ME1315

CIVIL ENGINEERING Paper - 2

SI.No. 218645

Series

Duration: 150 Minutes Max. Marks: 300

INSTRUCTIONS TO CANDIDATES

- 1. Please check the Test Booklet immediately on opening and ensure that it contains all the 150 multiple choice questions printed on it.
- 2. Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with the Question Paper Booklet. The OMR Answer sheet consists of two copies i.e., the Original Copy (Top Sheet) and Duplicate Copy (Bottom Sheet). The OMR sheet contains Registered Number/Hall Ticket Number, Subject/Subject Code, Booklet Series, Name of the Examination Centre, Signature of the Candidate and Invigilator etc.,
- 3. If there is any defect in the Question Paper Booklet or OMR answer sheet, please ask the invigilator for replacement.
- 4. Since the answer sheets are to be scanned (valued) with Optical Mark Scanner system, the candidates have to USE BALL POINT PEN (BLUE/BLACK) ONLY for filling the relevant blocks in the OMR Sheet including bubbling the answers. Bubbling with Pencil / Ink Pen Gel Pen is not permitted in the examination.
- 5. The Test Booklet is printed in four (4) Series, viz. A or B or C or D. The Series A or B or C or D is printed on the right-hand corner of the cover page of the Test Booklet. Mark your Test Booklet Series in Part C on side 1 of the Answer Sheet by darkening the appropriate circle with Blue/Black Ball point pen.

Example to fill up the Booklet series

If your test Booklet Series is A, please fill as shown below:

501/A

If you have not marked the Test Booklet Series at Part C of side 1 of the Answer Sheet or marked in a way that it leads to discrepancy in determining the exact Test Booklet Series, then, in all such cases, your Answer Sheet will be invalidated without any further notice.

6. Each question is followed by 4 answer choices. Of these, you have to select one correct answer and mark it on the Answer sheet by darkening the appropriate circle for the question. If more than one circle is darkened, the answer will not be valued at all. Use Blue/Black Ball point pen to make heavy black marks to fill the circle completely. Make **no** other stray marks.

e.g.: If the answer for Question No. 1 is Answer Choice (2), it should be marked as follows:

1 1 3 4

7. Mark Paper Code and Roll No. as given in the Hall Ticket with Blue/Black Ball point pen by darkening appropriate circles in Part A of side 1 of the Answer Sheet. Incorrect/not encoding will lead to *invalidation* of your Answer Sheet.

Example: If the Paper Code is 500 and Roll No. is 1309102001 fill as shown below:

Paper Code

Registered Number/Hall Ticket Number

1	3	0	9	1	0	2	0	0	1
0	0		0	0		0			0
	1	1	1		1	1	1	1	
2	2	2	2	2	2		2	2	2
3		3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
5	5	5	(5)	(5)	5	(5)	5	(5)	(5)
6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
9	9	9		9	9	9	9	9	9

- ii) Writes irrelevant matter, including the religious symbols, words, prayers or any communication whatsoever, in any place of the OMR answer sheet.
- iii) Uses other than Blue/Black ball point pen to darken the circles.
- iv) Forgets to bubble the Test Booklet series or bubbling the other TEST booklet series code than supplied to him/her.
- v) Bubbles the circles incompletely or using $\sqrt{\text{or}} \times \text{in the circles}$.
- vi) Uses whitener on the answer sheet.
- vii) If attempts any type of tampering (rubbing the circles with chalk powder/scratching the circles with razors etc) on the OMR Answer Sheet.
- viii) Adopts any method of malpractice
- 17. No correspondence will be entertained in this matter by the Commission, if the Answer Sheet of the candidate is invalidated/rejected due to the above reasons.

501/A

1)	to be applied per chain length is							
	(1)	$30 (1-\sec \theta) r$	n		(2)	30 (1 - cos θ) m	
•-	23)	$30 (\sec \theta - 1) r$	n.		(4)	$30 (\cos \theta - 1)$	m	
2)	XX7L		C. 11 .					
2)		ich one of the ss staff?	tollov	wing angles	can t	be set out with	the h	elp of French
	(1)	180°	(2)	90°	(3)	45°	(4)	any angle
3)	stat	amp at the top ion at sea level, ght of the light h	the d	istance of the	s visi e lamj	ble just above p from the stati	the hon is 3	orizon from a 80 km, find the
	(1)	2.019 m	(2)	0.57 m	(3)	20.19 m	(4)	6.057 m
4)	TI.	1. Y		C 1.1: :	11	M. M.		
4)		line Joining po Isoclinic lines		-			· (4)	A gania linas
	(1)	130cmile mies	(2)	Actinic inic.	3(2)	isogome mies	5 (4)	Agonic lines
5)		the forebearing uded angle betv			i0° ai	nd that of line	BC is	20°, then the
	(1)	70°	(2)	120°	(3)	220°	(4)	150°
6)		en contours of	differ	ent elevation		-		cates
	(1)				(2)	Overhanging	cliff	
	(3)	Saddle			(4)	Vertical cliff		
7)	In tl	leodolite surve	y, the	telescope is	said 1	to be inverted.	if the	
		Vertical circle						f the telescope
	(2)	Vertical circle is down	is to tl	he right of the	obse	erver and the bu	bble o	f the telescope
	(3)	Vertical circle is up	is to t	he left of the	obse	rver and the bu	bble o	f the telescope
	(4)	•	is to t	he left of the	obse	rver and the bu	bble o	f the telescope
		10 40 111						
8)	In G	i Geographic info	matic	on system, lin	ne in p	polygon metho	d is ch	aracteristic of
	(1)	Buffer operation			(2)	Raster overlag		
	(3)	Intersecting or	perati	on	(4)	Vector overla	()	

0)	If the DI of a DM is 100m the har	1	1.4 1 1 115	1 .1	501/A
9)	If the RL of a BM is 100m, the bac 1.670m, the RL of the forward station		nt 18 1.415m	and th	ne foresight is
	(1) 101.670m (2) 101.415m		99 745m	(4)	98.585m
	(1) 101.070m (2) 101.413m	(3)	\$55	(4)	2.555
10)	In functional classification of highwa	VS W	which one of the	e follo	wing highway
'	type have highest mobility and less			710110	wing ingilway
	(1) National Highways		State Highway	ys	
	(3) Major District roads		Street and Vil		Roads
					^
11)	Webster's equation for computing sa				
	saturation flow rate PCU/hour; $W = c$				
	(1) $S = 225 \text{ W PCU/hour}$	` '			
	(3) $S=550 \text{ W PCU/hour}$	(4)	S = 250 W P	CU/h	our
	For the coloration of stancing distant	41	1	Civi	CC
32	For the calculation of stopping distant values of have been recomme				
,	(1) 0.35 to 0.40 (2) 0.15 to 0.20				
	(1) 0.55 to 0.40 (2) 0.15 to 0.20		0.40 00 0.43	(+)	0.45 to 0.50
13)	In total reaction time of the driver, the	time	required for the	sensa	tions received
	by the eyes/ears to be transmitted to t		-		
	spinal chord is called				
	(1) Intellection time	(2)	Emotion time		
	(3) Volition time	(4)	Perception tin	ne	
14)	Calculate the calculate of the distance in	aaD	C1:-1		1 1
14)	Calculate the value of lag distance in of 65 kmph?	22D	for a nignway	with a	design speed
	(1) 45.18 m (2) 36.14 m	(3)	32.50 m	(4)	451.80 m
	(1) 15.16 M (2) 56.11 M	(5)	52.55 M	(.)	131.00 111
15)	The psychological widening of paven	nent i	s calculated usi	ng wh	nich one of the
	following formula (take V= speed of			_	
	in m)				
	$(1) \frac{V^2}{9.5\sqrt{R}} \qquad (2) \frac{V}{9.5\sqrt{R}}$	(3)	V	(4)	$\frac{V^3}{9.5R^2}$
	9.5√R 9.5√R	(-)	9.5 <i>R</i>	(.)	9.5 <i>R</i> ²
16	Find out the rate of change of contrib	Secol	accoloration fo	ro da	agion annot of

Find out the rate of change of centrifugal acceleration for a design speed of 75 kmph, using IRC recommended formula.

- (1) 0.63 m/sec^3 (2) 0.53 m/sec^3 (3) 0.48 m/sec^3
- (4) 0.73 m/sec^3

ww.sakshieducation.com

24) The monthly mean of average daily temperature for the hottest month of the year is 30°C and the monthly mean of the maximum daily temperature for the same month of the year is 45°C, Find out the airport reference temperature

35°C (2)

10 TO 10 TO

(4) 15°C

IP.T.O.

SET.	0-4	/ A
-	01	1/
J	UL	

- 25) The minimum value of Composite Sleeper Index (CSI) prescribed on Indian railways for track sleeper is
 - (1) 783
- (2) 1352
- (3) 1455
- (4) 873
- 26) The formula used for calculation of superelevation on railways is (take G = gauge in meters, V = Speed in kmph; R= radius of curve in meters)
 - (1) $\frac{GV^2}{127R}$ m
- (2) $\frac{GV^2}{127R}cm$ (3) $\frac{GV^3}{127R}m$
- $(4) \frac{GV^2}{225R} m$
- 27) Cornice and coping is measured in
 - (1) Running meter & Square meter (2) Running meter & Running meter
 - (3) Square meter & Square meter (4) Square meter & Running meter
- 28) In Simpson's formula for areas calculation, the line joining the top of the ordinates is considered as
 - (1) elliptical
- (2) circular
- (3) parabolic
- 29) To obtain the correct volume using the trapezoidal rule, the prismoidal correction should always be
 - (1) Multiplied
- (2) Added
- (3) Subtracted
- 30) In earth work excavation, normally lead and lift is considered for preparation of road estimate
 - (1) 30 m and 1.5 m

(2) 20 m and 1.5 m

(3) 20 m and 2.0 m

- (4) 30 m and 2.0 m
- 31) The unconfined compressive strength of a clay in un-disturbed and disturbed state was found to be 180 kN/sqm and 10 kN/sqm respectively. Based on Sensitivity, the soil may be classified as:
 - (1) In-sensitive

(2)Sensitive

(3) Quick Clays

- (4) Extra Sensitive Clays
- 32) If R, and R, are the radii of curvature of a non-uniform meniscus in two orthogonal planes, the capillary rise is given by:
- (1) $h_c = (\sigma / Y_w) \{R_1 + R_2\}$ (2) $h_c = (\sigma / Y_w) \{(1/R_1) + (1/R_2)\}$ (3) $h_c = (\sigma / Y_w) \{R_1 \times R_2\}$ (4) $h_c = (\sigma / Y_w) \{R_1 / R_2\}$
- 33) The coefficient of permeability of a soil sample having its void ratio as 0.50 and co-efficient of percolation as 3.00×10^{-4} cm/s is:
 - (1) 3.00×10^{-4} cm/s

(2) 1.50×10^{-4} cm/s

(3) 6.00×10^{-4} cm/s

(4) 1.00×10^{-4} cm/s

34)	501/A In a Laboratory, to perform IS Heavy Compaction Test, it was required to use a mould of 1400 cc capacity in place of standard 1000 cc capacity mould.
	All other parameters remaining same, the number of blows to be applied per
	layer to ensure the designated compaction energy is:
	(1) 56 (2) 25 (3) 35 (4) 50
4	
35)	The magnitude of total primary consolidation settlement of a 6m thick clay

- with single drainage was estimated as 96 mm. Later it was found that, the medium has double drainage. Then, the magnitude of total primary consolidation settlement will be:
 - (1) 48 mm (2) 192 mm (4) 96 mm (3) 384 mm
- 36) The shear strength of a pure clay specimen when tested in Unconfined compression Test was found to be 100 kPa. If the same specimen was tested in Tri-axial Compression Test, the deviatoric stress at which specimen will undergo failure when the confining stress was 50 kPa, will be: (1) 50 kPa

(3) 200 kPa

(4) 400 kPa

- 37) A 3 m high retaining wall with vertical face is resisting a moist back fill with horizontal top surface having Y= 20 kN/cum. The percentage increase in Total Active Earth Pressure, if the back fill gets submerged with $Y_{sat} = 22 \text{ kN/}$ cum and Y_w = 10 kN/cum, is:
 - (1) 20 (3) 60 (4) 100

100 kPa

(2)

- 38) The factor of safety of a slope of given inclination of 6 m high constructed using a soil with c=60 kPa, y=20 kN/cum and its Taylor's stability number=0.20, will be:
 - (1) 2.50 (2) 5.00 (3) 1.00 (4) 2.00
- 39) According to Boussinesque's theory, under the application of a point load of 100 kN on the surface, the pressure bulb corresponding to an increment in vertical stress of 47.75 kN/sqm will extend to a depth of:
 - (1) 0.50 m (2) 1.00 m (3) 2.00 m (4) 4.00 m
- 40) The ultimate bearing capacity of a shallow foundation laid on a cohesion-less soil medium was estimated as 200 kN/sqm, when the water table was far below. All other conditions remaining the same, the ultimate bearing capacity of the foundation, when the water table was risen to ground level, is:
 - (1) 400 kN/sqm (2) 200 kN/sqm (3) 100 kN/sqm (4) 50 kN/sqm

per co	-41	1 1
ACTION (I)	1	1 1
50	L	11

41)	Assuming correction for overburden is not required and correction for dialatancy only is required, the corrected N-value is: (1) 45 (2) 35 (3) 25 (4) 15						
42)	The ultimate load carrying capacity of an end bearing type of bored cast-in-situ circular pile is estimated as 100 kN. All other parameters remaining the same, the capacity of the Pile if the diameter is doubled, is: (1) 100 kN (2) 200 kN (3) 300 kN (4) 400 kN						
43)	Which of the following type of Piles is more appropriate as foundation of structures constructed on Expansive Clays: (1) Batter Piles (2) Sheet Piles (3) Under-reamed Piles (4) Compaction Piles						
44)	The type of Caissons preferred in sites where high upward seepage exists, is: (1) Pneumatic Caissons (2) Open Caissons (3) Box Caissons (4) Open caissons and Box caissons						
45)	Coffer Dams are: (1) Permanent structures meant for storage of water (2) Structures built across drains to act as check dams (3) Temporary structures build to reserve water in side to cure foundation concrete (4) Temporary structures build to reserve water outside to facilitate construction of foundation						
46)	The dimensions for Kinematic Viscosity is (1) $FL^{-2}T$ (2) $ML^{-1}T^{-1}$ (3) $L^{2}T^{-2}$ (4) $L^{2}T^{-1}$						
47)	The stream function for a potential flow field is given by $\psi=x^2-y^2$, the corresponding potential function (Φ) , assuming zero potential at the origin is (1) x^2+y^2 (2) $2xy$ (3) x^2-y^2 (4) $x-y$						
48)	Water flows through a large size pipe. The stagnation pressure and static pressures measured by a pitot tube are 0.3m and 0.24m of water. The velocity of flow in, m/minute is (1) 1.08 (2) 65.00 (3) 10.8 (4) 0.65						

49)	A rectangular channel has a width of	1.8m a	nd carries a d	ischaı	501/A rge of 1.8m ³ /
8	sec at a depth of 0.20m. The specific (1) 1.03m (2) 1.47m	energy (3) 1	1S	(4)	
2 1/2 2 1/2 N	In a catchment there are six rain gauge of 92.8cm and standard deviation or gauge stations is 30.7cm. For a 10% mean rainfall, the optimum number of (1) 5 nos (2) 6 nos	t the radice degree f station (3)	e of error in the offer error i	he me (4)	asurement of
51)	The area between the two isohyets 456 55cm and 65cm is 150km ² . What is to over the basin of 250km ² (1) 50cm (2) 52cm	cm and he aver	age depui or a	m ² and nnual	that between precipitation
(52)	(1) 50cm (2) 52cm The total observed runoff volume du of 2.8cm/hr is 25.2×10 ⁶ m ³ from a ba infiltration rate for the basin (1) 3.6mm/hr (2) 4.8mm/hr	ring a 4 usin of 2	hr storm with 280 km² area.	a uni What	form intensity is the average 5.5mm/hr
53)	A volume of 3×10 ⁶ m³ of groundwa aquifer, uniformly over an area of 5k from initial level of 102m to 99m. The (1) 0.20 (2) 0.30	m ² . The he spec	e pumping iow	rereu i	me water table
54	 A hyetograph is a plot of (1) Cumulative rainfall Vs time (3.) Rainfall depth Vs duration 	(2) (4)	Rainfall inter Discharge V		
55	The unit of intrinsic permeability is (1) cm/day (2) m/day	(3)	Darcy/day	(4)	cm^2
56	S) If $S_y = \text{specific yield and } S_r = \text{specific}$ (1) $S_y + S_r = \text{void ratio}$ (3) $S_y + S_r = 1.0$	(4)	$S_y + S_r = peri$	neabi.	
5	 7) If duty (D) is 1428 hectare/cumec irrigated crop, then delta (Δ) in met (1) 102.8 (2) 0.73 	res is g	se period (B) i iven by 1.38	is 120 (4)	

- 58) Which one of the following equations represents the downstream profile of Ogee spillway with vertical upstream face? (X, Y) are the coordinates of the point on the downstream profile with origin at the crest of the spillway and H_d is the design head.
 - (1) Y/H = $-0.5(X/H_d)^{1.85}$
- (2) $Y/H_d = -0.5(X/H_d)^{1/185}$ (4) $Y/H_d = -2.0(X/H_d)^{1/185}$
- $(3) Y/H_d = -2.0(X/H_d)$

- 59) For no tension to develop in the gravity dam the eccentricity 'e' of the resultant force should be
 - (1) Less than b/,

(3) Less than $\frac{b}{4}$

- (2) Less than ^b/₆
 (4) Less than ^b/₁₂
- 60) Lacey's equations can be used for the design of
 - (1) Unlined channels only
- (2) Lined channels only
- (3) Both lined and unlined channels (4) Neither lined nor unlined channels
- 61) Syphon aqueduct is a cross drainage work provided to carry canal over a natural drain when
 - (1) Canal bed is well above the HFL of the natural drain
 - (2) Canal bed is at the same level as the bed of the natural drain
 - (3) Canal bed is below the HFL of the natural drain
 - Canal bed is below bed of the natural drain
- 62) Poise is the CGS unit of
 - (1) Kinematic viscosity

(2) Dynamic viscosity

(3) Mass Density

- (4) Weight Density
- 63) The velocity gradient is 1000/s. The viscosity is 1.2×10^{-4} N-s/m². The shear stress is

 - (1) 0.12N/m^2 (2) $1.2\times10^{-7}\text{ N/m}^2$ (3) 12N/m^2 (4) $12\times10^{-5}\text{ N/m}^2$

- 64) If Z is measured vertically upwards, dp is given by

 - (1) dp = ydz (2) $dp = \rho dz$
- (3) dp = -ydz (4) $dp = -\rho Dz$
- 65) If $\psi = 3x^2y y^3$, the values of u and v are
 - (1) 6xy, $3x^2-3y^2$

(2) 3x²-3y², 6xy
 (4) 3y²-3x², 6xy

(3) $(3x^2-3y^2)$, -6xy

- 66) In a three dimensional motion of a fluid, the component of rotation about the x-axis, o is
 - $(1) \quad \frac{1}{2} \left(\frac{\partial w}{\partial y} \frac{\partial v}{\partial z} \right) \quad (2) \quad \frac{1}{2} \left(\frac{\partial u}{\partial z} \frac{\partial w}{\partial y} \right) \quad (3) \quad \frac{1}{2} \left(\frac{\partial v}{\partial x} \frac{\partial u}{\partial y} \right) \quad (4) \quad \frac{1}{2} \left(\frac{\partial v}{\partial x} \frac{\partial w}{\partial y} \right)$

(1) Existence of velocity potential implies the structure (1) Fluid is in continuum(3) Fluid is ideal	(2) Fluid is irrotational (4) Fluid is compressible
(1) Velocity head and elevation head(3) Pressure head and elevation head	(2) Velocity head and pressure head(4) Total head
 69) The Bernoulli's equation is written with Constant. In this equation each of the table (1) Energy in kg.m/kg mass of fluid (3) Energy in Nm/N weight of fluid 	(2) Energy in Nm/kg mass of fluid (4) Energy in KW/kg mass of fluid
A 50mm diameter jet having a velocity the normal of which is inclined at 60° to exerted on the plate in Newtons is (1) 460N (2) 360 N	of 25m/s strikes a flat stationary plate, to the axis of the jet. The normal force (3) 640 N (4) 630 N
71) Reynolds number of a flow is the ratio (1) Gravity forces to viscous forces (3) Inertia forces to viscous forces	(4) Viscous forces to pressure forces
72) Ratio of the average velocity to maxim circular pipe is (1) 1/2 (2) 2/3	(3) 3/2 (4) 2
73) Difference in elevation between TEL at (1) Datum head (3) Pressure head	(4) Piezometric head
(3) (1)	$(2) \partial V / \partial y \le 0$ $(4) \partial p / \partial x < 0$
75) For a uniform flow with a depth of rectangular channel, the specific energy (1) 2.4m (2) 0.8m	(3) 2.6m (4) 1.8m
MW is	IS TORIVITE. THE HEATEST STATE I
(1) 3.06 (2) 3060	(3) 3600 (4) 850.

11)		rater. The surfac					pm is trea	ting ZMLD
		858		926		1028	. (4)	748
78)		efficiency of a side depend upon the		nent removal in	a con	tinuous sed	imentation	n tank does
	(1)	Discharge thro	ugh t	he tank	(2) (4)	Width of t Depth of t		60
79)	(1)	disinfection eff Is not dependan	nt on	p ^H value	(2)	Is increased	by increase	7 0
	(3)	Remains consta	int at	all p ¹¹ values	(4)	Is reduced 1	by increase	in p ^H value.
80)	2000	% solution of a C. If initial DO mg/lit and 5.5 m	and f	inal DO values	after	5 days of i	ncubation	-
	(1)		_	150mg/lit				350mg/lit
81)		tal hardness of w be equal to	ater i	s less than its tot				nte hardness
	(1) (3)	Total alkalinity Total alkalinity		cal hardness	(2)	Total hard Zero	lness	
82)	adde	diluting 25ml diluting 25ml do make the value (FTN) will	vater					
	(1)		(2)	7	(3)	8	(4)	9
83)	In n (1) (2) (3) (4)	The algebraic The elevation	sum sum of hy	of discharges a of head losses draulic grade li are replaced by	aroun	d each circ	uit is zero r each jur	
84)	The (1) (2) (3) (4)	Environmenta Environmenta	l laps l laps l laps	ants in atmospher rate is greater se rate is less that is equal to depth is equal to	than an adi o adia	adiabatic la abatic lapse abatic lapse	ipse rate e rate	

85)	Which one of the following pollutant (or) pairs of po	501/A ollutants is formed due to								
	photochemical reactions									
86)	If a sewer carrying a discharge of 3 cumecs outfalls into a river having a discharge of 10 cumecs and DO equal to 9.1mg/lt, the resultant DO of the mix will be equal to (1) 5mg/lt (2) 6mg/lt (3) 7mg/lt (4) 8mg/lt									
87)	The natural process under which the flowing river gets cleaned is known as (1) Oxidation (2) Photosynthesis (3) Reduction (4) Self-purification									
88)	Recirculation in activated sludge process is done to (1) Dilute the incoming sewage (2) Dampen the effect of the flow variation (3) Operate the plant continuously (4) Supply seed materials to the aeration tank									
89)	Lower Food to Micro-organism (F/M) ratio in a conventional activated treatment plant will mean (1) Lower BOD removal (3) No effect on BOD removal (4) Medium BOD removal									
90)	The relative stability of a sewage sample whose dissert the total oxygen required to satisfy its BOD is (1) Zero (2) 1% (3) 100%									
91)	A rectangular box made with thin uniform plate measures 2000mm x 1000mm x 1000mm. When the box is subjected to certain internal pressure, the dimensions in respective directions have changed by +2.0mm, -1mm and +1mm. The change in the volume of the box is (1) 2.0 × 10 ⁶ mm ³ (2) 1.0 × 10 ⁶ mm ³ (3) 2.0 × 10 ³ mm ³ (4) 2.0 × 10 ⁵ mm ³									
92)	force and bending moment. Whereas the shear s variation of bending stress is along the d (1) linear with zero value at centroid, linear with zero value at centroid with zer	A rectangular section of a beam is acted upon by certain amounts of shear force and bending moment. Whereas the shear stress varies, the variation of bending stress is along the depth. (1) linear with zero value at centroid, linear with zero value at centroid (2) parabolic with zero value at centroid, linear with zero value at centroid. (3) parabolic with zero value at top & bottom, linear with zero value at middle.								
	15	IP T.O.								

- 93) A simply supported beam of span L, carries a UVL with intensity varying from w/unit downward at left support to w/unit upward at right support. The reactions at left and right supports are respectively:
 - (1) wL/4 upward and wL/4 downward
 - (2) wL/4 downward and wL/4 upward
 - (3) wL/6 upward and wL/6 downward
 - (4) wL/8 upward and wL/8 downward
- 94) A cantilever beam of span L, uniform flexural rigidity EI is subjected to a unit couple at its free end. The deflection at the centre of the beam is:
 - (1) $L^2/2EI$
- (2) $L^2/8EI$
- (3) $L^{2}/4EI$
- (4) $L^2/16EI$
- 95) For the L bent shown in Fig.1, the flexural rigidity of both arms AB and BC is EI carries a vertical downward load W at C. The deflection and rotation at B (neglecting axial deformations) are

- (1) $WL^2/2EI \rightarrow WL/EI$
- (3) WL³/EI↓,WL²/EI

- 2WL³/EI↓,WL²/3EI
- WL²/2EI→,WL²/EI
- 96) A simply supported beam of span L, carries two couples of magnitude M each acting at both middle third locations of the beam. While one of them is acting clockwise the other is acting counter clockwise. Magnitude of the maximum shear force acting in the beam
 - (1) 2M/L
- (2) M/L
- 1.5M/L (3)
- 97) The plane truss shown in Fig.2 carries a point load W and a moment M at the location B. Force carried by member AB is

- 5W/6 (compressive)
 - 5W/6 + M/L (compressive)

(2)

W/2 (compressive) W/2 - M/2 (compressive)

								501/A
98)		lysis of trusses				ing assump	ptions. T	he correct
•		bination of ass			•			
	(1)	All loads act at						
	(ii)	All joints are s						
	(iii)	Truss is made						
	(iv)	The axis of all						
	(1)	i, ii and iv	(2)	i, ii, iii	(3)	1, 1V	(4)	i, iii, iv
00)	- CO1			. C 1;4;		Enga o vici	diciptic	
99)		correct combin					id John 18	•
	i)	All members n						
	ii)	All deflections					ations of	that ioint
	iii)	All members r						
•	iv)	All members r						
	(1)	i, ii	(2)	i, iii	(3)	ii, iv	(4)	iii, iv
100	\ TP1	1:		on of the 2 D	\ maxta	1 frama cho	um in Fig	3 including
100		kinematic indeal deformations		lacy of the 2-L	рогта	I maine sho	own in Fig.	Jincluding
	axia	ii deloimations	15					
)					
				641				
		7777	77777	711111	777			
				Fig.3				
•								
	(1)	6	(2)	11	(3)	8	(4)	9
	(1)	0	-(2)	11	(3)		(.)	
101)In t	he moment dis	tribut	ion method of	plane	frame ana	lysis, the	distribution
101	fact	tor for a member	atai	oint depends o	n	com	bination of	f conditions.
	i)			tio of all the m				
	ii)			y of all the mer				
	iii)			ach member m				

(2) i, iii

(1)

ii, iii

Support conditions at the farther ends of members meeting at the joint.

(3) iii, iv

(4) i, iv

1/A
1//

		501/A
) A cantilever beam of uniform flex		
subjected to temperatures T_1 on the		
		expansion for the material, th
		•
(1) $\alpha (T_2 - T_1) L^2 / 2D$ (upward)	(2)	$\alpha (T_2 - T_1) L^2 / D \text{ (upward)}$
(3) $\alpha (T_2 - T_1) L / 2D $ (upward)	(4)	$\alpha (T_2 - T_1) L^2/2D$ (downward
At a point in elastic medium norm	nal stress	es in two mutually perpendicula
,		
(4) 130 MPa (tensile), 30 MPa (compress	sive)
	ection of	weight is δ , the work done by the
		$W(h + \delta)$
(3) $\frac{1}{2}$ W h + W δ	(4)	$W h + \frac{1}{2} W \delta$
	hear forc	e is a second degree parabola an
the variation of loading is	_, the var	iation of bending moment is
the variation of loading is (1) constant, cubic parabola	_, the var	iation of bending moment is
	_, the var (2)	iation of bending moment islinear, square parabola
(1) constant, cubic parabola	_, the var (2)	iation of bending moment islinear, square parabola
(1) constant, cubic parabola(3) cubic parabola, square parab(5) A force of magnitude 5 N moves	_, the var (2) ola (4) through	iation of bending moment is linear, square parabola linear, cubic parabola a distance of 4mm in a direction
 constant, cubic parabola cubic parabola, square parab 	_, the var (2) ola (4) through	iation of bending moment is linear, square parabola linear, cubic parabola a distance of 4mm in a direction
 (1) constant, cubic parabola (3) cubic parabola, square parab (3) A force of magnitude 5 N moves inclined at 60° to the direction of the force is 	_, the var (2) ola (4) through force. Th	iation of bending moment is linear, square parabola linear, cubic parabola a distance of 4mm in a direction te magnitude of the work done be
 (1) constant, cubic parabola (3) cubic parabola, square parab (3) A force of magnitude 5 N moves inclined at 60° to the direction of the force is 	_, the var (2) ola (4) through force. Th	iation of bending moment is linear, square parabola linear, cubic parabola a distance of 4mm in a direction
 (1) constant, cubic parabola (3) cubic parabola, square parab (3) A force of magnitude 5 N moves inclined at 60° to the direction of the force is 	_, the var (2) ola (4) through force. Th	iation of bending moment is linear, square parabola linear, cubic parabola a distance of 4mm in a direction te magnitude of the work done be
 (1) constant, cubic parabola (3) cubic parabola, square parab (3) A force of magnitude 5 N moves inclined at 60° to the direction of the force is 	through (3)	iation of bending moment is linear, square parabola linear, cubic parabola a distance of 4mm in a direction to magnitude of the work done by 10 N.mm (4) 20 N.mm cated
 (1) constant, cubic parabola (3) cubic parabola, square parab (3) A force of magnitude 5 N moves inclined at 60° to the direction of the force is	through (3)	iation of bending moment is linear, square parabola linear, cubic parabola a distance of 4mm in a direction to magnitude of the work done by 10 N.mm (4) 20 N.mm
	T ₁ < T ₂ and α is the coefficient deflection at the free end of the beautiful (1) α (T ₂ - T ₁) L ² /2D (upward) (3) α (T ₂ - T ₁) L /2D (upward) At a point in elastic medium normodirections are 120 MPa, 40 MPa stress of 30 MPa. The principal structure (1) 120 MPa, 40 MPa (both tension) (2) 130 MPa, 30 MPa (both tension) (3) 130 MPa, 30 MPa (both comusion) (4) 130 MPa (tensile), 30 MPa (comusion) (4) 130 MPa	 T₁ < T₂ and α is the coefficient of linear deflection at the free end of the beam is

108) A b	eam has a circular cross section. If the coincide with the centroidal axis of the coincide with the coincide with the centroidal axis of the coincide with the coincide wi	ne plane of loading on the beam, the memb	501/A on the beam does er is subjected to
(1)	axial force, shear force and bending	g moment	
(2)	torque, shear force		
(3)	torque, shear force and bending me	oment	
(4)	axial force, shear force and torque		
109) The	e stiffness of a close coiled spring is	more when	
(1)	· 1 · · · · · · · · · · · · · · · · · ·	e more and mean r	radius, number of
1	turns are lesser		11
(2)	are lesser		
(3)	turns are lesser		
(4)		e diameter, mean r	radius, number of
thic she	pressure vessel in the form of a thin cockness is subjected to an internal fluitear stress in the material is	d pressure of 0.2 M	Pa. The maximum (4) 37.5 MPa
str to ho	wo circular shafts of same length, we rength. The first one is a solid shaft a inner diameter ratio as 2. The ratio allow shaft to solid shaft considering the $2.5/\sqrt{3}$ (2) $5\sqrt{3}/6$ (2)	nd the other is a ho of the torque carryi e shear stress criterio	llow shaft of outering capacity of the
112) Fo	or a circular cross section subjected lear stress to average shear stress is		
) 1.0 (2) 2.0	(3) 1.5	(4) 4/3
ce Tl (1	cantilever beam of span L and flexuertically downwards at its free end. Then the of another simply supported be the support reactions for the simply support with the support of the suppo	he free end of the be cam of span L and f	eam is resting at the lexural rigidity EL.
(0	19		[P.T.O.

- 114) A simply supported beam of span L and flexural rigidity EI carries a UDL of intensity w/unit run all along its span. The beam is supported at its centre by a linear spring of stiffness k. The force carried by the spring is
 - (1) $5 \text{kwL}^4 / (\text{kL}^3 + 8 \text{EI})$
- (2) $5 \text{kwL}^4 / 8 (\text{kL}^3 + 48 \text{EI})$
- (3) $5wL^4/8(kL^3+8EI)$

- (4) $5wL^4/8(kL^3+48EI)$
- 115) The three member plane truss A-B-C-D, shown in Fig.4 supports a vertical load W at B. The magnitude of the force carried by member BD is

- (1) W (compressive)
- 0.5 W (compressive)
- (3) $(\sqrt{3}/2)$ W (compressive)
- (4) 0.5W (tensile)
- 116) The symmetry of flexibility matrix is due to
 - (1) Betty's theorem

(2) Maxwell's reciprocal theorem

(3) Eddy's theorem

- Castigliono's theorem (4)
- 117) A fixed beam of span L and uniform flexural rigidity EI carries a vertical downward load W at its mid span. If a hinge is introduced in the beam at the location of the load, the deflection under the load is

 - (1) WL³/12EI (2) WL³/24EI (3) WL³/16EI
- (4) WL³/48EI
- 118) A stepped bar A-B-C of total length 2L carries an axial load P at B as shown in Fig.5. Axial rigidity of segment AB is 2AE and that of BC is AE. The displacement at B is _____.

- PL/3AE
- (2) 0
- (3) PL/2AE
- (4) PL/AE

119) The static indeterminacy for the continuous beam shown in Fig.6 is _____ (3) 2 (1) 6 (2) 3 120) A simply supported girder of span 10m is traversed by a 5m long UDL segment of intensity 10kN/m. The magnitude of absolute maximum moment in the beam is (2) 98.75kN.m (3) 90.25kN.m (4) 88.75kN.m (1) 93.75kN.m 121) For a simply supported girder, EUDLL is defined as the intensity of the UDL acting on full span whose (1) intensity is larger than all other loads acting on the span. (2) moment diagram is above the bending moment ordinates caused by all loads on the span. (3) bending moment diagram just envelops bending moment caused by all loads on the span. (4) intensity is larger than the sum of intensities of all loads on the span. 122) A simply supported beam of span L and uniform flexural rigidity EI is subjected a pre-stressing force of magnitude P, at an eccentricity e below the neutral layer, parallel to the axis of the member. The displacement of the beam at a location L/4 from the support is (2) PeL²/8EI (1) $PeL^2/4EI$ (4) PeL²/EI (3) PeL²/2EI 123) For a member subjected to loads on its span, equivalent joint loads are determined in such a way that _____ (1) The member end actions caused by equivalent joint loads are same as those caused by loads on the member. The equivalent joint loads cause same set of nodal displacements as caused by the member loads. (3) The equivalent joint loads together with member loads ensure the equilibrium of the structure. The equivalent joint loads together with member loads ensure the compatibility of displacements for the structure.

124	An con	orthogrid structure is one whic	h sai	isfies following	g co:	501/A mbinations of
	i)	A two dimensional framed structured different directions.	ture	consisting of me	embo	ers oriented in
	ii) iii)	Loading plane perpendicular to Member end actions are the a moments.	the pi	lane of structure forces, shear for	orces	and bending
	iv)	Angle between members is alwa	vs 90	0,0		
	v)	Member end actions are the shear	r for	es, torques and	henc	ling moments
	(1) (3)	i , ii, iii, iv, v ii, iii, iv, v	(2)	i, ii, iii, iv i, ii, iv, v	Olic	ing moments.
	(-)	27, 27, 47, 7	(4)	1, 11, 1V, V		
125)In tl	he stiffness matrix method, the bo	ounda	ary conditions a	re ne	eeded to avert
e	$\overline{(1)}$	divergent solution	(2)	singularity		
	(3)	irrational solution		zero displacem	ent v	vector
26) In th	and direct clament mathed of of	1	1	•	
1 20 0	are i	ne direct element method of structu needed for following combination	rai ar	alysis, the transf	orm	ation matrices
	i)	They facilitate the transformation	is ui n of e	lement stiffness	and	
		matrices to global stiffness and g	dobal	load matrices re	esne	ctively
	ii)	They are useful for determining t	he di	splacement matr	ices	ouvery.
	iii)	They facilitate the conversion of	f res	ultant displacen	nent	matrices into
	. ,	member oriented displacement m	atric	es.		
	iv)	The are useful for determining m				
	(1)	i, iii (2) n, iii	(3)	111, iV	(4)	i, ii
27	For	a fixed beam of span L and uniforn	flow	ural riaidit. Tit		T41
	at sa	ame level, the support at right ro	i iica tate l	ov a radiane an	viui ti ol	ooth supports
•	supp	port reactions at left and right sup	ports	s (assumino una	u on vard	displacement
	and	anti clockwise rotations as positiv	ve) re	spectively are	arcı	displacement
	(1)	6EI α /L ² , 2EI α /L, 6EI α /L ² , 2	EÍα	/L		
	(2)	6EI α /L ² , 4EI α /L,-6EI α /L ² ,				
		6EI α /L ² , 2EI α /L, - 6EI α /L ² ,				
	(4)	6EI α/L ² , 2EI α/L, - 6EI α/L ² , 1	2EI o	/L		
28	Usin	g slope deflection method, the en	d rot	etions at A and	R fo	r a harizantal
	mem	ber 4m long with flexural rigidity	ELar	e found as EI/10	000 s	nd _ FI/2000
	respo	ectively. The beam carries a 80kN	verti	cal downward lo	ood d	of 1m from A
	The	support moments at A and B ar	e (as	suming clockw	ise r	noments and
	rotat	ions as positive) taking $EI = 5 \times 1$	$0^4 \mathrm{kh}$	V.m are	1	respectively
	(1)	+30 kN.m, -15 kN.m	(2)	+45 kN.m, +15	kN.1	m
8	(3)	-7.5 kN.m, +15 kN.m	(4)	+15 kN.m, -15 l	kN.n	n

flexural while at at the joint (1) 3/1 (3) 4/2	rigidity are rigidly connected D it is hinged the distribution bint B are respecting 11, 4/11, 4/11 11, 4/11, 3/11	at B. If the factors in ively. (2) 4/1 (4) 1/3	501/A d 4m long each, with uniform he supports at A and C are fixed h directions of BA, BC and BD 11, 3/11, 4/11 3, 1/3, 1/3
beam n (1) An (2) An (3) An (4) An	noment coinciding with H-morch all along carries only radiated all along carries only beant only all along carries only normer all along carries only H-m	ment indi l shear. n moment nal thrust. noment.	t
The su least te (1) w (3) $$ 132) A cant conjug	pports are at the same level a ensions in the cable are $L/2$, $wL^2/8h$ $((wL/2)^2+(wL^2/8h))$, $wL^2/8h$	(2) (4) t end A a	ched between supports L apart. entral dip is h. The greatest and $\sqrt{((wL/2)^2+(wL^2/8h))}$, $wL^2/16h$ $\sqrt{((wL/2)^2+(wL^2/2h))}$, $wL^2/8h$ and free at B. The corresponding free at A and simple support at B
(3) f	ree at A and fixed at B	(4)	simple supports at both A and B
bolted (1) (2) (3) (4) 134) The	I connections is governed by The slenderness of the member The tensile strength of net sec The strength of the bolted con The section modulus of the member principal reason for adding strength of the member of th	er tional are mection. nember tiffeners t	to the web of a steel beam is to
(1) (2) (3) (4)	Increase its moment carrying Reduce the deflection of the Increase the stiffness of the VImprove aesthetics.	beam.	

13	5) In	the built-up ste	el coli	imns the la	oino io	provided		501/A
	i)	to keep all in	dividu	al sections to	onethe	provided_	•	
	ii)	to take-up lat	eral sl	lear to an ev	rtent of	1. 52 50/ of or	rial C	
	iii)	to increase th	e ben	ding strenotl	of the	2.J/0 OI ax	dai force.	
	iv)	to increase th	e com	pressive str	enoth c	of the centic	252	
•	(1)	i, iii	(2)	ii, iii	(3)		on. (4)	i, ii
130	6) Th	e list of principa	al com	ponents of a	a plate	girder is	0	•
	(i)	Top and botto	om fla	nge plates a	nd web	plates.		
	ii)	Horizontal sti	ffener	s, Intermedia	ate and	bearing sti	ffeners	
	iii)	Cleat angles a	nd sea	it angels.			TOHOLD.	
	iv)	Web splicing			5.			
	(1)	i, iii, iv		i, ii, iii	(3)	i, ii, iv	(4)	ii, iii, iv
137)The	e requirements to	n he sa	atisfied in the	a dogio	Tofo contra		
	to v	withstand effect	s due	to .	e desig	n or a gantr	y girder are	that it has
	(1)	Moving loads			d fatio	пе		
3	(2)	Moving loads,					act effects a	and fatigue
	(3)	Lateral loads,	longit	idinal loads.	impac	et effects an	d fatione	ma ratigue.
	(4)	Dynamic loads	s, long	itudinal load	ds, imp	act effects	and fatigue	•
138)The	Lug angle is a	memb	er which				
	(1)	is connected t	o the	main tension		 ber to trans	sfer the ter	asile force
	(2)	is connected to			memh	er for erect		
	(3)	is connected to	the m	ain tension	membe	er to increas	ion purposi	3. 4h 111
	(4)	is connected to	the m	ain tension	membe	er to increas	se its stiffn	un locally.
					***********	or to morea.	sc 112 2111111	ess
139)	The	expression worl	king o	ut the thickn	ess of	slab base is	given by _	
	Delic	thickness of sla	b base	e, a, b = lon	ger an	d shorter pr	se, $\sigma_{bs} = pe$	ermissible of the slab
	base	edge to the col	umn n	nember, Pois	sons ra	tio = 0.25.		
		$t = ((3w/\sigma_{bs})(a-1))$			(2)	$t = ((3w/\sigma)$	$(a^2-b^2/4)$	$)^{1/2}$
	(3)	$t = ((3w/\sigma_{bs})(a^2))$	$-b^2))^{1/2}$		(4)	$t = ((3w/\sigma_1)$	$(a-b^2/4)$./2

mom	ent of the bean	section is N	I _p , collapse	ensity w/unit ru	in. If the plastic number of
plast	ic hinges are fo	rmed and wL		•	
(1)	2 and $8M_P/L$		(2)	3 and $8M_p/L$ 2 and $16M_p/L$	1-4
(3)	3 and $16M_p/L$		(4)	2 and $16M_p/L$	w= lumi
mon	entilever beam on the section of the section is leading.	on from supp	port to mide	dle of span is 1 on W =	ree end. Plastic .5 M _p and from
(1)	$1.5M_{\rm p}/L$	$(2) M_{P}/L$	(3)	$2M_{\rm p}/L$	(4) $0.75M_{P}/L$
142) Accousing	ording to IS: 45 g RCC with an	66-2000, in the effective dep	ne design o	f isolated RCC tical sections to	column footing be checked are
(1)	from the face of	of column and	l two-way s	hear at d around	
(2)	Bending mome	ent at the fac	e of the coll two-way s	umn, one-way hear at d aroun	shear at d away d the column.
(3)	Bending mom	ent at d/2 av	vay from th	e face of the c	olumn, one-way vay shear at d/2
	around the col		1400 01 001		
(4)	Bending mom	ent at the fac	e of the co	lumn, one-way shear at d/2 arou	shear at d away and the column.
slab	nimum amount on shall not be less shall not be less slab according to	ess than	of	l bar reinforcem the total cross	ent used in solic sectional area of
		(2) 0.12%		0.20%	(4) 0.25%
144)Wh	en the depth o	of the web o	f beam is a web area is	nore than	_ mm, side face ovided according
(1)	600, 0.1%	(2) 750, 0.	15% (3)	600, 0.15%	(4) 750, 0.1%
145) Ma	ximum spacing	of vertical sh	ear reinforc	ement measured whichever is low	l along the axis o
	0.75d or 300n			0.75d or 400r	
, ,	0.73d of 300f 0.50d or 250r			0.5d or 300m	
(3)	0.300 01 2301	11111	25		[P.T.O
			10 mar 10		

www.sakshieducation.com

AST	0	1	/ A	
120	8 8	100	/A	à
~	63	基	I = I	g

146)	The bearing s	tress check for column footing in limit state design specifies that
	the value	subjected to a maximum of 2 multiplied by bearing stress
	shall	be more than the compressive stress at the base of the column.
	$A_1 = suppor$	ing area for bearing of footing, which in sloped or stepped
	footing mayb	e taken as the area of the lower base of the largest frustum of a
	pyramid or co	one contained wholly within the footing and having for its upper
	base, the are	a actually loaded and having side slope of one vertical to two
	horizontal; an	A_2 = loaded area at the column base.

(1) $\sqrt{(A_1/A_2)}$, 0.30 f_{ck}

(3) $\sqrt{(A_1/A_2)}$, 0.45 f_{ck}

(2) $\sqrt{(A_1/2A_2)}$, 0.45 f_{ck} (4) $\sqrt{(A_1/A_2)}$, 0.60 f_{ck}

147) The functionality of a wall, retaining wall and a shear wall in order is

- resist predominantly vertical loads
- resist lateral loads perpendicular to the plane of wall
- resist lateral loads in the plane of wall
- (1) ii, iii, i
- (2) i, ii, iii
- iii, ii, i
- (4)ii, i, iii

148) Splicing of reinforcement in flexure members is taken-up at a location where bending moment is less than _____ the moment of resistance at that section and not more than _____ of bars are spliced at any particular section.

- (1) 75%, 50%
- (2) 50%, 75%
- (3) 25%, 50%
- (4) 50%, 50%

149) The loss stress due to creep in steel in a pre-stress problem is given by the formula _____, where α = creep coefficient, f_c = stress in concrete, $E_{c} = \text{modulus of elasticity of concrete and } E_{s} = \text{modulus of elasticity of steel}.$ (1) $\alpha(f_c/E_c)E_s$ (2) $\alpha(f_c/2E_c)E_s$ (3) $\alpha(f_c/E_s)E_c$ (4) $2\alpha(f_c/E_c)E_s$

150) The principal reason for adopting pre-stressing cable profiles in flexure members as parabolic is due to the fact that

- They need to resist both bending moments and shear forces in members.
- The strength of pre-stressing cables is maximum in parabolic shapes only.
- The profile of moment caused by self weight of structure is parabolic and to counter this, the cable profile also needs to be parabolic.
- Its a regular practice

