (3) the LSB resistance consume too in (4) the finite gain of the OP-AMP incomplete the two input voltages are 200 μV and (1) 16 V (2) 76 mV Two systems with impulse responses he impulse response of the cascaded system of the cascaded	obtaining stable and precise resistors with a second consume too much of cut (4) the finite gain of the OP-AMP increases in a second consume too much of cut (4) the finite gain of the OP-AMP increases in a second consume too much of cut (4) the finite gain of the OP-AMP increases in a second consume too much of cut (4) the finite gain of the OP-AMP increases in a second consumer that the two input voltages are 200 μ V and 160 μ V rest (1) 16 V (2) 76 mV (3) Two systems with impulse responses $h_1(t)$ and $h_2(t)$ impulse response of the cascaded system is given (1) product of $h_1(t)$ and $h_2(t)$ (2) convolution of $h_1(t)$ and $h_2(t)$ (4) The Fourier transform of rectangular pulse of with th	obtaining stable and precise resistors with a large spread in (3) the LSB resistance consume too much of current and pow (4) the finite gain of the OP-AMP increases inaccuracies The differential gain of op-amp is 4000 and value of CMRR is the two input voltages are $200 \mu\text{V}$ and $160 \mu\text{V}$ respectively, wil (1) 16V (2) 76mV (3) 64mV Two systems with impulse responses $h_1(t)$ and $h_2(t)$ are connected impulse response of the cascaded system is given by (1) product of $h_1(t)$ and $h_2(t)$ (2) sum of $h_1(t)$ and $h_2(t)$ (4) subtraction (1) τ sinc ($\omega\tau$) (2) τ sinc ($\pi\tau$) (3) τ sinc ($\omega\tau$) (4) sinc (τ) (5) τ sinc (τ) (7) τ sinc (τ) (1) τ sinc (τ) (2) τ sinc (τ) (3) τ sinc (τ) (4) sinc (τ) (5) τ sinc (τ) (7) τ sinc (τ) (1) τ sinc (τ) (2) τ sinc (τ) (3) τ sinc (τ) (4) sinc (τ) (5) τ sinc (τ) (7) (1) τ sinc (τ) (1) τ sinc (τ) (2) τ sinc (τ) (3) τ sinc (τ) (4) sinc (τ)	obtaining stable and precise resistors with a large spread in their value (3) the LSB resistance consume too much of current and power (4) the finite gain of the OP-AMP increases inaccuracies The differential gain of op-amp is 4000 and value of CMRR is 150. Its out the two input voltages are $200 \mu\text{V}$ and $160 \mu\text{V}$ respectively, will be (1) 16V (2) 76mV (3) 64mV (4) Two systems with impulse responses $h_1(t)$ and $h_2(t)$ are connected in cascal impulse response of the cascaded system is given by (1) product of $h_1(t)$ and $h_2(t)$ (2) sum of $h_1(t)$ and $h_2(t)$ (3) convolution of $h_1(t)$ and $h_2(t)$ (4) subtraction of $h_1(t)$ and $h_2(t)$ (7) t sinc t (t sinc t sinc t (t sinc t sinc t sinc t (t sinc	long time to settle (2) obtaining stable and precise resistors with a large spread in their values is very divided to the LSB resistance consume too much of current and power (4) the finite gain of the OP-AMP increases inaccuracies The differential gain of op-amp is 4000 and value of CMRR is 150. Its output voltage the two input voltages are $200 \mu\text{V}$ and $160 \mu\text{V}$ respectively, will be (1) 16V (2) 76mV (3) 64mV (4) 164.8mV Two systems with impulse responses $h_1(t)$ and $h_2(t)$ are connected in cascade. Then the impulse response of the cascaded system is given by (1) product of $h_1(t)$ and $h_2(t)$ (2) sum of $h_1(t)$ and $h_2(t)$ (2) sum of $h_1(t)$ and $h_2(t)$ (3) convolution of $h_1(t)$ and $h_2(t)$ (4) subtraction of $h_1(t)$ and $h_2(t)$ (1) $t \sin c (\omega \tau)$ (2) $t \sin c (\pi t \tau)$ (3) $t \sin c (\omega \tau)$ (4) $t \sin c (\pi t \tau)$ (4) $t \sin c (\pi t \tau)$ The maximum and minimum values of autocorrelation function of a binar $t = t + t + t + t + t + t + t + t + t + $

11-D

69.	A speech signal with maximum amplitude of $\pm 1V$ and bandwidth of 4 kHz is used as modulating signal in frequency modulation system. If the frequency sensitivity factor $k_f = 64000 \pi$, then the modulation index β of the frequency modulated signal is
	$k_f = 64000 \pi$, then the modulation matrix (3) 9.0 (4) 8.0

(1) 12.5

(2) 10.6

(3) 9.0

70. Which modulation scheme uses Hilbert transformer?

(1) DSB

(2) PM

(3) VSB

SSB (4)

The frequency range used for FM broadcasting is

78-87 MHz

(2) · 0.550-1.65 MHz

(3) 88-108 MHz

(4) 12-38 MHz

A PCM system uses Nyquist sampler, a uniform quantizer followed by a 5 bit binary encoder. The bit rate is 50 Mbps. The maximum message bandwidth for which the system operates satisfactorily is (4) 10 MHz

(1) 5 kHz

5 MHz (2)

(3) 10 kHz

Two signals s(t) and r(t) are to be transmitted over a common channel by means of time-division multiplexing. The highest frequency of s(t) is 1 kHz, and that of r(t) is 1.5 kHz. The minimum value of the permissible sampling rate is

(1) 3 kHz

(2) 2.5 kHz

(3) 2 kHz

(4) 5 kHz

74. A stable Linear Time Invariant (LTI) system has a transfer function $H(s) = \frac{1}{s^2 + s - 6}$. To

make this system causal it needs to be cascaded with another LTI system having a transfer function H₁(s). A correct choice for H₁(s) among the following options is

 $(1) \cdot s + 3$

(2) s-2

(3) s-6

(4) s+1

75. In a Bode magnitude plot, which one of the following slopes would be exhibited at high frequencies by a 4th order all-pole system?

(1) -80 dB/decade

(2) -40 dB/decade

+40 dB/decade

(4) +80 dB/decade

76. For the second order closed-loop system shown in the figure, the natural frequency (in rad/s) is

(4)

The most common two-phase ac servomotor differs from the standard ac induction motor because it has

- (1) higher rotor resistance
- higher power rating (2)

(3) motor stator windings

greater inertia (4)

A stepper motor having a resolution of 300 steps/rev and running at 2400 rpm has a pulse rate 78. of _____ pps. (4) 10000

- (1) 4000
- (2) 8000
- 6000

79. An integral controller has a value of $K_I = 0.1/\text{sec}$. What will be the output after t = 1 sec, if there is a sudden change to a constant error of 20%? (4) 20%

- (1) 4%
- (3) 8%

Given the system transfer function $G(s) = \frac{Ke^{-0.2s}}{s(s+2)(s+8)}$, the corner frequencies in rad/s are

- (1) 0.2, 0.6
- (3) 3, 7

Section B: General Awareness and Numerical Ability

81.	Mart	in Winterkorn,	CEO o	fauto	omobile	s resigned?		
		Skoda		Ford	(3)	FIAT	(4)	Volkswagen
82.	Iden	tify the first sov	ereign	ruler of Kakati	ya dyna	sty.		
		Rudradeva	(2)	Rudramadevi	(3)	Ganapathi deva	(4)	Mahadeva
83.	Whi	ch Mughal emp	eror co	nquered the Go	olconda	kingdom on 168	7 A.D	
	(1)		(2)	Akbar	(3)	Shahjahan	(4)	Aurangazeb
84.	GO.	Number 610 is	sissued	during the Chi	ief Min	istership of	-	
	(1)	N. Sanjeeva Re	eddy		(2)	P.V. Narsimha F	4600	
	(3)	T. Anjaiah			(4)	N.T. Rama Rao	10	
85.	Who	o created the En	nblem o	of Telangana sta	ate.		1	
THE SALE		Ale Laxman				Venkanna	(4)	Gaddar
				5 7				
86.	If v	$\sqrt{3} = 1.732$, then	the val	ue of $\frac{\sqrt{3}}{2} - \frac{7}{\sqrt{3}}$	$+\sqrt{27}$	is equal to		
	(1)	1000		2.009	131	1.224	(4)	3.585
87.	digi	its is 54. What nber if the ratio	is the d	ifference between the digits of	een the the nun	sum and the dif other is 1:3?	ained ference (4)	by interchanging the ce of the digits of the
	-	3	(2)		(3)		25 60	
88.	Wh	en a producer a	llows 3	4% commission	on on the	e retail price of the commission is re	is pro	duct, he earns a profit by 12%?
		25		30	(3)	35	(4)	40
89.	If 2	0 pumps can rai	se 5500	gallons of wat	er in 12 er, work	days, working 6 ing 12 hrs a day	hrs a d	lay; in how many days
	(1)		The second second	5	(3)	6	(4)	7
90.	Th	rough which de	vice the	e main compon	ents of	the computer cor	nmun	icate with each other?
90.	Ver)			Keyboard	(3)	Monitor	(4)	Memory
91	WI	hich of the follo	wing n	nemory is non-	volatile	1		
71	(1)	ALTO 4 4 4	(2)		(3)	ROM	(4)	All the above
								· The last
(10)	CE)				14-D			

92.	Microsoft Word is an example of								
	(1) An Operating System			(2)	Application Software				
	(3)	Processing Device			(4)				
93.	Operating system is most common type of				of	Software.			
	(1)				(2)) Communication			
	(3)	3) System			(4)	Word processing type			
	One compound expression is incorrect. Which one?								
	(1)	(1) Court Martial			(2)	Chairman Deputy			
	(3)) Poet Laureate			(4)	Secretary General			
95.	Find correct sequence of sentences:								
	Pollution has been defined								
	a)	a) or form of energy to the environment at							
	b)								
	c)								
	d)	as the addition of any substance							
	(1)	acdb	(2)	dacb	(3)	dcab	(4)	cadb	
96.	Why do you always me when I try to ask a question?								
	(1)	interpose	(2)	intercede	(3)	interfere	(4)	interrupt	
97.	There are several that describe the state of being asleep.								
	(1)	impressions	(2)	expressions	(3)	conditions	(4)	digressions	
98.	has been appointed as President of Cricket Association of Bengal?								
	(1)	Anil Kumble			(2)	Sachin Tendu			
	(3)	Ajay Jadeja	-		(4)	Sourav Gangu	ıly		
99.	(known as Metro Man) has been appointed to United Nations High Level Advisory								
	Gro	Group on Sustainable Transport by UN Secretary General Ban Ki-moon for three years?							
	(1)) Upendra Tripathy			(2)	Sunil Arora			
	(3)	(3) Sanjay Singh			(4)	Elattuvalapil Sreedharan			
100	is the Engineer's Day in India. It marks Birthday of Bharat Ratna Mokshagundam								
		esvarayya? September 20	(28	January 17	(3)	October 21	(4)	September 15	
	1.7	September 20	(2)	- >			(4)	Deptember 15	
0	200			-*-*	***	*		. 7 %	