
Module3: GNU Make Utility and Libraries

GNU Make

Overview of Make

The make utility automatically determines which part of code need to be recompiled and

issues commands to recompile them. Make utility can be used with any programming language

whose compiler can be run with a shell command. In this module we are using most of the C

programs, since they are most common. To use make we must write a file called “makefile” that

describes the relationship among files in the program and provides the commands for updating

the each file. In program the executable files are updated from the object files, which are

compiled from the source files. The make is not limited to programs; it can be used to describe

any task where some files must be updated automatically from others whenever the others

change. The “make” command uses the “makefile” data base and last modification times of the

files to decide which of the files need to be recompiled.

Introduction

The “makefile” tells “make” how to compile and link the program. “make” execute commands in

the “makefile” to update the programs. Normally the make looks for makefile and it tries to look

by the following names, makefile or Makefile or GNUmakefile.

Writing makefiles

“Make” is a UNIX utility to simplify building program executables from many modules.

1. Create a “Makefile” listing the rules for building the executable. The file should be

named as 'Makefile' or 'makefile'. This has to be done only once, except when new

modules are added to the program. The “Makefile” must be updated to add new module

dependencies to existing rules and to add new rules to build the new modules.

2. After editing program files, rebuild the executables by running “make” command, which

will compile the modified source files and creates the executable.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Basic rule:

#comment

Target: prerequisite (dependency files)

 <Tab> Command

Target: The application which need to be build.

Prerequisite: The files needed to build the application (target). These files are dependency files.

Command: The procedure to build the application (Target).

Note: The <Tab> in the command line is necessary for make to work otherwise it will give error

message.

Examples:

1. “Makefile” for compiling a program from a single source file.

//Hello.c -- This program display the “Hello World” on console.

 Makefile – Make file for compiling the above program.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 Executing make command by giving “$make”

 $make clean – removes the executable files created by the “makefile”

2. “Makefile” for compiling an executable from multiple source files.

In this example we will read two numbers from user input and perform addition and subtraction

operation on two numbers using different function calls and display output on console.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

//read.c -- This program reads the input integers from user.

//add.c – This function performs the addition operation on given integers and gives the sum of

two integers.

//sub.c -- This function performs the subtraction operation on given integers and gives the

difference of two integers.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 Makefile -- Make file for compiling the above programs.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 $Make

 Make clean -- – removes the executable files and object files created by the “makefile”.

Using make utilities we can run “make” command with target name also. In the below figure we

are executing make command with target name.

 $make math

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

“Makefile” contain four components and they are

1. Rules – Rules are of two types.

a. Explicit rule – An explicit rule says when and how to remake one or more files,

called targets. It lists the other files that the target depends on called prerequisites

of the target, and may also give a recipe to use to create or update the target.

b. Implicit rule – An implicit rule says when and how to remake a class of files

based on their names. It describes how a target may depend on a file with a name

similar to the target and gives a recipe to create or update such a target.

2. Variable – A variable definition is a line that specifies a text string value for a variable

that can be substituted into the text later. Variables begins with a $ and enclosed within

parentheses () or braces {}. Automatic variables are set by make after a rule is matched.

a. $@: The target filename.

b. $*: The target filename without the file extension.

c. $^: The filenames of all the prerequisites, separated by spaces, discard duplicates.

d. $?: The names of all prerequisites that are newer than the target, separated by

spaces.

e. $<: The first prerequisites file name.

Examples :$(CC), $(RM), $@, $(CC_FLAGS)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

3. Directive – A directive is an instruction for make to do something special while reading

the makefile. These may includes:

a. Reading from another makefile that is the include directive tells make to suspend

reading the current makefile and read from other makefiles before continuing.

b. Deciding whether to use or ignore a part of the makefile.

c. Defining a variable from a verbatim string containing multiple lines

4. Comments – ‘#’ in the makefile starts a comment that is after whatever written that will

be ignored.

Static and Shared libraries

A library is a collection of pre compiled object files that can be linked into programs via linker.

There are two types’ libraries.

1. Static Library

 A static library has file extension of “.a” (archive file) in UNIX operating systems

or “.lib” in windows. When your program is linked against a static library, the machine

code of external functions used in your program is copied into the executable.

2. Dynamic library

Dynamic library is also called shared library and it has file extension of “.so”

(shared objects) in UNIX operating system and “.dll” in windows. When your program is

linked against a shared library, only a small table is created in the executable. Before the

executable starts running, the operating system loads the machine code needed for the

external functions known as dynamic linking. Dynamic linking makes executable files

smaller and saves memory, because one copy of a library can be shared between multiple

programs.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Differences between static executable and dynamic executable:

• When library is linked statistically to create an executable functions, part of that library

are copied as part of that executable image.

• When library is linked dynamically, the functions part of that library is not copied part

of executable image. When we execute dynamic executable along with executable

image, dynamic libraries are also loaded are referred as load time libraries.

• Static executables are faster when comparing with dynamic executables, since static

executable contain all functions.

• Dynamic executables are smaller in size when compare to static libraries, since dynamic

executables should not contain all the functions but it has reference to that function in

PLT table.

Utilities for Examining the Compiled files

File:

File option is used to display the type of object files and executable files.

Example: gcc –c Hello.c –o Hello

File Hello

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

objdump (object dump)

Binary dissembler tool, this tool is used to display information of the object files.

$objdump add.o

 Objdump –D add.o

-D dissemble the content

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

